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Abstract

Due to uncertainty, in many problems, we only know the probability
of different values. In such situations, we need to make decisions based on
these probabilities: e.g., we must tell the user which values are possible
and which are not. Often —e.g., for a normal distribution — the probability
density is everywhere positive, so, theoretically, all real values are possible.
In practice, it is usually safe to assume that values whose probability is
very small are not possible. For a single variable, this idea is described
by a confidence interval C, the interval for which the probability to be
outside is smaller than a given threshold po. In this way, if we know that
a variable x is normally distributed with mean a and standard deviation
o, we can conclude that z is within the interval C = [a — k- 0,a + k - 0],
where k depends on po (usually, k = 2, 3, or 6).

When a random object is a function f(z), we similarly want to find
a confidence set C' of functions, i.e., the set for which the probability to
be outside is smaller than py. To find such a set, it is possible to use
the following area method: they define the area I(f) under the graph of
f (ie., in mathematical terms, an integral Io(f) = [ f(z)dz), select a



confidence interval for Io(f) and take, as C, the set of all the functions
f(x) for which Io(f) is within this interval.

At present, the area method is largely heuristic, with no justification
explaining why exactly the integral functional I(f) corresponding to the
area should be used. In our paper, we provide a justification for the area
method.

1 Confidence Sets and Area Method: Formula-
tion of the Problem

Often, we have probabilistic uncertainty. In many practical situations,
we must determine the values of certain parameters characterizing a given ob-
ject. In some cases, these values can be determined directly, by measuring these
values. In other situations, these values can only be determined indirectly,
by measuring some auxiliary easier-to-measure quantities, and processing these
measurement results to estimate the values of the desired quantities.

Measurement is never absolutely accurate, there is always measurement un-
certainty. As a result, our estimates of the desired quantities are also uncertain.

Traditionally, in engineering practice, we assume that the sensors and mea-
suring instruments used in the measurements are well calibrated and that, there-
fore, we know the probabilities of different values of measurement inaccuracy.
In such situations, after the measurement and data processing, we know the
probability of different values of the desired quantity; see, e.g., [6].

From probabilities to confidence intervals. In addition to knowing the
probabilities of different values (and different combination of values), the user
usually also wants to know which values (or combinations of possible) are pos-
sible.

For some probability distributions, the answer to this question is easy: e.g., if
the probability distribution is located on an interval [a, b], so that the probability
to be outside this interval is 0, then we can conclude — with probability 1 — that
the desired quantity x is located on this interval.

In other cases, the situation is not so easy. For many distributions, e.g., for
a normal distribution, the probability density is everywhere positive. Theoret-
ically, this means that all real values are possible — although the probability of
some of the values is extremely small.

In practice, it is safe to assume that the occurrence of values whose proba-
bility is very small is impossible.

For a single variable, this idea is described by a confidence interval C, the
interval for which the probability to be outside is smaller than a given threshold
po. For example, if we know that a variable z is normally distributed with
mean a and standard deviation o, we can conclude that x is within the interval
C =la—k-o0,a+k- o], where k depends on pg; usually, practitioners select
k=2,k=3,or k=6.



Comment. Note that we use the wording confidence interval in a broad sta-
tistical sense, going beyond its common usage in statistical practice; see, e.g.,
[4, 5].

From confidence intervals to confidence sets. When we have several
variables v, ..., v,, then we can also consider a confidence interval Cy, ..., C),
for each of these variables, and then form a box

O x...xCp={v=(v1,...,vn) :v1 €C1,...,v, € Cp}}

of all possible combinations of values v; € C;. However, this box does not always
provide a full picture of which combinations v = (vy,...,v,) are possible and
which are not. For example, if the random variables v; and vy are strongly
correlated, then only the combinations for which v; & vo are possible. In this
example, the set of all possible combinations is a proper subset of the above
box.

We therefore need to describe a general confidence set. Moreover, we need to
describe not just a single confidence set, but the family of confidence sets C(pg)
corresponding to different values py — probabilities to find the actual random
vector outside the corresponding set C(py).

Describing a family of confidence sets by a function. The value pg is
the probability of a random vector not getting into the confidence set — i.e.,
equivalently, the probability of a random vector getting into the complement
—C(pg). Thus, the smaller the value pg, the smaller the complement —C'(pg) —
and thus, the larger the confidence set C(py).

Similarly to confidence intervals, it is therefore reasonable to require that if
an element v belongs to the confidence set C(pg) for some pg > 0, then this
element v also belongs to all the sets C(p) with p < po. Under this requirement,
for each element v, there is the smallest possible value p(v) of the probability
po for which v € C(pg). (To be more precise, there is an infimum, but if we
consider closed confidence sets that continually depend on p, then this infimum
is indeed attained, i.e., we indeed have v € C(p(v)).)

Thus, instead of describing a family of sets, it is sufficient to describe a
function p(v) for which, for every p, the condition v € C(p) is equivalent to

p < p(v).

Sometimes, we have prior information about the probabilities. In
some cases, we have some information about the probability distributions. For
example, if the probability distribution on an n-dimensional space of points
(v1,...,vy,) is invariant with respect to arbitrary rotations in this space, then the
probability density function p(vy,...,v,) depends only on the distance ||v| =
V% + ...+ v2. In this case, it is reasonable to select confidence sets which have
the same symmetry, i.e., sets which are also rotation-invariant. In terms of the
function p(v), this means that this function should also only depend on the
distance ||v]|.



In other cases, instead of the distance, we may have other combinations of
the original variables. Such cases can be summarized as follows:

e First, we select an appropriate function I(vy,...,v,).

e Then, based on the given distribution, for each pg, we select confidence in-
tervals Cy(po) for the corresponding scalar random variable I(vy,...,v,).

e Finally, as the desired confidence set C(py), we take the set of all the
values v for which I(v) € Cr(po):

Cpo) & {v = (v1,...,v0) : I(v) € Ci(po)}-

Comment. It should be noted that for this method, what is important are
the sets corresponding to the function I(v) and not the numerical values of
the function itself. For example, if we re-scale the function I(v) by taking
I'(v) =a+b-I(v) or I'(v) = (I(v))3, then the two functions I(v) and I’(v)
generate the same family of “sub-level” sets {v: I(v) < ip} and thus, the same
confidence sets C(po).

It should be mentioned that this idea of constructing confidence sets is close
to the concept of potential clouds, put forth in [2, 3].

Confidence sets for random functions: the area method. The same
idea can be used when a random object is a function f(z), e.g., a piece-wise
continuous non-negative function from real numbers to real numbers, with a
compact support (i.e., equal to 0 outside a certain interval). In this case, we
similarly want to find a confidence set C' of functions, i.e., the set for which the
probability to be outside is smaller than pg.

To find such a set, we:

e select an appropriate functional I(f);

e based on the given distribution, for each pg, we select confidence intervals
C1(po) for the corresponding scalar random variable I(vy,...,v,); and

e as the desired confidence set C(po), we take the set of all the functions f
for which I(f) € Cr(po):
def

Clpo) = {f : I(f) € Cr(po)}
In particular, the authors of [1] proposed to use the area method — the above

method in which, as the functional I(f), we take the area Iy(f) under the graph
of f —1i.e., in mathematical terms, the integral Io(f) = [ f(z) dz.

What we do in this paper. The paper [1] addressed a geotechnical appli-
cation, in which the area method arose from a specific, heuristic geotechnical
motivation.

The goal of the present paper to put this method in a wider context, and
thus, to provide a justification for using the integral functional I(f) as a general
building block for confidence sets of random functions.



2 Towards a Justification of the Area Method

Notation. By F, we will denote the set of all piece-wise continuous non-
negative functions from real numbers to real numbers, with a compact support
(i.e., which are equal to 0 outside some interval).

Definition 1. By a confidence functional I(f), we mean a mapping from the
set F to real numbers.

First property: monotonicity. For a standard normal distribution, when
we form a confidence interval, we exclude values which are larger than a certain
threshold because these values have low probability. In other words, we assume
that if a value z is too large to be included in the confidence interval, then all
larger values are also too large to be included in this set.

It is reasonable to require a similar property for functions: if for some func-
tion f(z), the value I(f) is larger than or equal to a threshold ¢, and g(z) > f(x)
for all x, then we should have I(g) > t.

In particular, for t = I(f), we should have I(g) > I(f).

Thus, we arrive at the following definition.

Definition 2. We say that a confidence functional I is monotonic if for every
two functions f(x) and g(x) for which f(x) < g(z) for all x, we have

I(f) < I(g).

Second property: continuity. In practice, we get the values of the signal
f(z) from measurements. Measurements are never absolutely accurate, they
always provide only an approximation to the actual value of the corresponding
quantity. To be more precise, instead of the exact values f(x), we get the
approximate values f(z) for which |J7(a:) — f(x)] < e, where ¢ > 0 is a known
upper bound on the measurement inaccuracy.

It is reasonable to require that if we consider functions defined on the same
interval [a, b], and we use more and more accurate measurements (¢ — 0), then
our estimates of the quality I(f) should also become more and more accurate. In
other words, we would like the functional I(f) to be continuous in the following
sense:

Definition 3. We say that a confidence functional is continuous if for any
interval [a,b] and for any functions f, and f defined on this interval [a,b], if

sup | fn(z) — f(x)| = 0, then I(f,) — I(f).



Third property: shift-invariance in signal space. In some practical sit-
uations, we may have several different ways to describe the real-life process by
a function f(x).
For example, when we measure a seismic signal generated by a certain event,
we can take, as the value f(x), the actual signal at the moment x.
Alternatively, if we know that the signal always exceeds a certain minimal
signal fo(z), then it is also reasonable to characterize a signal by the “excess”

value, i.e., by the difference fa(x) def f(z) — fo(x) between the original signal
f(z) and the minimal signal fy(x).

It is reasonable to require that if the two signals f(z) and g(x) are “equiv-
alent” in the sense that we have I(f) = I(g), then the corresponding excess
signals should also be equivalent, i.e., we should have I(f — fo) = I(g — fo). In
other words, if we “shift” two equivalent functions f and g by the same “shift
function” fo(x), the resulting shifted functions remain equivalent.

Similarly, if the functions fa(2) = f(z)— fo(z) and gayt(z) = g(x)— fo(x) are
equivalent, then the functions f(x) = fai(z) + fo(z) and g(z) = gai(z) + fo(x)
should also be equivalent. Thus, we arrive at the following definition:

Definition 4. We say that a confidence functional I is shift-invariant in the
signal space if for every functions f(x), g(x), and fo(x), the equality I(f) = I(g)
implies that I(f + fo) = I(g + fo)-

Fourth property: shift-invariance in the input space. The value of the
input x — e.g., for signal, of time — depends on the choice of the starting point
for measuring time. In general, this choice is rather arbitrary, so the quality of
a function f(x) should not change if we simply change this starting point.

If we change the starting point to a new one which is xy moments later,
then we get a new function frew () describing the signal at the moment which
is x second after the new starting point. Since the new starting point is zg
second after the original one, this same moment of time corresponds to moment
2+ xo on the original time sale. At that moment of time, the value of the signal
was f(z + xg). Thus, frew(z) = f(z + x0). So, changing the starting point
replaces the original signal f(z) with a new signal fhew = Sz, (f) for which
foew(z) = f(x + xg). Thus, the requirement that the quality of a signal does
not change under this shift takes the following form:

Definition 5. We say that a confidence functional I is shift-invariant in
the input space if for every function f(x) and for every number xq, we have
I(S4, () = I(f), where foew = I(Sz,(f)) is the function for which fuew(x) =
f(z + xo).

Definition 6. We say that a confidence functional I is shift-invariant if it is
shift-invariant both in the signal space and in the input space.



Observation. One can easily check:

e that the area functional Io(f) = [ f(z)dz is monotonic, continuous, and
shift-invariant, and

e that for every monotonic, continuous, and shift-invariant functional I(f)
and for every non-decreasing continuous function F'(z), the “re-scaled”
functional F(I(f)) is also monotonic, continuous, and shift-invariant.

In particular, this means that all the functionals of the type F(Iy(f)) are mono-
tonic, continuous and shift-invariant. It turns out that all monotonic shift-
invariant functionals have this form:

Proposition. FEvery monotonic continuous shift-invariant confidence func-
tional has the form I(f) = F(Iy(f)) for some non-decreasing function F(z).

Comments.

e In the language of [8, Section 4.4], I = F~1(ly) is a quasi-measure with
T-function F~! and corresponding measure Iy, the Lebesgue measure.

e As we have already mentioned, the actual value of the confidence func-
tional I(f) is irrelevant, so this functional is actually defined modulo an
arbitrary monotonic transformation. More precisely, we can put the bur-
den of scaling on the choice of confidence intervals Cr(pg) as defined in
Section 1. Taking this into consideration, we can thus simply state that
every confidence functional which is monotonic and shift-invariant is the
area functional. Thus, we get the desired justification of the area func-
tional.

3 Proof

1°. Let us first prove that if f is equivalent to ¢ (in the sense of I(f) = I(g)), and
/' is equivalent to ¢’ (in the sense that I(f’) = I(g’)), then f + f’ is equivalent
tog+g,ie, I(f+f)=I(g+7g).

Indeed, due to shift-invariance in the signal space, I(f) = I(g) implies that
I(f+f)=1I(g+ f"). Similarly, I(f") = I(g’) implies that I(g+ f') = I(g+¢').
Thus, 1(f + ') = H(g + f*) = I(g +¢'), and I(f + f*) = I(g + ).

2°. We will follow the standard notation (44 () for the characteristic function
of the interval [a,b), i.e., for the function that takes value 1 for z € [a,b) and 0
for all other x.

3°. The characteristic function notation enables us to explicitly describe the
function F(z) for which we will prove that I(f) = F(Io(f)): namely, for every
z >0, we take

F(z) def (z . X[O,l)) .



When 21 < 23, we have 21 - x[0,1)(%) < 22 - X[o,1)(2) for all . Thus, since the
functional I is monotonic, we conclude that

F(z1) = I(21 - X[0,1)) < I(22 - X[0,1]) = F(22),

ie.,, F(z1) < F(z2). Thus, the above-defined function F(z) is indeed non-
decreasing.

Similarly, the continuity of the functional I(f) implies that the above func-
tion F(z) is continuous.

4°. Let us now prove that for every positive integer g and for every positive real

number h, we have
h
f(h'Xmeﬂ:=f’<q>-

Indeed, the function f(x) = h - X[o,1/4) (%) can be represented as the sum of
¢q identical ¢ times smaller functions located on the same interval [0,1/q):

f(@) = filz) +. + fo(@),

where h
filz) =...= fy(z) = 4 “X[0,1/4) (2)-
A A A
h
= - +
h h
q
0 1 0 1 0 1
q q q

By shift-invariance in the input space, for every ¢ from 1 to ¢, we have
I(fi) = I(gi), where

def 1—1
gi = fi (m - ) = X[(i—1)/q,i/q)(Z)-
Thus, due to Part 1 of this proof, we conclude that

If)y=1(fi+.. .+ f)=1{g + ...+ gq)

However, one can easily see that for every z, we have

D)+ oot gyfe) = 5 X (0):



i + ...+ =
q
0 1 0 1_1 1
q q

A

h

0 1 B

q

Thus, indeed,

=13 ) o)

The statement is proven.

5°. Let us now prove that for every two positive integers p and ¢ and for every
positive real number h, we have

I(h-Xop/g) =F <h' Z) :

Indeed, similar to Part 4, we can represent the function f(z) L h-X0,p/q) ()
as asum f(z) = fi(z)+ ...+ fp(z), where

def
Ji(®) = h-X(6=1)/q,i/0)(2)

Q| =
ESEIS]

|
=)
ESH k]



By shift-invariance in the input space, for every i from 1 to ¢, we have I(f;) =
I(g;), where

def 1—1
gi = fi (1‘+ . ) =h-Xp,1/q ().

Thus, due to Part 1 of this proof, we conclude that

If)y=I(fi+...+fo) =11+ ...+ gp)-

However, one can easily see that for every z, we have

g1(x) + ... +94(x) =p-h-X[0,1/9(T).
We already know, from Part 4, that
p-h
L(p-h-Xp1/q) = F <q> :
Thus, indeed,
p
I(f)=I(g1 + ...+ gp) =F<h-q).
The statement is proven.

6°. Let us now prove that for every two positive real numbers w > 0 and h > 0,
we have

I (h . X[O,w)) = F(h-w).

For rational values w = B, this statement was proven in Part 5. An arbitrary
q

1
P and ptl
q q

, one can easily conclude that for every

positive real number, for every integer ¢, lies between for some

p+1

integer p = |¢-w]. From P <w<
q

x, we have

b Xo,p/9) (@) < B X(o,w) (%) < B X0, (p41) /) () :

|
(=)

10



Thus, due to monotonicity,

I(hXpp/a) I (h-Xpw) <h-I(Xp,p11)/9) -

For the left-most and right-most terms in this inequality, we already know the
expressions, from Part 5. Substituting these expressions into the above inequal-
ity, we conclude that

1
F(h-Z) <I(h-X[07w))<F<h~p—qF>.

1 1
Whenq—)oo,wehavegﬁwandi—>w,soh-£—>h-wandh-li—>

q q q q
h-w. Since the function F'(z) is continuous, we therefore conclude, in the limit,

that
1(h-X[0,u)) = Flh-w).
The statement is proven.

7°. Let us now prove that for every positive real number h > 0, and for every
interval x = [z,T), we have

I[(h-xx) = F(h-Ax),

where Az & 7 — x is the width of the interval x.

This follows from Part 6 and from the shift-invariance in the input space.
Indeed, if we shift the interval [z,Z) to the left by z, we get the interval

[0,Az), so I(h-xx) =1 (h “X[0 Ax)) From Part 5, we already know that
1 (h “X[0 Ax)) = F(h - Az). Thus, we have I (h-xx) = F(h- Az). The state-

ment is proven.

8°. Let us now show that for every piece-wise constant function that takes
values f(z;) (i =1,...,n) on intervals x; of width Ax;, we have

I(f)=F (Z Flzi) - Aa:z) ,

ie, I(f) = F ([ f(z)dz) = F(Io(f)).
Indeed, we can represent the function f(z) as the sum
f(@) = fil@) + ...+ fu(2)

of n functions f;(x) each of which attains the value f(x;) on the corresponding
interval of width Ax; and is equal to 0 outside the i-th interval. Due to Part 7,
for each of these functions,

I(fi) = F(fi - Azy) = I (f(x) - Az - xo,1) 5

11



ie., I(f;) = I(g;), where we denoted

gi(x) € fla) - Az - o (@).

Thus, due to Part 1, we have

I(f)ZI(fl—‘,—,_.—an):I(g),

where et
9(z) = g1(x) + ...+ gn(x) =

f(x1) - Az - xj0,0)(2) + .o+ f(2n) - Axy - X(o,1)(2) =

(Z f(xz) . A.Ti> " X[0,1] (a?)

Therefore, by definition of the function F(z), we conclude that

I(f)=1(9)=1 ((Zf(%)AJCz) 'X[0,1]> =F (Zf(xi)'A$i> :

The statement is proven.
9°. Now, the integral of a piece-wise continuous function f(z) can be obtained
as a limit of integral sums for piece-wise constant approximations in(m) of f(z)
from below — and as a limit of similar approximation f,, () from above.

Due to monotonicity, for every n, we have [ (f ) <I(f)<I (?n) Ac-

—n

(j,ording to Part 8, we have [ (in) =F (Io (in)) and [ (?n) =F (IO (?n)),
F(1o(£,)) 1D < F (1o (F.)-

When n — oo, we have I (f ) — Io(f) and Iy (f,) — Io(f). Thus, dues

-n

—n

F (Io(f,)) = F(Io(f)). Hence, in the limit, the above inequalities lead to the
desired equality I(f) = F(Io(f)).
The proposition is proven.

to the continuity of the function F(z), we get F' (IO (f )) — F(Io(f)) and
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