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Due to uncertainty, in many problems, we only know the probability of different values. In
such situations, we need to make decisions based on these probabilities: e.g., we must tell the
user which values are possible and which are not. Often – e.g., for a normal distribution –
the probability density is everywhere positive, so, theoretically, all real values are possible.
In practice, it is usually safe to assume that values whose probability is very small are not
possible. For a single variable, this idea is described by a confidence interval C, the interval
for which the probability to be outside is smaller than a given threshold p0. In this way, if
we know that a variable x is normally distributed with mean a and standard deviation σ, we
can conclude that x is within the interval C = [a − k · σ, a + k · σ], where k depends on p0
(usually, k = 2, 3, or 6).

When a random object is a function f(x), we similarly want to find a confidence set C
of functions, i.e., the set for which the probability to be outside is smaller than p0. To find
such a set, it is possible to use the following area method: they define the area I(f) under the
graph of f (i.e., in mathematical terms, an integral I0(f) =

∫
f(x) dx), select a confidence

interval for I0(f) and take, as C, the set of all the functions f(x) for which I0(f) is within
this interval.

At present, the area method is largely heuristic, with no justification explaining why exactly
the integral functional I(f) corresponding to the area should be used. In our paper, we provide
a justification for the area method.
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1. Confidence Sets and Area Method: Formulation of the Problem

Often, we have probabilistic uncertainty. In many practical situations, we must
determine the values of certain parameters characterizing a given object. In some
cases, these values can be determined directly, by measuring these values. In other
situations, these values can only be determined indirectly, by measuring some aux-
iliary easier-to-measure quantities, and processing these measurement results to
estimate the values of the desired quantities.
Measurement is never absolutely accurate, there is always measurement uncer-

tainty. As a result, our estimates of the desired quantities are also uncertain.
Traditionally, in engineering practice, we assume that the sensors and measur-

ing instruments used in the measurements are well calibrated and that, therefore,
we know the probabilities of different values of measurement inaccuracy. In such
situations, after the measurement and data processing, we know the probability of
different values of the desired quantity; see, e.g., Rabinovich (2005).
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From probabilities to confidence intervals. In addition to knowing the probabil-
ities of different values (and different combination of values), the user usually also
wants to know which values (or combinations of possible) are possible.
For some probability distributions, the answer to this question is easy: e.g., if

the probability distribution is located on an interval [a, b], so that the probability
to be outside this interval is 0, then we can conclude – with probability 1 – that
the desired quantity x is located on this interval.
In other cases, the situation is not so easy. For many distributions, e.g., for a

normal distribution, the probability density is everywhere positive. Theoretically,
this means that all real values are possible – although the probability of some of
the values is extremely small.
In practice, it is safe to assume that the occurrence of values whose probability

is very small is impossible.
For a single variable, this idea is described by a confidence interval C, the interval

for which the probability to be outside is smaller than a given threshold p0. For
example, if we know that a variable x is normally distributed with mean a and
standard deviation σ, we can conclude that x is within the interval

C = [a− k · σ, a+ k · σ],

where k depends on p0; usually, practitioners select k = 2, k = 3, or k = 6.

Comment. Note that we use the wording confidence interval in a broad sta-
tistical sense, going beyond its common usage in statistical practice; see, e.g.,
Kreinovich et al. (2002, 2006).

From confidence intervals to confidence sets. When we have several variables
v1, . . . , vn, then we can also consider a confidence interval C1, . . . , Cn for each of
these variables, and then form a box

C1 × . . .× Cn = {v = (v1, . . . , vn) : v1 ∈ C1, . . . , vn ∈ Cn}

of all possible combinations of values vi ∈ Ci. However, this box does not always
provide a full picture of which combinations v = (v1, . . . , vn) are possible and which
are not. For example, if the random variables v1 and v2 are strongly correlated,
then only the combinations for which v1 ≈ v2 are possible. In this example, the set
of all possible combinations is a proper subset of the above box.
We therefore need to describe a general confidence set. Moreover, we need to

describe not just a single confidence set, but the family of confidence sets C(p0)
corresponding to different values p0 – probabilities to find the actual random vector
outside the corresponding set C(p0).

Describing a family of confidence sets by a function. The value p0 is the prob-
ability of a random vector not getting into the confidence set – i.e., equivalently,
the probability of a random vector getting into the complement −C(p0). Thus, the
smaller the value p0, the smaller the complement −C(p0) – and thus, the larger
the confidence set C(p0).
Similarly to confidence intervals, it is therefore reasonable to require that if an

element v belongs to the confidence set C(p0) for some p0 > 0, then this element
v also belongs to all the sets C(p) with p < p0. Under this requirement, for each
element v, there is the smallest possible value p(v) of the probability p0 for which
v ∈ C(p0). (To be more precise, there is an infimum, but if we consider closed
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confidence sets that continually depend on p, then this infimum is indeed attained,
i.e., we indeed have v ∈ C(p(v)).)
Thus, instead of describing a family of sets, it is sufficient to describe a function

p(v) for which, for every p, the condition v ∈ C(p) is equivalent to p ≤ p(v).

Sometimes, we have prior information about the probabilities. In some cases,
we have some information about the probability distributions. For example, if the
probability distribution on an n-dimensional space of points (v1, . . . , vn) is invari-
ant with respect to arbitrary rotations in this space, then the probability density
function ρ(v1, . . . , vn) depends only on the distance ∥v∥ =

√
v21 + . . .+ v2n. In this

case, it is reasonable to select confidence sets which have the same symmetry, i.e.,
sets which are also rotation-invariant. In terms of the function p(v), this means
that this function should also only depend on the distance ∥v∥.
In other cases, instead of the distance, we may have other combinations of the

original variables. Such cases can be summarized as follows:

• First, we select an appropriate function I : IRn → IR.

• Then, based on the given distribution, for each p0, we select confidence inter-
vals CI(p0) for the corresponding scalar random variable I(v1, . . . , vn).

• Finally, as the desired confidence set C(p0), we take the set of all the values
v for which I(v) ∈ CI(p0):

C(p0)
def
= {v = (v1, . . . , vn) : I(v) ∈ CI(p0)}.

Comment. It should be noted that for this method, what is important are the
sets corresponding to the function I(v) and not the numerical values of the function
itself. For example, if we re-scale the function I(v) by taking I ′(v) = a+ b · I(v) or
I ′(v) = (I(v))3, then the two functions I(v) and I ′(v) generate the same family of
“sub-level” sets {v : I(v) ≤ i0} and thus, the same confidence sets C(p0).
It should be mentioned that this idea of constructing confidence sets is close to

the concept of potential clouds, put forth in Fuchs and Neumaier (2009a,b).

Confidence sets for random functions: the area method. The same idea can be
used when a random object is a function f(x), e.g., a function from the class F of all
piece-wise continuous non-negative functions from real numbers to real numbers,
with a compact support (i.e., equal to 0 outside a certain interval). In this case,
we similarly want to find a confidence set C of functions, i.e., the set for which the
probability to be outside is smaller than p0.
To find such a set, we:

• select an appropriate functional I : F → IR;

• based on the given distribution, for each p0, we select confidence intervals
CI(p0) for the corresponding scalar random variable I(f); and

• as the desired confidence set C(p0), we take the set of all the functions f for
which I(f) ∈ CI(p0):

C(p0)
def
= {f : I(f) ∈ CI(p0)}.

In particular, Fellin and Oberguggenberger (2010) proposed to use the area
method – the above method in which, as the functional I(f), we take the area I0(f)
under the graph of f – i.e., in mathematical terms, the integral I0(f) =

∫
f(x) dx.
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Example. The paper Fellin and Oberguggenberger (2010) considers the follow-
ing geotechnical problem. Buildings are built on the soil. In addition to buildings,
we also need to design dams, irrigation canals, bridges, roads, etc. All these struc-
tures cause stress in the surrounding soil. This stress can be divided into two
components:

• shear stress τ – that is applied parallel or tangential to a face of the material,
and

• normal stress σ – which is applied perpendicularly.

For each given value σ of the normal stress, there is a critical threshold τc of the
shear stress that causes the soil to fail (i.e., to start developing fractures and/or
other damage). In general, this critical threshold τc depends on the normal stress:
τc = τc(σ). In other words, how much shear stress a soil can sustain depends on
how much normal stress is applied. Usually, the critical threshold τc increases with
σ: indeed,

• If we apply a horizonal (shear) stress to a free-standing soil (with no vertical
pressure), at some point, parts of the soil will start moving horizontally – i.e.,
the soil will fail.

• However, when the soil is weighed down by a normal stress, it is not as easy
to move it horizontally, so the critical threshold for shear stress is larger.

When constructing structures, it is therefore important to know the dependence
τc(σ) corresponding to the surrounding soil. This dependence has to be determined
experimentally. For that, we select a family of functions τc = f(σ, c1, . . .) which
is sufficiently general to describe all possible observed dependencies. In the first
approximation, we can assume that the dependence is linear: τc = c1 + c2 · σ; for
more accurate estimations, we need to take into account that this dependence is
usually non-linear, and so, more parameters ci are needed.
To find the desired dependence, for several fixed values σ1, . . . , σn of the shear

stress, we measure the corresponding values τ1, . . . , τn of the critical shear stress.
Then, we determine the values ci from the condition that τj ≈ f(σj , c1, . . .) for all
measurements j = 1, . . . , n. Substituting the resulting “nominal” values c̃i into the
general formula, we get the nominal dependence τc = f(σ, c̃1, . . .).
Since measurements come with sizable measurement errors, the values ci (and

the resulting dependence τc = f(σ, c1, . . .)) are only determined approximately. In
other words, the actual dependence τc(σ) may be somewhat different from the one
that we obtained based on the statistical point estimates c̃i for ci. We want our
structure to survive in the real soil, so we must make sure that it is stable not only
for the nominal dependence, but also for all statistically possible dependencies –
i.e., for all dependencies which are consistent with the our soil-testing measurement
results.
Of course, in general, under a usual assumption that the measurement errors are

normally distributed, arbitrary large measurement errors are possible – since the
probability density of a normal distribution is always positive. As a result, in prin-
ciple, huge deviations from the nominal dependence are possible – but they have a
very small (negligibly small) probability, since for a normal distribution, probabil-
ity of getting farther than, say, six standard deviations from the mean is negligibly
small (< 10−8). Thus, similarly to normal statistical situations, to describe realisti-
cally possible dependencies, we select a small threshold probability p0 and dismiss
the dependencies which are deviating too much from the nominal dependency –
provided that the probability of such large deviations does not exceed p0.
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In geotechnical engineering, the normal stress σ is usually reasonably well de-
termined – by the weight of the structure and the area to which this weight is
applied. Thus, we are interested in the dependence τc(σ) in a reasonably narrow
interval [σ, σ] of possible values of σ. Within this narrow interval, as a first ap-
proximation, it makes sense to approximate the actual value of the critical shear
stress (corresponding to the actual value σ) by average value over the interval:

1

σ − σ
·
∫ σ

σ
τc(σ) dσ. Thus, as a confidence set, we can select the set of all depen-

dencies in which this average shear stress lies within some interval [c(p0), c(p0)]
(depending on the probability p0):

c(p0) ≤
1

σ − σ
·
∫ σ

σ
τc(σ) dσ ≤ c(p0).

For computational purposes, this condition can be simplified if we multiply all
three sides of this double inequality by σ−σ; then, we get the equivalent condition

CI(p0) ≤
∫ σ

σ
τc(σ) dσ ≤ CI(p0),

where CI(p0)
def
= (σ − σ) · c(p0) and CI(p0)

def
= (σ − σ) · c(p0). This is exactly the

area method.

What we do in this paper. The paper Fellin and Oberguggenberger (2010) ad-
dresses a geotechnical application, in which the area method arose from a specific,
heuristic geotechnical motivation.
The goal of the present paper is to put this method in a wider context, and thus,

to provide a justification for using the integral functional I(f) as a general building
block for confidence sets of random functions.

2. Towards a Justification of the Area Method

By F , we will denote the set of all piece-wise continuous non-negative functions
from real numbers to real numbers, with a compact support (i.e., which are equal
to 0 outside some interval).

Definition 2.1: By a confidence functional I(f), we mean a mapping from the
set F to real numbers.

First property: monotonicity. For a standard normal distribution, when we form
a confidence interval, we exclude values which are larger than a certain threshold
because these values have low probability. In other words, we assume that if a value
x is too large to be included in the confidence interval, then all larger values are
also too large to be included in this set.
It is reasonable to require a similar property for functions: if for some function

f(x), the value I(f) is larger than or equal to a threshold t, and g(x) ≥ f(x) for
all x, then we should have I(g) ≥ t.
In particular, for t = I(f), we should have I(g) ≥ I(f).
Thus, we arrive at the following definition.
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Definition 2.2: We say that a confidence functional I is monotonic if for every
two functions f(x) and g(x) for which f(x) ≤ g(x) for all x, we have

I(f) ≤ I(g).

Second property: continuity. In practice, we get the values of the function f(x)
from measurements. Measurements are never absolutely accurate, they always pro-
vide only an approximation to the actual value of the corresponding quantity. To
be more precise, instead of the exact values f(x), we get the approximate values

f̃(x) for which |f̃(x) − f(x)| ≤ ε, where ε > 0 is a known upper bound on the
measurement inaccuracy.
It is reasonable to require that if we consider functions defined on the same

interval [a, b], and we use more and more accurate measurements (ε → 0), then our
estimates of the quality I(f) should also become more and more accurate. In other
words, we would like the functional I(f) to be continuous in the following sense:

Definition 2.3: We say that a confidence functional is continuous if for any
interval [a, b] and for any functions fn and f whose compact supports are included
in this interval [a, b], if sup |fn(x)− f(x)| → 0, then I(fn) → I(f).

Third property: shift-invariance in signal space. In some practical situations, we
may have several different ways to describe the real-life process by a function f(x).
For example, when we measure a seismic signal generated by a certain event, we

can take, as the value f(x), the actual signal at the moment x.
Alternatively, if we know that the signal always exceeds a certain minimal signal

f0(x), then it is also reasonable to characterize a signal by the “excess” value, i.e.,

by the difference falt(x)
def
= f(x) − f0(x) between the original signal f(x) and the

minimal signal f0(x).
It is reasonable to require that if the two signals f(x) and g(x) are “equivalent”

in the sense that we have I(f) = I(g), then the corresponding excess signals should
also be equivalent, i.e., we should have I(f − f0) = I(g− f0). In other words, if we
“shift” two equivalent functions f and g by the same “shift function” f0(x), the
resulting shifted functions remain equivalent.
Similarly, if the functions falt(x) = f(x) − f0(x) and galt(x) = g(x) − f0(x) are

equivalent, then the functions f(x) = falt(x) + f0(x) and g(x) = galt(x) + f0(x)
should also be equivalent. Thus, we arrive at the following definition:

Definition 2.4: We say that a confidence functional I is shift-invariant in the
signal space if for all functions f(x), g(x), and f0(x), the equality I(f) = I(g)
implies that I(f + f0) = I(g + f0).

Fourth property: shift-invariance in the input space. The value of the input x –
e.g., for signal, of time – depends on the choice of the starting point for measuring
time. In general, this choice is rather arbitrary, so the quality of a function f(x)
should not change if we simply change this starting point.
If we change the starting point to a new one which is x0 seconds later, then we

get a new function fnew(x) describing the signal at the moment which is x second
after the new starting point. Since the new starting point is x0 seconds after the
original one, this same moment of time corresponds to moment x + x0 on the
original time sale. At that moment of time, the value of the signal was f(x+ x0).
Thus, fnew(x) = f(x + x0). So, changing the starting point replaces the original
signal f(x) with a new signal fnew = Sx0

(f) for which fnew(x) = f(x+ x0). Thus,
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the requirement that the quality of a signal does not change under this shift takes
the following form:

Definition 2.5: We say that a confidence functional I is shift-invariant in the
input space if for every function f(x) and for every number x0, we have

I(f(x+ x0))) = I(f).

Definition 2.6: We say that a confidence functional I is shift-invariant if it is
shift-invariant both in the signal space and in the input space.

Observation. One can easily check:

• that the area functional I0(f) =
∫
f(x) dx is monotonic, continuous, and

shift-invariant, and

• that for every monotonic, continuous, and shift-invariant functional I(f) and
for every non-decreasing continuous function F (z), the “re-scaled” functional
F (I(f)) is also monotonic, continuous, and shift-invariant.

In particular, this means that all the functionals of the type F (I0(f)) are mono-
tonic, continuous and shift-invariant. It turns out that all monotonic shift-invariant
functionals have this form:

Proposition 2.7: Every monotonic continuous shift-invariant confidence func-
tional has the form I(f) = F (I0(f)) for some non-decreasing function F (z).

Comments.

• In the language of (Wang and Klir 2009, Section 4.4), I = F−1(I0) is a quasi-
measure with T -function F−1 and corresponding measure I0, the Lebesgue
measure.

• As we have already mentioned, the actual value of the confidence functional
I(f) is irrelevant, so this functional is actually defined modulo an arbitrary
monotonic transformation. More precisely, we can put the burden of scaling
on the choice of confidence intervals CI(p0) as defined in Section 1. Taking this
into consideration, we can thus simply state that every confidence functional
which is monotonic and shift-invariant is the area functional. Thus, we get
the desired justification of the area functional.

3. Proof

1◦. Let us first prove that if f is equivalent to g (in the sense of I(f) = I(g)), and
f ′ is equivalent to g′ (in the sense that I(f ′) = I(g′)), then f + f ′ is equivalent to
g + g′, i.e., I(f + f ′) = I(g + g′).
Indeed, due to shift-invariance in the signal space, I(f) = I(g) implies that

I(f + f ′) = I(g + f ′). Similarly, I(f ′) = I(g′) implies that I(g + f ′) = I(g + g′).
Thus, I(f + f ′) = I(g + f ′) = I(g + g′), and I(f + f ′) = I(g + g′).

2◦. We will follow the standard notation χ[a,b)(x) for the characteristic function of
the interval [a, b), i.e., for the function that takes value 1 for x ∈ [a, b) and 0 for
all other x.

3◦. The characteristic function notation enables us to explicitly describe the func-
tion F (z) for which we will prove that I(f) = F (I0(f)): namely, for every z ≥ 0,
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we take

F (z)
def
= I

(
z · χ[0,1)(x)

)
.

When z1 ≤ z2, we have z1 · χ[0,1)(x) ≤ z2 · χ[0,1)(x) for all x. Thus, since the
functional I is monotonic, we conclude that

F (z1) = I(z1 · χ[0,1)(x)) ≤ I(z2 · χ[0,1](x)) = F (z2),

i.e., F (z1) ≤ F (z2). Thus, the above-defined function F (z) is indeed non-
decreasing.
Similarly, the continuity of the functional I(f) implies that the above function

F (z) is continuous.

4◦. Let us now prove that for every positive integer q and for every positive real
number h, we have

I
(
h · χ[0,1/q)(x)

)
= F

(
h

q

)
.

Indeed, the function f(x) = h · χ[0,1/q)(x) can be represented as the sum of q
identical q times smaller functions located on the same interval [0, 1/q):

f(x) = f1(x) + . . .+ fq(x),

where

f1(x) = . . . = fq(x) =
h

q
· χ[0,1/q)(x).

-

6

-

6

-

6

= + . . . +
. . .

0
1

q
0

1

q
0

1

q

h

h

q

h

qr

r

r r rr r rr

By shift-invariance in the input space, for every i from 1 to q, we have I(fi) =
I(gi), where

gi(x)
def
= fi

(
x− i− 1

q

)
= χ[(i−1)/q,i/q)(x).

Thus, due to Part 1 of this proof, we conclude that

I(f) = I(f1 + . . .+ fq) = I(g1 + . . .+ gq).

However, one can easily see that for every x, we have

g1(x) + . . .+ gq(x) =
h

q
· χ[0,1)(x) :
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-

6

0

h

q

1

q

. . . + . . . + =

-

6

0 11− 1

q

rr r r r r

-

6

0

h

q

1

q

. . .rr r
Thus, indeed,

I(f) = I

(
h

q
· χ[0,1)(x)

)
= F

(
h

q

)
.

The statement is proven.

5◦. Let us now prove that for every two positive integers p and q and for every
positive real number h, we have

I
(
h · χ[0,p/q)(x)

)
= F

(
h · p

q

)
.

Indeed, similar to Part 4, we can represent the function f(x)
def
= h · χ[0,p/q)(x) as

a sum f(x) = f1(x) + . . .+ fp(x), where

fi(x)
def
= h · χ[(i−1)/q,i/q)(x) :

-

6

0

h

1

q

p

q

. . . =r r rr

-

6

0

h

1

q

. . . + . . . +

-

6

0
p

q

p− 1

q

rr r r r r
By shift-invariance in the input space, for every i from 1 to q, we have I(fi) = I(gi),
where

gi(x)
def
= fi

(
x+

i− 1

q

)
= h · χ[0,1/q)(x).
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Thus, due to Part 1 of this proof, we conclude that

I(f) = I(f1 + . . .+ fp) = I(g1 + . . .+ gp).

However, one can easily see that for every x, we have

g1(x) + . . .+ gq(x) = p · h · χ[0,1/q)(x).

We already know, from Part 4, that

I
(
p · h · χ[0,1/q)(x)

)
= F

(
p · h
q

)
.

Thus, indeed,

I(f) = I(g1 + . . .+ gp) = F

(
h · p

q

)
.

The statement is proven.

6◦. Let us now prove that for every two positive real numbers w > 0 and h > 0,
we have

I
(
h · χ[0,w)(x)

)
= F (h · w).

For rational values w =
p

q
, this statement was proven in Part 5. An arbitrary

positive real number, for every integer q, lies between
p

q
and

p+ 1

q
for some integer

p = ⌊q · w⌋. From p

q
≤ w ≤ p+ 1

q
, one can easily conclude that for every x, we

have

h · χ[0,p/q)(x) ≤ h · χ[0,w)(x) ≤ h · χ[0,(p+1)/q)(x) :

-

6r

r r rr
0

h

p

q
w

p+ 1

q

Thus, due to monotonicity,

I
(
h · χ[0,p/q)(x)

)
≤ I

(
h · χ[0,w)(x)

)
≤ h · I

(
χ[0,(p+1)/q)(x)

)
.

For the left-most and right-most terms in this inequality, we already know the
expressions, from Part 5. Substituting these expressions into the above inequality,
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we conclude that

F

(
h · p

q

)
≤ I

(
h · χ[0,w)(x)

)
≤ F

(
h · p+ 1

q

)
.

When q → ∞, we have
p

q
→ w and

p+ 1

q
→ w, so h· p

q
→ h·w and h· p+ 1

q
→ h·w.

Since the function F (z) is continuous, we therefore conclude, in the limit, that

I
(
h · χ[0, w)(x)

)
= F (h · w).

The statement is proven.

7◦. Let us now prove that for every positive real number h > 0, and for every
interval x = [x, x), we have

I (h · χx(x)) = F (h ·∆x),

where ∆x
def
= x− x is the width of the interval x.

This follows from Part 6 and from the shift-invariance in the input space.
Indeed, if we shift the interval [x, x) to the left by x, we get the interval

[0,∆x), so I (h · χx(x)) = I
(
h · χ[0,∆x)(x)

)
. From Part 5, we already know that

I
(
h · χ[0,∆x)(x)

)
= F (h · ∆x). Thus, we have I (h · χx(x)) = F (h · ∆x). The

statement is proven.

8◦. Let us now show that for every piece-wise constant function that takes values
f(xi) (i = 1, . . . , n) on intervals xi of width ∆xi, we have

I(f) = F

(
n∑

i=1

f(xi) ·∆xi

)
,

i.e., I(f) = F
(∫

f(x) dx
)
= F (I0(f)).

Indeed, we can represent the function f(x) as the sum

f(x) = f1(x) + . . .+ fn(x)

of n functions fi(x) each of which attains the value f(xi) on the corresponding
interval of width ∆xi and is equal to 0 outside the i-th interval. Due to Part 7, for
each of these functions,

I(fi) = F (fi ·∆xi) = I
(
f(xi) ·∆xi · χ[0,1](x)

)
,

i.e., I(fi) = I(gi), where we denoted

gi(x)
def
= f(xi) ·∆xi · χ[0,1](x).

Thus, due to Part 1, we have

I(f) = I(f1 + . . .+ fn) = I(g),
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where

g(x)
def
= g1(x) + . . .+ gn(x) =

f(x1) ·∆x1 · χ[0,1](x) + . . .+ f(xn) ·∆xn · χ[0,1](x) =

(
n∑

i=1

f(xi) ·∆xi

)
· χ[0,1](x).

Therefore, by definition of the function F (z), we conclude that

I(f) = I(g) = I

((
n∑

i=1

f(xi) ·∆xi

)
· χ[0,1](x)

)
= F

(
n∑

i=1

f(xi) ·∆xi

)
.

The statement is proven.

9◦. Now, the integral of a piece-wise continuous function f(x) can be obtained as
a limit of integral sums for piece-wise constant approximations f

n
(x) of f(x) from

below – and as a limit of similar approximation fn(x) from above.

Due to monotonicity, for every n, we have I
(
f
n

)
≤ I(f) ≤ I

(
fn

)
. According

to Part 8, we have I
(
f
n

)
= F

(
I0

(
f
n

))
and I

(
fn

)
= F

(
I0
(
fn

))
, so

F
(
I0

(
f
n

))
≤ I(f) ≤ F

(
I0
(
fn

))
.

When n → ∞, we have I0

(
f
n

)
→ I0(f) and I0

(
fn

)
→ I0(f). Thus, dues to the

continuity of the function F (z), we get F
(
I0

(
f
n

))
→ F (I0(f)) and F

(
I0
(
fn

))
→

F (I0(f)). Hence, in the limit, the above inequalities lead to the desired equality
I(f) = F (I0(f)).
The proposition is proven.
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