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Abstract

Over the past decade a few but increasing number of researchers have begun using Unmanned Aerial
Vehicles (UAVs) to expand and improve upon existing remote sensing capabilities in the Arctic. Due to
the limited flight time, it is important to make sure that the UAV follows an optimal trajectory – in which
it cover all the points from a given area within the smallest possible trajectory length. Under the usual
assumptions that we cover a rectangular area and that each on-board sensor covers all the points with a
given radius r, we describe the optimal trajectory. A more complex optimal trajectory is also developed
for the situations in which we need to get a more spatially detailed picture of some sub-regions of interest
(in which we should have a smaller value r) and it is sufficient to get a less detailed picture (with larger
r) in other sub-regions. We also describe the best ways to cover the trajectory in situations in which an
UAV missed a spot – due to excess wind or to an inexact control.
c©2015 World Academic Press, UK. All rights reserved.
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1 Introduction

Need for environment-oriented UAVs. Arctic observing systems need to be enhanced with improved
remote sensing technologies and capabilities – particularly mid-altitude remote sensing using air-borne plat-
forms; see, e.g., [9]. Over the past decade a few but increasing number of researchers have begun using
Unmanned Aerial Vehicles (UAVs) to expand and improve upon existing remote sensing capabilities in the
Arctic.

Need for customizable UAVs. Typically UAVs tend to be designed for a specific task or area of operation
and so Unmanned Aircraft Systems (UASs) are usually not easily customizable.

It is desirable to develop UASs that allow for customizable sensor packages, reliable communications
between ground and aircraft, tools to optimize flight control, real time data processing, the ability to visually
ascertaining the quantity of data while the UAV is air-borne, and the ability to launch and land safely in
these remote regions.

Our system. We have developed a prototype software system that allows for the customization of UAVs.
This software has enhanced communication between ground and the UAV, can synthesize near real time
data acquired from sensors on-board, can log operation data during flights, can visually demonstrate the
amount/quality of data for a sampling area. The software has been designed to benefit an existing Arctic
Observing Network project sponsored by the US National Science Foundation (NSF), a project that will focus
on the remote sensing of landscape-scale vegetation structure and function.

Our UAS includes a paraglider UAV that has a suite of sensors suitable for characterizing hyperspectral
reflectance and other surface properties. This paraglider UAV allows low and slow flying, has a limited
range but a relatively large (ca. 13 kg) payload. Sensors on-board relay operational flight data (airspeed,
ground speed, latitude, longitude, pitch, yaw, roll, and video) as well a series of customizable sensor packages.
Additional sensors can be added to an on-board laptop or a CR1000 data logger; see Fig. 1.
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Figure 1: Our UAV in flight

Need for coverage. The purpose of the UAV measurements is to describe the values of the environment-
related physical quantities such as temperature, humidity, etc., at all possible locations within the rectangular
observation area.

Of course, this “all” cannot be understood literally: the observation area has infinitely many points, and
it is not possible to measure the value of the quantity is all these points. From the practical viewpoint, it
is not necessary to take the measurements in all infinitely many points: usually, we know that the values at
nearby points are practically indistinguishable. Specifically, a user usually provides us with a threshold r0
such that the values of the desired quantity at points P and P ′ of distance d(P, P ′) ≤ r0 are indistinguishable.
In this sense, to make sure that we know the value at each point within the observation area, we have to
make measurements in such a way that every point from the rectangle is at a distance ≤ r0 from some point
at which a measurement was made – i.e., from one of the points on the UAV’s trajectory.

Need to take uncertainty into account. In practice, it is not possible to maintain the exact trajectory of
a UAV, we can only maintain the desired trajectory with a certain accuracy r1. In view of this uncertainty,
if we simply make sure that every point P in the area is at a distance d(P, P ′) = r0 from some point P ′ on
the desired trajectory, the actual trajectory point P ′′ may be at a distance d(P ′, P ′′) = r1 from P ′ and thus,
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at a distance
d(P, P ′′) = r0 + r1 > r0

from P . Thus, to make sure that even with this uncertainty, we have the desired coverage (with a distance
threshold r0), we need to guarantee that every point P from the observation area is at such a distance d(P, P ′)
from some point P ′ from the trajectory that d(P, P ′′) ≤ d(P, P ′) + d(P ′, P ′′) ≤ r0 even when the distance
d(P ′, P ′′) attains the largest possible value r1. In other words, we need to make sure that d(P, P ′) + r1 ≤ r0

For this inequality to be satisfied, we must make sure that d(P, P ′) ≤ r
def
= r0 − r1.

Thus, to provide the desired coverage under this uncertainty, we need to make sure that every point P
from the observation area is at a distance ≤ r from some trajectory point.

Need for trajectory optimization. Due to the limited flight time, it is important to make sure that the
UAV follows an optimal trajectory – in which it cover all the points from a given area within the smallest
possible flight time – i.e., at the smallest possible trajectory length. Such a trajectory is described in this
paper.

Comment. Most of our results were first announced in [3, 4].

2 Towards an Optimal Trajectory

The problem: reminder. We operate under the usual assumptions that we cover a rectangular area and
that each on-board sensor covers all the points with a given radius r (see discussion above).

We are looking for trajectories that provide the desired coverage of the area – i.e., for which every point
from the area is located at a distance ≤ r from some point on this trajectory. Our objective is to come up
with the trajectory that is “optimal” in the sense that it is the shortest among the trajectories that provide
the desired coverage.

Analysis of the problem. Each trajectory piece of length ∆Li covers the area Ai ≈ 2r ·∆Li; see Fig. 2.

-� r r
∆Li

Figure 2: Coverage

So, a trajectory of length L =
∑
i

∆Li covers the area

A ≤
∑
i

Ai =
∑
i

(2r ·∆Li) = 2r ·
∑
i

∆Li = 2r · L.

Thus, to cover a region of area A0, we need a trajectory of length L ≥ A0

2r
.

Asymptotically optimal trajectory. The following natural trajectory is therefore asymptotically optimal,
see Fig. 3.
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Figure 3: An almost optimal trajectory

Indeed, in the region of area A0 = L1 · L2, we have
L1

2r
pieces of length ≈ L2 each. The total length is

L ≈ L1

2r
· L2 =

L1 · L2

2r
=

A0

2r
, i.e., this trajectory is (almost) optimal.

The above asymptotically optimal trajectory does not cover all the points. The minor problem
with this trajectory is that the corner points (marked bold on Fig. 4) are not covered, because the distance
from the trajectory to each corner point is

√
r2 + r2 =

√
2 · r > r.
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Figure 4: For the asymptotically optimal trajectory, corner points are not covered

Precise formulation of our optimization problem. In this paper, we will consider trajectories which
consist of two linear segments in each corner area, i.e., trajectories in which the original linear trajectory
coming to the point P1 is followed by two segments P1P2 and P2P3 that go into the next “corridor” of width
2r; see Fig. 5.
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Figure 5: An optimal trajectory

Under this assumption, the question is how to select the points P2 and P3 in such a way that the total
path ` = d(P1, P2) + d(P2, P3) is the shortest among all the paths that cover the whole corner area (i.e., for
which every point from this area is at a distance of ≤ r from some point on a trajectory).

Practical comment. The restriction to two-segment trajectories comes from practice: it is much easier to
control the UAV along a linear trajectory, so adding too many segments would make the control difficult to
execute in practice.

Mathematical comment. From the purely mathematical viewpoint, it may be interesting to analyze which
trajectories are optimal among all possible trajectories – not necessarily the two-segment ones.

This problem is similar to the known Kolmogorov’s definition of an ε-entropy of a set S (given originally
in [6, 7]) as the smallest number of points for which every point in the set S is at a distance ≤ ε from one of
the selected points. What we are looking for can be viewed as a 1-D analogue of this notion: find the smallest
length of a connected curve for which every point in the set S is at a distance ≤ ε from one of the points on
this curve.

Instead of considering all possible curves, we can also take into account the fact that sharp turns of a
UAV are sometimes difficult to execute, and there is usually a bound on the curve’s curvature. From this
viewpoint, it may be interesting to consider curves whose curvature is bounded by a given value B.

An optimal trajectory: description. To cover the corner points like C, we propose a fin-like modification
of the above trajectory; see Fig. 5. Specifically, after following the original trajectory up to the point P1

which is located 2r units below the upper boundary, we then go straight to the point P2 on the line CP ′ at
a distance r from the corner point C. Then, we follow another straight line to the point P3, etc.

Let us prove that this trajectory indeed covers all the points, and that, among trajectories that cover all
the points, this fin-line trajectory is optimal (we will describe in what sense this trajectory is optimal). To
illustrate this proof, we will use Fig. 6.
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Figure 6: Proof of coverage and optimality of the new trajectory

Proof that the new trajectory covers all the points. Let us first show that this trajectory indeed covers
all the points. Indeed, in the given corridor of width 2r, every point P below the line P1P0 is covered by the
trajectory point which lies on the same horizontal line as P . Whether this point P is to the left or to the
right of the trajectory, the distance is always ≤ r. A similar argument can be made about all the other points
within this corridor, except for the points within the square P0P1P

′P3.
To prove the coverage for points from this square, we draw two lines through the point P0:

• the line P0P
′
1 parallel to the segment P3P2 of the trajectory, and

• the line P0P
′
3 parallel to the segment P1P2 of the trajectory.

Both lines are at distance ≤ r from the corresponding trajectory segments. Thus:

• all the points from the square P0P1P
′P3 which are above the new line P0P

′
1 are covered, because they

are at a distance ≤ r from the segment P3P2;

• all the points from the square P0P1P
′P3 which are to the left of the new line P0P

′
3 are covered, because

they are at a distance ≤ r from the segment P1P2.

Thus, all the points from the square P0P1P
′P3 are indeed covered. This completes the proof of coverage.

Proof that the new trajectory is indeed optimal. First, let us take into account that we need to cover
points right above the point P0 (which is 2r units below the upper boundary). If P3 is less than r units away
from the upper boundary, then these points are not covered. So, P3 must be at least r units away from the
upper boundary.

Similarly, to cover the point C0 on the upper boundary, we need to make sure that the point P3 is at a
distance of at most r from the upper boundary. By combining these two conclusions, we thus deduce that the
point P3 must be at exactly r points from the upper boundary – i.e., at the same location as for the original
trajectory. The only remaining question is where to place the turning point P2.

For fixed points P1 and P3, and for a fixed total length ` = d(P1, P2) + d(P2, P3), the set of all the
corresponding points P2 forms an ellipse, with P1 and P3 as foci; see, e.g., [2, 5]. At least one of these points
of this two-segment piece of the trajectory must cover the corner point C, i.e., it must be at a distance ≤ r
from C. Thus, at least one point from this trajectory must be either within or at the border of the circle
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of radius r centered at the corner point C. Thus, the circle and the ellipse must intersect. If they are not
tangent to each other at the intersection point, then we can decrease the value `, and get a smaller ellipse
which will still be intersecting. Thus, for the smallest value, the circle and the ellipse must be tangent to each
other at the intersection point. One can show that under this condition, the point P2 should be on the line
PC – at a distance r from the corner point C, i.e., exactly where it is in our arrangement. The optimality is
proven.

Comment. It is worth mentioning that the situation is symmetric with respect to reflection over the line
CP ′P0: under this reflection, P1 turns into P3 and vice versa.

Practical comment: how to actually control the UAV. Once the optimal trajectory has been determined, the
next question is how to control the UAV so that it follows this trajectory.

• For manual control, it is important to provide a good visualization of the past trajectory and of what
it has already covered; such a visualization is described, e.g., in [8].

• For automatic control, control algorithms are described, e.g., in [1, 10].

3 What If We Want Different Coverage In Different Sub-Regions

Formulation of the problem. In some situations, we need to get a more spatially detailed picture of some
sub-regions of interest (in which we should have a smaller value r), and it is sufficient to get a less detailed
picture (with larger r) in other sub-regions.

Solution: main idea. In this case, it is reasonable to use optimal (or asymptotically optimal) arrangement
in each sub-region.

Example: case of four sub-regions. For example, if we need four different values ri in four different
quarter-regions, then we should combine the corresponding optimal trajectories in four subregions as on
Fig. 7.
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Figure 7: Case when we need different coverage in different subregions

In particular, if we use asymptotically optimal trajectory in each subregion, we get the following trajectory;
see Fig. 8.
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Figure 8: Proof of coverage and optimality of the new trajectory: example

General case. The corresponding sub-division can be iterated if within each quarter-region, we have subre-
gions with different desired coverage.

4 Tailwind Problem

Idealized case. In the above text, we assumed that a UAV follows the desired trajectory. In this case, we
get a full coverage of the desired region.

Tailwind: a problem. In practice, an UAV can deviate from the planned trajectory. As a result, we may
not cover some points in the region.

One reason why this may happen is tailwind. In the presence of a strong tailwind, the UAV flies too fast,
there is not enough time for sensing.

A solution to the tailwind problem. In the case of a tailwind, a natural solution is to change the direction
of the trajectory, so that the wind would no longer be a tailwind.

This solution is illustrated below. In Fig. 9, we show the original plan. In Fig. 10, we show how this plan
is disrupted by tailwind. In Fig. 11, we show how the change in direction changed the original trajectory.
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Figure 9: Original plan
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Figure 10: Tailwind problem: plan disrupted by tailwind
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Figure 11: Solution to the tailwind problem: change direction

5 Missed Spot Problem

Missing spot: formulation of the problem. In the ideal case, we should get a perfect coverage of the
area; see Fig. 9. In practice, however, a sensor may malfunction when the UAV is flying over a certain area.
In this case, while the trajectory is still covering the whole area, the measurement coverage misses a spot; see
Fig. 12.

t

←

Figure 12: missed Spot problem

Additional problem. The additional problem is that by the time we learn about the disruption, the plane
has already moved along the planned trajectory; see Fig. 12.

A seemingly natural idea. In this case, if we left a missing spot, a natural idea is:

• to come back, to cover this spot, and then
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• to continue along the original trajectory.

This idea is illustrated on Fig. 13.
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Figure 13: Missed spot problem, seemingly natural idea: come back, then continue

Limitation of this seemingly natural solution. The main disadvantage of the above (seemingly natural)
solution is that we waste time by covering the same segment AB (see Fig. 13) three times:

• when we followed the original path,

• when we go back, from the point A at which we realized that we missed the point, to the point B that
we missed; and

• when we go back, from the point B, to the point A, to resume the original trajectory.

A better idea: repair the spot on the next iteration. A better idea – an idea that avoids the above-
mentioned waste – is to continue and to re-visit the missed spot on the next iteration; see Fig. 14.
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Figure 14: New idea: repair the spot on the next iteration
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