From Interval (Set) and Probabilistic Granules
to Set-and-Probabilistic Granules of Higher
Order

Vladik Kreinovich

Abstract In this chapter, we provide a natural motivation for granules of higher
order, and we show that these granules provide a unified description of different
uncertainty formalisms such as random sets, Dempster-Shafer approach, fuzzy sets,
imprecise probabilities, and Bayesian statistics. We also prove that for fuzzy uncer-
tainty, granules of second order are sufficient.

1 From an Ideal Exact Description to Interval (Set) and
Probabilistic Granules

Idealized objects. To describe the physical world, we identify objects: elementary
particles, atoms, molecules, solid bodied, stars, etc.

An ideal object should be well-defined. For example, in a geographic description,
when we define forests, lakes, rivers, etc., we should be able to determine the exact
boundary between a lake and a river that flows into this lake, the exact boundary
between a forest and a nearby grassy area, etc.

An ideal object should also be reasonably stable with time. From this viewpoint,

e ariver is a reasonable geographic object, because its path does not change much
for a long time, while

e a puddle — which is often easily visible too — is not a reasonable geographic
object, because it can disappear in the course of hours.

Group objects. The above description applied to individual objects: we can talk
about the height of an individual man, the speed with which the individual river
flows, etc.
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In physics, we are also interested in “group” objects: the mass of an electron,
the magnetic moment of an ion of a specific type. Similarly, in manufacturing, we
are interested in the speed and/or fuel efficiency of a certain type of a car, in the
frequency of a certain type of a laser, etc. In all these cases, instead of dealing with
an individual object, we have a collection of similar objects.

In the ideal case, we assume that all these objects are identical, so whatever we
can observe based on one of these objects can be applied to others as well. For
example, if we apply safety tests to several cars of the same make and model, and
these tests are successful, we conclude that all the cars of this make and model are
safe.

Idealized description of idealized objects. Ideally, we should have a full descrip-
tion of each (idealized) object. In other words, for each possible quantity (such as
location, mass, height, etc.), we should know the exact value of this quantity for the
given object.

For many physical quantities, there are several different ways to measure the
value of this quantity; ideally, all these ways should lead to the same numerical
result. For example, a GPS location of the car can be measured based on different
parts of this car; all these measurements should lead to the same result. Similarly, a
width of a wooden plank should be the same no matter where we measure it.

In mathematical terms, an (idealized) exact description of an (idealized) object

means that we know, for this object, the exact values sy, ...,s, of all possible quan-
tities of interest.
All such tuples s = (s, ...,s,) of real numbers form an n-dimensional space R”".

Usually, not all tuples are physically possible. For example, mass is always non-
negative, velocity is always limited by the speed of light, etc. The actual state must
therefore belong to the set S C R” of all physically possible tuples.

Comment. In this paper, for simplicity, we assume that this set S is known. To get
a more realistic description, we must take into account that this set is not exactly
known — e.g., the speed of light is only approximately known.

Objects are not ideal: aleatoric uncertainty. As we have mentioned, ideally, ob-
jects should be well-defined and stable (not changing with time).

In practice, objects are often not well defined. For example, when a river flows
into the lake, it is often not clear where is the boundary between the river and the
lake.

Objects are also not perfectly stable: they change, slightly but change. For exam-
ple, the weight of a person slightly changes — when she breathes in and breathes out,
when she sweats, etc.

As a result, for the same object, even an ideally accurate measuring instrument
can measure different values:

o the measurement results differ with time because the object changes,
e these results differ because we may select different boundaries for the object, etc.

This “objective” difference is known as aleatoric uncertainty.
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Objects are not perfectly identical: another case of aleatoric uncertainty. In
the ideal case, we assumed that all the “instance” of a group object are identical.
In reality, different objects are slightly different. For example, different cars of the
same make and model may have slightly different fuel economy characteristics.

Different measuring procedures can lead to different values: yet another case
of objective (aleatoric) uncertainty. In the ideal case, all possible procedures for
measuring a given quantity should lead to the exact same result. In practice, different
procedure may lead to slightly different results.

For example, for a non-ideal wooden plank, its width may differ slightly from
one location to another.

Measurements are not 100% accurate: epistemic uncertainty. In the ideal case,
we assumed that all the measurements lead to the exact values of the measured
quantity. In practice, measurements are never 100% accurate; the result x of each
measurement is, in general, slightly different form the actual (unknown) value x of
the desired quantity: Ax ey x #0; see, e.g., [13].

Thus, even in the ideal case, when the object is well-defined and stable — i.e.,
where there is no aleatoric (“objective”) uncertainty, measurement results can be
different. This uncertainty is “subjective” in the sense that it characterizes not the
object itself, but rather our knowledge about this object. Such uncertainty is called
epistemic.

How to describe aleatoric uncertainty: set (interval) granules. In the ideal case,
each object is characterized by a single state s € S.

Due to aleatoric uncertainty, for the same object, we may get different states s € S,
depending on:

at what time we measure the corresponding quantities;

how we define the boundaries of the object;

which object from the group of (almost) identical objects we take; and

which of the possible measuring procedures we use to measure the corresponding
quantities.

Thus, to fully characterize the situation, we must know which states s are possible
for this object and which are not. In other words, in view of the aleatoric uncertainty,
to describe an object, we need to know the set s C S of all possible states charac-
terizing this object. Different states s € s are “equally” possible, so this set forms a
single set granule characterizing the object.

This set s is usually connected — in the sense that there is a continuous transition
between every two possible states s,s” € s, In the 1-D case, this connectivity implies
that with every two possible states s and s, all intermediate states are also possible
—1i.e., that the set s of all possible states is an interval.

How to describe aleatoric uncertainty: probabilistic granules. In addition to
knowing which states are possible and which are not, it is also desirable to know
how frequent are different possible states.
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For example, within a population of cars of the same make and model, it is de-
sirable not only to know that the fuel efficiency of an individual car may be lower
than on average, it is also desirable to know how frequent are such low-efficiency
situation:

if they are rare, it is acceptable, but
if such situations are frequent, this is a strong argument against buying this par-
ticular model.

Thus, it is desirable to know, for each possible value s € s, a frequency (= prob-
ability) that this value occurs when measuring this object. If we know this informa-
tion, then, instead of a set granule, we have a probabilistic granule.

Description of epistemic uncertainty: set (interval) and probabilistic granules.
Similarly, we can describe epistemic uncertainty.

Indeed, once we know the results s = (51, ..,5,) of measuring the desired quan-
tities, we would like to know which states s are compatible with these measurement
results. In other words, we need to know the set s of all such states — i.e., a set
(interval) granule.

In addition to knowing which states s € S are possible and which are not possible,
it is also desirable to know which values s € s are more frequent and which are less
frequent — i.e., it is desirable to know the frequency (probability) of different value
s. Thus, we also arrive at the need to consider a probability distribution on the set s
of possible states —i.e., a probabilistic granule.

Yet another reason for granulation: need to speed up decision making. Even
when we know the actual element s from S with a good accuracy, it is still often
reasonable, when making a decision, to ignore this difficult-to-process accurate in-
formation and to base our decision on the type of an object — i.e., on the granule to
which this object belongs.

For example, when an animal attacks a person, it makes sense to ignore the an-
imal’s eye color and other details of the animal and concentrate of the type of the
animal: e.g., is it a small (mostly harmless) dog or a dangerous tiger.

2 Need for Granules of Granules - i.e., for Granules of Higher
Order

Need for granules of higher order. Ideally, to characterize the uncertainty, we de-
scribe

e ecither the set of possible values
e or the probability distribution on the set of possible values.

This description assumes that we know exactly which values are possible and which
values are not possible — and we know the exact values of the corresponding proba-
bilities.
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In practice, we are not always sure which values are possible and which are not,
and do not know the exact values of the corresponding probabilities. In other words,
our knowledge of the corresponding uncertainty is also uncertain.

Thus, instead of a single set-valued granule, we have a granule of possible set-
valued granules — a construction which can be naturally described as a granule of
higher order. Similarly, instead of a single probabilistic granule, we have a gran-
ule of possible probabilistic granules — a construction which can also be naturally
described as a granule of higher order.

Motivation for restricting ourselves to granules of second order. For example,
instead of a single set of possible states, we can have a class of possible sets — a
second order construction. This class may also not be exactly known — so we should
consider class of possible classes, a third order construction.

However, from the computational viewpoint, a set is already difficult to process,
a class of sets is even more complex, and a class of classes is practically impossible
to analyze.

Comment. For fuzzy uncertainty, a deeper argument in favor of second-order gran-
ules is given in the Appendix; this argument was first outlined in [5, 11].

3 Second-Order Granules: Natural Classification

Classification: general idea. An ideal description of uncertainty is to describe as a
granule —i.e.,

e either a set of possible values
e or a probability distribution on the set of possible values.

In reality, we do not have the exact knowledge of the corresponding granule (i.e., of
the set or of the probability distribution).

When we did not know the exact state, we considered either the set of all possible
states or a probability distribution on the set of possible states. Similarly, when we
do not know the exact granule, we have to consider:

e either a set of possible granules,
e or a probability distribution on the set of possible granules.

In each of these two cases, we have two subcases, depending on whether we consider
set-valued (interval) or probabilistic granules. Thus, we arrive at the four possible
situations:

a set of possible sets;

a set of possible probability distributions;

a probability distribution on the class of possible sets; and

a probability distribution on the class of possible probability distributions.

Ll S
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What we plan to show. At first glance, we have a very mathematical classification.
However, as we will show, these four types of second order granules correspond to
well-known and well-used types of uncertainty — such as random sets, Dempster-
Shafer approach, fuzzy sets, imprecise probabilities, and Bayesian statistics.

Thus, the idea of second order granules provides a natural unified description of
different formalisms for describing uncertainty.

First case: set of possible sets. In the first case, instead of selecting a single set
of possible values, we select a class of possible sets. This idea is actively used in
representation of uncertainty. For example, in the rough set approach, each set S is
represented by a set S that is contained in S and a set S that contains S. In this case,

the only information that we have about the actual (unknown) set S is that S C S C §,

i.c., that § belongs to the set interval [S,5] & {§: S C S C 5}. General set intervals

— not necessarily generated by rough sets — are also actively used; see, e.g., [15, 16].

Second case: a set of probability distributions. In this case, instead of selecting a
single probability distribution, we select a set of possible probability distributions.
This description of uncertainty is known as imprecise probability; see, e.g., [14].
An important particular case of imprecise probability is the case of p-boxes
(probability boxes), i.e., interval bounds on the values of the cumulative distribu-

tion function F (x) def Prob(&é < x); see, e.g., [1, 2].

Third case: a probability distribution on the class of possible sets. In this case,
instead of selecting a single set, we select a probability distribution on the class of
all possible sets. In other words, we assign, to each set, a probability that this is
indeed the right set.

When we assign a probability to each number, we get a random number. When
we assign a probability to each vector, we get a random vector. Similarly, when
we assign a probability to each set, we get a random set. Random sets have indeed
been actively applied in description and processing of uncertainty; see, e.g., [9] and
references therein.

In the discrete case, a random set means that we assign, to different sets A, values
m(A) > 0 such that Y m(A) = 1. This is exactly the widely used Dempster-Shafer

A

approach to describing uncertainty.

Relation to fuzzy. One of the reason why random sets are important in describ-
ing uncertainty is that they provide a reasonable alternative description of fuzzy
sets. Specifically, one way to assign a membership degree to a statement like ‘25 is
young” is to take N experts, ask these experts whether a person who is 25 years old
is young, and take the portion N(25)/N of experts who agree with this statement as
the desired degree Uyoung(25). This procedure assumes

e that the experts are equally important — because we give equal weight to opinions
of different experts, and

e that each expert is capable of giving a precise (crisp) answer to each such ques-
tion.
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For each of N experts i (1 <i < N), there us denote, by S;, the set of all ages which
for which, for this expert, the person is young. In general, different experts have
different sets S;, but it is possible that two or more different experts have the same
set.

As we have mentioned, we assume that the experts are equally important, i.e.,
that each expert gets assigned the same probability 1/N. So, if a set S; occurs as
an opinion of only one expert, we assign it the probability 1/N; if it occurs as the
common opinion of several (k) experts, we assign it the probability k/N. Thus, we
have probabilities assigned to different sets, i.e., we have a random set. In terms of
this random set, the degree to which, say, 25 is young, is simply equal to the sum
of the probabilities of all the sets S; that include 25, i.e., to the probability that 25
belongs to the random set.

In general, for the corresponding random set S, for every value x, the membership
degree (1(x) is equal to the probability that x € S: p(x) = Prob(x € S).

Fourth case: a probability distribution on the class of probability distributions.
In this case, instead of selecting a single probability distribution, we select a proba-
bility distribution on the set of these distributions.

Theoretically, we can have an infinite-dimensional class of probability distribu-
tions, i.e., a class in which we need to know the values of infinitely many parameters
to uniquely determine the distribution. In practice, in a computer, we can only store
finitely many values of the parameters. Thus, from the practical viewpoint, each
class of probability distributions is characterized by the values of finitely many pa-
rameters. There may be only two parameters — like in 1-D Gaussian distributions,
there can be many more parameters as in more sophisticated classes, but there are
always finitely many parameters.

In this case, selecting a probability distribution from the class means selecting the
values of these parameters. Thus, the above situation can be described as follows:

e instead of selecting a unique set of parameters characterizing a probability dis-
tribution,
e we select a probability distribution on the set of these parameters.

This idea describes the Bayesian statistical approach, whose main idea is indeed to
select a (prior) distribution on the set of all possible values of different parameters;
see, e.g., [3, 4].

Summary. Second order granules approach covers many known uncertainty for-
malisms as particular cases:

| [ setof ... |probability distributions on ... |
...sets set intervals; random sets;
rough sets Dempster-Shafer approach;
fuzzy approach
...probability|limprecise probability; Bayesian statistics
distributions p-box
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What if we also consider fuzzy. In the above text, we only consider set-valued
(interval) and probabilistic granules. These granules correspond to “objective”
(aleatoric) and measurement uncertainty. Expert estimates lead to fuzzy uncertainty,
where we have fuzzy granules — i.e., fuzzy sets. If we add the possibility of fuzzy
granules, then we get new possibilities of second-order granules:

a set of fuzzy granules, i.e., a set of fuzzy sets — e.g., an interval-valued fuzzy set;
a probability distribution on the set of fuzzy granules, i.e., a random fuzzy set;
see, e.g., [6];

a fuzzy set of fuzzy sets —i.e., a general type-2 fuzzy set;

a fuzzy class of sets or probability distributions — something which was tried in
imprecise probability research.

Third order granules? In contrast to the second order granules which have many
practical applications, third order ones are rarely used. A few practical examples
include interval-valued fuzzy sets; see, e.g., [7, 8, 10, 12]:

e since a fuzzy set can be interpreted as a random set,
e aninterval-valued fuzzy set —1i.e., a set of possible fuzzy sets — can be interpreted
as a set of possible random sets, i.e., as a third order granule.
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Appendix: 2nd Order is Sufficient for Fuzzy Uncertainty

Second order descriptions: the main idea. Experts are often not 100% certain
in the statements they make; therefore, in the design of knowledge-based systems,
it is desirable to take this uncertainty into consideration. Usually, this uncertainty
is described by a number from the interval [0, 1]; this number is called subjective
probability, degree of certainty, etc.

One of the main problems with this approach is that we must use exact numbers
from the interval [0, 1] to represent experts’ degrees of certainty; an expert may be
able to tell whether his degree of certainty is closer to 0.9 or to 0.5, but it is hardly
possible that an expert would be able to meaningfully distinguish between degrees
of certainty, say, 0.7 and 0.701. If you ask the expert whether his degree of certainty
about a certain statement A can be described by a certain number d (e.g., d =0.701),
the expert will, sometimes, not be able to give a definite answer, she will be uncertain
about it. This uncertainty can be, in its turn, described by a number from the interval
[0, 1]. Tt is, therefore, natural to represent our degree of certainty in a statement A
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not by a single (crisp) number d(A) € [0, 1] (as in the [0, 1]-based description), but
rather by a function ig(4) which assigns, to each possible real number d € [0,1], a
degree 1q(4)(d) with which this number d can be the (desired) degree of certainty
of A. This is called a second-order description of uncertainty.

Third and higher order descriptions. In second-order description, to describe a
degree with which a given number d € [0, 1] can be a degree of certainty of a state-
ment A, we use a real number [g(4) (d). As we have already mentioned, it is difficult
to describe our degree of certainty by a single number. Therefore, to make this de-
scription even more realistic, we can represent each degree of certainty d(P(x)) not
by a (more traditional) [0, 1]-based description, but by a second order description.
As aresult, we get the third order description.

Similarly, to make our description even more realistic, we can use the third order
descriptions to describe degrees of certainty; then, we get fourth order uncertainty,
etc.

Third order descriptions are not used: why? Theoretically, we can define third,
fourth order, etc., descriptions, but in practical applications, only second order de-
scriptions were used so far (see, e.g., [7, 8, 10, 12]). Based on this empirical fact, it is
natural to conclude that third and higher order descriptions are not really necessary.
We will show that this conclusion can be theoretically justified.

First step in describing uncertainty: set of uncertainty-describing words. Let us
first describe the problem formally. An expert uses words from a natural language
to describe his degrees of certainty. In every language, there are only finitely many
words, so we have a finite set of words that needs to be interpreted. We will denote
this set of words by W.

Second step: a fuzzy property described by a word-valued “membership func-
tion”. If we have any property P on a universe of discourse U, an expert can de-
scribe, for each element x € U, his degree of certainty d(x) € W that the element x
has the property P.

Traditional fuzzy logic as a first approximation: numbers assigned to words
describing uncertainty. Our ultimate goal is to provide a computer representation
for each word w € W. In the traditional [0, 1]-based description, this computer rep-
resentation assigns, to every word, a real number from the interval [0, 1]; in general,
we may have some other computer representations (examples will be given later).
Let us denote the set of all possible computer representations by S.

In the first approximation, i.e., in the first order description, we represent each
word w € W, which describes a degree of uncertainty, by an element s € S (e.g.,
by a real number from the interval [0, 1]). In this section, we will denote this first-
approximation computer representation of a word w by s = ||w||.

If the set S is too small, then it may not contain enough elements to distinguish
between different expert’s degree of belief: this was exactly the problem with clas-
sical {0, 1}-based description, in which we only have two possible computer rep-
resentations — “true” and “false” — that are not enough to adequately describe the
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different degrees of certainty. We will therefore assume that the set S is rich enough
to represent different degrees of certainty.

In particular, the set [0, 1] contains infinitely many points, so it should be suf-
ficient; even if we only consider computer-representable real numbers, there are
still much more of them (millions and billions) than words in a language (which is
usually in hundreds of thousands at most), so we can safely make this “richness”
assumption. In mathematical terms, it means that two different degrees of belief are
represented by different computer terms, i.e., that if w; # wy, then ||wy || # ||w2]|-

First approximation is not absolutely adequate. The problem with the first-order
representation is that the relation between words w € W and computer representa-
tion s € § is, in reality, also imprecise. Typically, when we have a word w € W,
we cannot pick a single corresponding representative s € S; instead, we may have
several possible representatives, with different degrees of adequacy.

Actual description of expert uncertainty: word-valued degree to which a word
describes uncertainty. In other words, instead of a single value s = ||w|| assigned
to a word w, we have several values s € S, each with its own degree of adequacy;
this degree of adequacy can also be described by an expert, who uses an appropriate
word w € W from the natural language.

In other words, for every word w € W and for ever representation s € S, we have
a degree w' € W describing to what extent s is adequate in representing w. Let us
represent this degree of adequacy by a(w,s); the symbol a represents a function
a:W xS — W,i.e., afunction that maps every pair (w,s) into a new word a(w,s).

Second-order description of uncertainty as a second approximation to actual un-
certainty. So, the meaning of a word w € W is represented by a function a which
assigns, to every element s € S, a degree of adequacy a(w,s) € W. We want to rep-
resent this degree of adequacy in a computer; therefore, instead of using the word
a(w, s) itself, we will use the computer representation ||a(w, s)|| of this word. Hence,
we get a second-order representation, in which a degree of certainty corresponding
to a word w € W is represented not by a single element ||w|| € S, but by a function
Wy S — S, a function which is defined as w,,(s) = ||a(w,s)]|.

Second-order description is not 100 % adequate either; third-, fourth-order de-
scriptions, etc. The second-order representation is also not absolutely adequate, be-
cause, to represent the degree a(w,s), we used a single number |la(w,s)||. To get
a more adequate representation, instead of this single value, we can use, for each
element 5" € S, a degree of adequacy with which the element s' represents the word
a(w,s). This degree of adequacy is also a word a(a(w,s),s’), so we can represent it
by an appropriate element ||a(a(w,s),s")||. Thus, we get a third-order representation,
in which to every element s, we assign a second-order representation. To get an even
more adequate representation, we can use fourth- and higher order representations.
Let us express this scheme formally.

Definition 1.

o Let W be a finite set; element of this set will be called words.
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o Let U be set called a universe of discourse. By a fuzzy property P, we mean a
mapping which maps each element x € U into a word P(x) € W, we say that this
word described the degree of certainty that x satisfies the property P.

e By a first-approximation uncertainty representation, we mean a pair (S, |.||),
where:

o Sisa set; elements of this set will be called computer representations; and
o ||.|| is a function from W to S; we say that an element ||w|| € S represents the
word w.

o We say that an uncertainty representation is sufficiently rich if for every two
words wi,wa € W, wi # wy implies ||w1|| # ||w2].

Definition 2. Let W be a set of words, and let S be a set of computer representations.
By an adequacy function, we mean a function a: W x S — W for each wordw € W,
and for each representation s € S, we say that a(w,s) describes the degree to which
the element s adequately describes the word w.

Definition 3. Let U be a universe of discourse, and let S be a set of computer rep-
resentations. For each n = 1,2,..., we define the notions of n-th order degree of
certainty and of a n-th order fuzzy set, by the following induction over n:

e By a first-order degree of certainty, we mean an element s € S (i.e., the set S of
all first-order degrees of certainty is exactly S).

e For every n, by a n-th order fuzzy set, we mean a function i : U — S,, from the
universe of discourse U to the set S, of all n-th order degrees of certainty.

e Forevery n > 1, by a n-th order degree of certainty, we mean a function s, which
maps every value s € S into an (n— 1)-th order degree of certainty (i.e., a function
SpiS—=S—1).

Definition 4. Let W be a set of words, let (S, ||.||) be an uncertainty representation,
and let a be an adequacy function. For every n > 1, and for every word w € W, we
define the n-th order degree of uncertainty ||w||4, € S, corresponding to the word w
as follows:

o As a first order degree of uncertainty |w| 4,1 corresponding to the word w, we
simply take [w]a1 = [w].

e [fwe have already defined degrees of orders 1,...,n— 1, then, as an n-th order
degree of uncertainty ||w||gn € Sy corresponding to the word w, we take a func-
tion s, which maps every value s € S into a (n— 1)-th order degree ||a(w,s)||an—1-

Definition 5. Let W be a set of words, let (S, ||.||) be an uncertainty representation,
let a be an adequacy function, and let P be a fuzzy property on a universe of dis-

course P. Then, by a n-th order fuzzy set (or a n-th order membership function)

(n)

Up, (x) corresponding to P, we mean a function which maps every value x € U into

an n-th order degree of certainty || P(x)||4,» which corresponds to the word P(x) € W.
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We will prove that for properties which are non-degenerate in some reasonable
sense, it is sufficient to know the first and second order membership functions, and
then the others can be uniquely reconstructed. Moreover, if we know the member-
ship functions of first two orders for a non-degenerate class of fuzzy properties, then
we will be able to reconstruct the higher order membership functions for all fuzzy
properties from this class.

Definition 6.

o We say that a fuzzy property P on a universe of discourse U is non-degenerate if
for every w € W, there exists an element x € U for which P(x) = w.

o We say that a class &2 of fuzzy properties P on a universe of discourse U is non-
degenerate if for every w € W, there exists a property P € &2 and an element
x € U for which P(x) = w.

Comment. For example, if W £ {0, 1}, then every crisp property, i.e., every property
for which P(x) € {0, 1} for all x, is nor non-degenerate (i.e., degenerate).

Proposition 1. Let W be a set of words, let (S, ||.||) be a sufficiently rich uncertainty
representation, let U be a universe of discourse. Let P and P’ be fuzzy properties,
so that P is non-degenerate, and let a and d' be adequacy functions. Then, from

ul(gl) = u;}.)a, and u,(,?) = ,u;j?ah we can conclude that u},f’> = ul(;/l_)a, for all n.

:
Comments.

e In other words, under reasonable assumptions, for each property, the informa-
tion contained in the first and second order fuzzy sets is sufficient to reconstruct
all higher order fuzzy sets as well; therefore, in a computer representation, it is
sufficient to keep only first and second order fuzzy sets.

o This result is somewhat similar to the well-known result that a Gaussian distribu-
tion can be uniquely determined by its moments of first and second orders, and
all higher order moments can be uniquely reconstructed from the moments of the
first two orders.

e It is possible to show that the non-degeneracy condition is needed, because if a
property P is not non-degenerate, then there exist adequacy functions a # a’' for
which N}&Q = 1(,71[1), and ul(i) = “153,23" but ,u;,il) #* “1(’,33’ already for n = 3.

Proposition 2. Let W be a set of words, let (S,||.||) be a sufficiently rich uncertainty

representation, let U be a universe of discourse. Let & and &' be classes of fuzzy

properties, so that the class & is non-degenerate, and let ¢ : P — P’ be a 1-1-

transformation, and let a and a' be adequacy functions. Then, if for every P € P,

we have u;lu) = ’“l((pl()P), o and [,l,(,i) = u&)},),a,, we can conclude that “AE’Z;) = [,ng)m,a, for

all n.

Comment. So, even if we do not know the adequacy function (and we do not know
the corresponding fuzzy properties P € &), we can still uniquely reconstruct fuzzy
sets of all orders which correspond to all fuzzy properties P.
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Proof of Propositions 1 and 2. Proposition 1 can be viewed as a particular case of
Proposition 2, when & = {P}, &' = {P'}, and ¢ maps P onto P’. Therefore, to
prove both Propositions 1 and 2, it is sufficient to prove Proposition 2.

We will show that under the conditions of Proposition 2, from ”1(%12 = /‘prl(l,) o and

,u;?; = ,ué)z(;)’a,, we will be able to conclude that (P) = P for all P € &, and that

a = d'; therefore, we will easily conclude that ,ul(g a) ufp(> P)a , for all n.

Indeed, by definition of the first membership function, for every x € U, we have

,u,(,ﬂ)( ) = ||P(x)]||. Thus, from the equality ,LL;)’a = u(p&,)ﬂ,,
every P € &, we have ||P(x)|| = ||@(P)(x)| for all x € U. Since the uncertainty
representation is assumed to be sufficiently rich, we can conclude that @ (P)(x) =
P(x) forallx € U, i.e., that ¢(P) = P for every P € &.

Let us now show that a = d, i.e., that for every w € W and for every s € S, we
have a(w,s) = d’(w,s). Indeed, since & is a non-degenerate class, there exists a
value x € U and a property P € & for which P(x) = w. Let us consider the equality

of the second order membership functions for this very P. Since ¢(P) = P, the given

equality “1(3 u) /J,(E) () P)a €30 be simplified into the following form: ,uﬁl) u },3,. Let

we conclude that for

us consider this equality for the above-chosen value x (for which P(x) = w). For this

x, by definition of the second-order membership function, /.LI(J 2(x) = |P(X)|laz =

[[Wlla,2; and similarly, uﬁa/( ) = 1PE)llaz = lIwlla2; thus, [[wllaz = [Wllar2.

By definition,
der degree ||a(w,s) Ha 1 = |la(w,s)||. Thus, from the equality of the functions ||w||a 2
and ||w\|a/ », we can conclude that their values at a given s are also equal, i.e., that
lla(w,s)|| = ||@'(w,s)]||. Since the uncertainty structure is sufficiently rich, we con-
clude that a(w,s) = a’(w,s). The proposition is proven.

Proof of a comment after Proposition 1. Since P is not non-degenerate, there
exists a value wy € W which cannot be represented as P(x) for any x € U. Let us
pick arbitrary elements xo € U and sg € S, and define a(w,s) and @’ (w, s) as follows:

o first, we define a(w,s) = d'(w,s) for all words w of the type w = P(x): namely, we
take a(P(xg),s0) = a' (P(x0),s0) = wo and take arbitrary other values for different
pairs (w,s) with w = P(x);

e then, we define a(w,s) and @’ (w, s) for the remaining pairs (w, s): namely, we take
a(wg,so) = wo, @' (wo,s0) = P(xo) # wo, and we define a and @’ arbitrarily for all
other pairs (w,s).

Let us show that for thus chosen adequacy functions, the membership functions of
first and second order coincide, but the membership functions of the third order
differ. Indeed:

e For the first order, we have, for every x, u;a( ) = ||P(x)|| and similarly, ,u;,la)/ (x)=
||P(x)]|; therefore, yéa)( )= ,ul(g_a),( ) for all x. Hence, uf)}a) = /J;,la),.

)

e For the second order, for every x, tp,(x) is a function which maps s € S into

a value |la(P(x),s)|la1 = lla(P(x),s)||. Similarly, ug, (x) is a function which
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maps s € § into a value ||a’(P(x),s)||»1 = ||@'(P(x),s)]||. For words w of the type
P(x), we have defined a and a' in such a way that a(w,s) = a’(w,s); therefore,

la(P(x),s)|| = ||’ (P(x),s)|| for all x and 5. Thus, 2 = u'?).

)

e Finally, let us show that the third order membership functions differ. We will

show that the values of the functions ,u;,?a) and “1(3.311)/

definition of the third order membership function,

. ;,32 (x0) is a function which maps every s into the value ||a(P(xp),s)||q2, and

(3)
Pa'

differ for x = x¢. Indeed, by

. (xo0) is a function which maps every s into the value ||’ (P(x0),s)|| 4 2-

To prove that these function are different, it is sufficient to show that their
values differ for some values s; we will show that they differ for s = s, i.e.,
that ||a(P(x0),50)|la2 # [|@'(P(x0),50)||«2- By our construction of a, we have
a(P(xq),s0) = a'(P(x0),s0) = wo, so the inequality that we need to prove takes
the form [[wo|la,2 # [[woll« 2-

By definition, ||wol|4 2 is a function which maps every value s € S into ||a(wo, ) ||a,1 =
la(wo,s)||. Similarly, [|wol|,» is a function which maps every value s € S into
ld' (wo,s)|la,1 = ||@’(wo,s)]|. For so, according to our construction of a and o/,
we have a(wg,so) = wo # P(xo) = d'(wo,so). Thus, since the uncertainty rep-
resentation is sufficiently rich, we conclude that ||a(wo,so0)|| # ||@’ (wo,s0)]|, and

3 3
therefore, that ||wo |42 # [[wol|« 2 and ,uéa) = u;ﬁ,.

The statement is proven.



