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Abstract—In many practical situations, molecules can be ob-
tained from a “template” molecule like benzene by replacing
some of its hydrogen atoms with ligands (other atoms or atom
groups). There can be many possible replacements of this type.
To avoid time-consuming testing of all possible replacements, it
is desirable to test some of the replacements and then extrapolate
to others – so that only the promising molecules, for which the
extrapolated values are desirable, will have to be synthesized and
tested.

For this extrapolation, D. J. Klein and co-authors proposed
to use a Dempster-Shafer-type poset extrapolation technique
developed by G.-C. Rota from MIT. One of the limitations of this
approach is that this technique has been originally proposed on a
heuristic basis, with no convincing justification of its applicability
to chemical (or other) problems. In our previous paper, we
showed that for the case when all the ligands are of the same type,
the poset technique is actually equivalent to a more familiar (and
much more justified) Taylor series extrapolation. In this paper,
we show that this equivalence can be extended to the case when
we have variant ligands.

I. FORMULATION OF THE PROBLEM: EXTRAPOLATION IS
NEEDED

In many practical situations, molecules can be obtained
from a “template” molecule like benzene C6H6 by replacing
some of its hydrogen atoms with ligands (other atoms or atom
groups). There can be many possible replacements of this type.
To avoid time-consuming testing of all possible replacements,
it is desirable to test some of the replacements and then
extrapolate to others – so that only the promising molecules,
for which the extrapolated values are desirable, will have to
be synthesized and tested.

For this extrapolation, D. J. Klein and co-authors proposed
to use a poset extrapolation technique developed by G.-C. Rota
from MIT; see, e.g., [9]. They showed that in many practical
situations, this technique indeed leads to accurate predictions
of many important quantities; see, e.g., [1], [2], [3], [4], [5],
[6], [7].

One of the limitations of this approach is that this techniques
has been originally proposed on a heuristic basis, with no
convincing justification of its applicability to chemical (or
other) problems. In our previous paper [8], we showed that
for the case when all the ligands are of the same type, the

poset technique is actually equivalent to a more familiar (and
much more justified) Taylor series extrapolation.

In this paper, we show that this equivalence can be extended
to the case when we have variant ligands.

II. ROTA’S DEMPSTER-SHAFER-TYPE POSET APPROACH
TO EXTRAPOLATION: REMINDER

Main idea. In [9], Gian-Carlo Rota, a renowned mathemati-
cian from MIT, considered the situation in which there is a
natural partial order relation ≤ on some set of objects, and
there is a numerical value v(a) associated to each object a
from this partially ordered set (poset).

Rota’s technique is based on the fact that we can represent
an arbitrary dependence v(a) as

v(a) =
∑
b: b≤a

V (b) (1)

for some values V (b). The possibility to find such values V (b)
is easy to understand: the above formula (1) is a system of
linear equations in which we have as many unknowns V (b) as
the number of objects – and as many equations as the number
of objects. Thus, we have a system of linear equations with
as many equations as there are unknowns. It is known that
in general, such a system always has a solution. (In principle,
there are degenerate cases when a system of n linear equations
with n unknowns does not have a solution, but in [9] it was
proven that the poset-related system (1) always has a solution.)

Relation to the Dempster-Shafer approach. From the purely
mathematical viewpoint, formula (1) is identical to one of the
main formulas of the Dempster-Shafer approach (see, e.g.,
[11]). Specifically, in this approach,

• in contrast to a probability distribution on a set X when
probabilities p(x) ≥ 0,

∑
x∈X

p(x) = 1, are assigned to

different elements x ∈ X of the set X ,
• we have “masses” (in effect, probabilities) m(A) ≥ 0,∑

A

m(A) = 1, assigned to subsets A ⊆ X of the set X .

The usual meaning of the values m(B) is, e.g., that we
have several experts who have different opinions on which



alternatives are possible and which are not. For each expert,
B is the set of alternatives that is possible according to this
expert, and m(B) is the probability that this expert is correct
(estimates, e.g., based on his or her previous performance).

For every set A ⊆ X and for every expert, if the expert’s
set B of possible alternatives is contained in A (B ⊆ A), this
means that this expert is sure that all possible alternatives are
contained in the set A. Thus, our overall belief bel(A) that
the actual alternative is contained in A can be computed as
the sum of the masses corresponding to all such experts, i.e.,
as

bel(A) =
∑
B⊆A

m(B).

This is the exact analog of the above formula, with v(a)
instead of belief, V (b) instead of masses, and the subset
relation B ⊆ A as the ordering relation b ≤ a.

Comment. It should be mentioned that in spite of the above
similarity, Rota’s poset approach is somewhat different from
the Dempster-Shafer approach:

• first, in the Dempster-Shafer approach, we require that all
the masses are non-negative, while in the poset approach,
the corresponding values V (b) can be negative as well;

• second, in the Dempster-Shafer approach, we require
that the sum of all the masses is 1, while in the poset
approach, the sum of all the values V (b) can be any real
number.

Practical applications of the poset approach. In practice,
many values V (b) turn out to be negligible and thus, can be
safely taken as 0s. If we know which values V (b1), . . . , V (bm)
are non-zeros, we can then:

• measure the value v(a1), . . . , v(ap) of the desired quan-
tity v for p ≪ n different objects a1, . . . , ap;

• use the Least Squares techniques (see, e.g. [10]) to
estimate the values V (bj) from the system

v(ai) =
∑

j: bj≤ai

V (bj), i = 1, . . . , p; (2)

• use the resulting estimates V (bj) to predict all the re-
maining values v(a) (a ̸= a1, . . . , am), as

v(a) =
∑

j: bj≤a

V (bj). (3)

Comment. The problem of estimating the values V (b) based
on the known values v(a) is similar to the problem of
determining masses from the belief values in the Dempster-
Shafer approach. Thus, to estimate the values V (b), we can use
algorithms developed within the Dempster-Shafer approach.

Application to chemistry. In chemistry, objects are molecules,
and a natural relation a ≤ b means that the molecule b either
coincides with a, or can be obtained from the molecule a if
we replace one or several of its H atoms with ligands.

III. TRADITIONAL (CONTINUOUS) AND DISCRETE
TAYLOR SERIES

Traditional (continuous) Taylor series: a brief reminder.
Traditionally, in physical and engineering applications, most
parameters x1, . . . , xn (such as coordinates, velocity, etc.)
are continuous – in the sense that their values can contin-
uously change from one value to another. The dependence
y = f(x1, . . . , xn) of a quantity y on the parameters xi is also
usually continuous (with the exception of phase transitions);
moreover, this dependence is usually smooth (differentiable).
It is known that smooth functions can be usually expanded
into Taylor series around some point x̃ = (x̃1, . . . , x̃n) (e.g.,
around the point x̃ = 0), i.e., as a sum of constant terms, linear
terms, quadratic terms, and terms of higher order.

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +

n∑
i=1

∂f

∂xi
·∆xi+

1

2
·

n∑
i=1

n∑
i′=1

∂2f

∂xi∂xi′
·∆xi ·∆xi′ + . . . ,

where ∆xi
def
= xi − x̃i.

The values of different order terms in the Taylor expansion
usually decrease when the order increases – after all, the Taylor
series usually converge, which implies that the terms should
tend to 0. So, in practice, we can ignore higher-order terms and
consider only the first few terms in the Taylor expansion. (This
is, for example, how most elementary functions like sin(x),
cos(x), exp(x) are computed inside the computers.).

In the simplest case, it is sufficient to preserve linear terms,
i.e. to use the approximation

f(x1, . . . , xn) ≈ f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
·∆xi.

When the linear approximation is not accurate enough, we can
use the quadratic approximation

f(x1, . . . , xn) ≈ f(x̃1, . . . , x̃n) +

n∑
i=1

∂f

∂xi
·∆xi+

1

2
·

n∑
i=1

n∑
i′=1

∂2f

∂xi∂xi′
·∆xi ·∆xi′ ,

etc.
Since we do not know the exact expression for the function

f(x1, . . . , xn), we thus do not know the actual values of its

derivatives
∂f

∂xi
and

∂2f

∂xi∂xi′
. Hence, when we actually use

this approximation, all we know is that we approximate a
general function by a general linear or quadratic formula

f(x1, . . . , xn) ≈ c0 +

n∑
i=1

ci ·∆xi,

f(x1, . . . , xn) ≈

c0 +
n∑

i=1

ci ·∆xi +
n∑

i=1

n∑
i′=1

cii′ ·∆xi ·∆xi′ , (4)



where c0 = f(x̃1, . . . , x̃n), ci =
∂f

∂xi
, and cii′ =

1

2
· ∂2f

∂xi∂xi′
.

The values of the coefficients c0, ci, and (if needed) cii′
can then be determined experimentally, by comparing the
measured values of y with the predictions based on these
formulas.

From continuous to discrete Taylor series. As we have
mentioned in [8], we can extend the Taylor series approach
to the discrete case.

In our chemical problem, the discrete case means that for
each location, we are only interested in the values of the
desired physical quantity in the following situations:

• a situation when there is a ligand at this location, and
• a situation when there is no ligand at this location.

In addition to these situations, we can, in principle, consider
others, it is just that in our analysis, we are not interested in
these additional situations. However, the general physical laws
and dependencies are not limited to these situations, they work
for other situations as well.

So, while we are interested in the values of the desired phys-
ical quantity (such as energy) corresponding to the selected
situations, in principle, we can consider this dependence for
other situations as well. The value of, e.g. energy, depends
on the values of the electronic density at different points near
the ligand locations, etc. For each possible placement of a
ligand of type k (1 ≤ k ≤ m) at a location i (1 ≤ i ≤ n),
let xik1, . . . , xikj , . . . , xikN be parameters describing the dis-
tribution in the vicinity of this location (e.g., the density at a
certain point, the distance to a certain atom, the angle between
this atom and the given direction, the angle describing the
direction of the spin, etc.). In general, the value of the desired
quantity depends on the values of these parameters:

y = f(x111, . . . , x11N , . . . , xnm1, . . . , xnmN ). (5)

We are interested in the situations in which, at each location,
there is either a ligand, or there is no ligand. For each location
i and for each parameter xij :

• let di0j denote the value of the j-th parameter in the
situation with no ligand at the location i, and

• let dikj denote the value of the j-th parameter in the
situation with a ligand of type k at the location i.

The default situation with which we start is the situation in
which there are no ligands at all, i.e. in which xij = di0j for
all i and j. Other situations of interest are reasonably close to
this one. Thus, we can expand the dependence (5) in Taylor
series in the vicinity of the values di0j . As a result, we obtain
the following expression:

y = y0 +

n∑
i=1

N∑
j=1

yij ·∆xij+

n∑
i=1

N∑
j=1

n∑
i′=1

N∑
j′=1

yij,i′j′ ·∆xij ·∆xi′j′ , (6)

where ∆xij
def
= xij − di0j , and y0, yij , and yij,i′j′ are

appropriate coefficients.

These formulas can be applied to all possible situations, in
which at each location i, different parameters xi1, . . . , xiN can
change independently. Situations in which we are interested
are characterized by describing, for each location, whether
there is a ligand or not, and if yes, which exactly ligand. Let
εik denote the discrete variable that describes the presence of
a ligand of type k at the location i:

• when there is no ligand of type k at the location i, we
take εik = 0, and

• when there is a ligand of type k at the location i, we take
εik = 1.

By definition, at each location, there can be only one ligand,
i.e., if εik = 1 for some k, then εik′ = 0 for all k′ ̸= k.

According to the formula (6), the value y of the desired
physical quantity depends on the differences ∆xij correspond-
ing to different i and j. Let us describe the values of these
differences in terms of the discrete variables εik.

• In the absence of a ligand, when εi = 0, the value of
the quantity xij is equal to di0j and thus, the difference
∆xij is equal to

∆xij = di0j − di0j = 0.

• In the presence of a ligand of type k, when εik = 1, the
value of the quantity xij is equal to dikj and thus, the
difference ∆xij = dikj − di0j is equal to

∆ikj
def
= dikj − di0j .

Taking into account that for each location i, only one value
εik can be equal to 1, we can combine the above two cases
into a single expression

∆xij =
m∑

k=1

εik ·∆ikj . (7)

Substituting the expression (7) into the expression (6), we
obtain an expression which is quadratic in εik:

y = y0 +

n∑
i=1

m∑
k=1

N∑
j=1

yij · εik ·∆ikj+

n∑
i=1

m∑
k=1

N∑
j=1

n∑
i′=1

m∑
k′=1

N∑
j′=1

yij,i′j′ ·εik ·εi′k′ ·∆ikj ·∆i′k′j′ , (8)

i.e., equivalently,

y = y0 +

n∑
i=1

 m∑
k=1

N∑
j=1

yij ·∆ikj

 · εik+

n∑
i=1

n∑
i′=1

 N∑
j=1

m∑
k=1

N∑
j′=1

m∑
k′=1

yij,i′j′ ·∆ikj ·∆i′k′j′

 ·εik ·εi′k′ .

Combining terms proportional to each variable εik and to each
product εik · εi′k′ , we obtain the expression

y = a0 +

n∑
i=1

m∑
k=1

aik · εik+



n∑
i=1

m∑
k=1

n∑
i′=1

m∑
k′=1

aik,i′k′ · εik · εi′k′ , (9)

where

aik =
N∑
j=1

yij ·∆ikj , (10)

and

aik,i′k′ =
N∑
j=1

N∑
j′=1

yij,i′j′ ·∆ikj ·∆i′k′j′ . (11)

The expression (9) is similar to the continuous Taylor
expression (4), but with the discrete variables εik ∈ {0, 1}
instead of the continuous variables ∆xi.

Similar “discrete Taylor series” can be derived if we take
into account cubic, quartic, etc., terms in the original Taylor
expansion of the dependence (5).

Discrete Taylor expansions can be further simplified. In
the following text, we will use the fact that the expression (9)
can be further simplified.

First, we can simplify the terms corresponding to i = i′.
Indeed, for each discrete variable εik ∈ {0, 1}, we have ε2ik =
εik. Thus, the term aik,ik ·εik ·εik corresponding to i = i′ and
k = k′ is equal to aik,ik · εik and can, therefore, be simply
added to the corresponding linear term aik · εik.

Similarly, for every location i and for every two ligand types
k ̸= k′, only one of the terms εik and εik′ can be different from
0. Thus, the product εik · εik′ is always equal to 0. Therefore,
we can safely assume that the coefficient aik,ik′ at this product
is 0.

Thus, we have no terms aik,i′k′ corresponding to i = i′

in our formula, we only have terms with i ̸= i′. For each
two pairs ik and i′k′, we can combine terms proportional to
εik · εi′k′ and to εi′k′ · εik. As a result, we obtain a simplified
expression

y = v0+
n∑

i=1

m∑
k=1

vik ·εik+
∑
i<i′

m∑
k=1

m∑
k′=1

vik,i′k′ ·εik ·εi′k′ , (12)

where v0 = c0, vik = cik, and vik,i′k′ = cik,i′k′ + ci′k′,ik.
This expression (12) – and the corresponding similar cubic

and higher order expressions – is what we will understand by
a discrete Taylor series.

What we will do in the following text. As we have mentioned
earlier, we will show that the poset-related approaches are, in
effect, equivalent to the use of a much simpler (and much
more familiar) tool of (discrete) Taylor series.

IV. EQUIVALENCE BETWEEN THE POSET-RELATED
APPROACHES AND THE DISCRETE TAYLOR SERIES

APPROACH

Discrete Taylor series: reminder. In many practical situ-
ations, we have a physical variable y that depends on the
discrete parameters εik which take two possible values: 0 and
1, and for which, for every i, at most one value εik can be

equal to 1. Then, in the first approximation, the dependence
of y on εik can be described by the following linear formula

y = v0 +
n∑

i=1

m∑
k=1

vik · εik. (13)

In the second approximation, this dependence can be described
by the following quadratic formula

y = v0+
n∑

i=1

m∑
k=1

vik ·εik+
∑
i<i′

m∑
k=1

m∑
k′=1

vik,i′k′ ·εik ·εi′k′ . (14)

etc.

Chemical substances. For chemical substances, we have
discrete variables εik that describe whether there is a ligand
of type k at the i-th location:

• the value εik = 0 means that there is no ligand of type
k at the i-th location, and

• the value εik = 1 means that there is a ligand of type k
at the i-th location.

Each chemical substance a from the corresponding family can
be characterized by the corresponding tuple

(ε11, . . . , ε1m, . . . , εn1, . . . , εnm).

Poset-related approaches: reminder. We approximate the
actual dependence of the desired quantity y on the substance
a = (ε11, . . . , εnm) by a formula

v(a) =
∑
b: b≤a

V (b), (15)

where, in the second order approximation, b runs over all
substances with at most two ligands.

Poset-related approaches reformulated in terms of the
discrete variables. The discrete Taylor series formula (14)
is formulated in terms of the discrete variables εik. Thus, to
show the equivalence of these two approaches, let us first
describe the poset-related formula (15) in terms of these
discrete variables.

In chemical terms, the relation b ≤ a means that a can be
obtained from b by adding some ligands. In other words, the
corresponding value εik can only increase when we move from
the substance b to the substance a. So, if b = (ε′11, . . . , ε

′
nm)

and a = (ε11, . . . , εnm), then b ≤ a means that for every i
and k, we have ε′ik ≤ εik.

Thus, the formula (15) means that for every substance a =
(ε11, . . . , εnm), the substances b ≤ a are:

• the original substance a0 = (0, . . . , 0);
• substances aik

def
= (0, . . . , 0, 1, 0, . . . , 0) with a single

ligand of type k at the location i – corresponding to all
the places i and types k for which εik = 1; and

• substances aik,i′k′
def
= (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)

with a ligand of type k at the locations i and a ligand
of type k′ at a location i′ – corresponding to all possible
pairs (i, k) and (i′, k′), i < i′, for which εik = εi′k′ = 1.



Thus, in terms of the discrete variables, the poset formula (15)
takes the form

y = V (a0) +
∑

(i,k): εik=1

V (aik)+

∑
i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′). (16)

Proof that the discrete Taylor series are indeed equivalent
to the poset formula. The formulas (14) and (16) are now very
similar, so we are ready to prove that they actually coincide.

To show that these formulas are equal, let us take into
account that, e.g. the linear part of the sum (16) can be
represented as∑

(i,k): εik=1

V (aik) =
∑

(i,k): εik=1

V (aik) · εik. (17)

Indeed, for all the corresponding pairs (i, k), we have εik = 1,
and multiplying by 1 does not change a number.

This new representation (17) allows us to simplify this
formula by adding similar terms V (aik) · εik corresponding
to pairs (i, k) for which εik = 0. Indeed, when εik = 0, then
the product V (aik) · εik is equal to 0, and thus, adding this
product will not change the value of the sum. So, in the right-
hand side of the formula (17), we can safely replace the sum
over all pairs (i, k) for which εik = 1 by the sum over all
pairs (i, k): ∑

(i,k): εik=1

V (aik) =
n∑

i=1

m∑
k=1

V (aik) · εik. (18)

Similarly, the quadratic part
∑

i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′) of

the sum (16) can be first replaced with the sum∑
i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′) =

∑
i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′) · εik · εi′k′ , (19)

and then, by the sum ∑
i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′) =

∑
i<i′

m∑
k=1

m∑
k′=1

V (aik,i′k′) · εik · εi′k′ . (20)

Substituting expressions (17) and (20) into the formula (16),
we obtain the following expression

y = V (a0) +

n∑
i=1

V (aik) · εik+

∑
i<i′

m∑
k=1

m∑
k′=1

V (aik,i′k′) · εik · εi′k′ . (21)

This expression is identical to the discrete Taylor formula
(14), the only difference is the names of the corresponding
parameters:

• the parameter v0 in the formula (14) corresponds to the
parameter V (a0) in the formula (21);

• each parameter vik in the formula (14) corresponds to the
parameter V (aik) in the formula (21); and

• each parameter vik,i′k′ in the formula (14) corresponds
to the parameter V (aik,i′k′) in the formula (21).

The equivalence is proven.

V. CONCLUSION

Several practically useful chemical substances can be ob-
tained by adding ligands to different locations of a “template”
molecule like benzene C6H6 or cubane C8H8. There is a large
number of such substances, and it is difficult to synthesize all
of them and experimentally determine their properties. It is
desirable to be able to synthesize and test only a few of these
substances and to use appropriate interpolation to predict the
properties of others.

It is known that such an interpolation can be obtained by
using Rota’s ideas related to partially ordered sets. In our
previous paper, we have shown that when we only allow one
type of ligand, then the exact same interpolation algorithm
can be obtained from a more familiar mathematical technique
such as Taylor expansion series. In this paper, we show that
the similar equivalence holds in the general case, when we
have ligands of different type.
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