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Abstract—In many practical problems such as radar imaging,
it is useful to compute the variance-to-mean ratio. The need is
important because for the sum of k identical independent signal
components, both the variance and the mean are multiplied by
k, so this ratio is independent on k and thus, provides useful
information about the components. In practice, we only know
the samples values with uncertainty. It is therefore necessary to
compute the variance-to-mean ratio under this uncertainty. In
this paper, we present efficient algorithms for computing this
ratio under interval and fuzzy uncertainty.

I. FORMULATION OF THE PROBLEM

Need for variance-to-mean ratio. In engineering and sci-
entific practice, the usual way to process the measurement
results or other estimates x1, . . . , xn of the same quantity is

to compute their mean E =
1

n
·

n∑
i=1

xi and their variance

V =
1

n
·

n∑
i=1

(xi − E)2; see, e.g., [6].

In many practical problems such as radar imaging (see, e.g.,
[1], [8]), it is useful to compute the variance-to-mean ratio
R

def
= V/E.
This need is important because for when the signal s

consists of several independent components s = s1+ . . .+sk,
• the mean E[s] of the signal is equal to the sum of the

means E[s] = E[s1] + . . .+ E[sk] and
• the variance V [s] of the signal is equal to the sum of the

variances V [s] = V [s1] + . . .+ V [sk]; see, e.g. [6], [7].
In particular, when the signal consists of k identical indepen-
dent signal components, both the variance and the mean are
multiplied by k: E[s] = k ·E[si] and V [s] = k · V [si]. When
we do not know the number of the components, we cannot
reconstruct the mean and the variance of each component from
the known mean and variance values E[s] and V [s]. The only
information that we can get about the individual components
that we can reconstruct is the ratio V [si]/E[si], since from
the above formulas, it follows that V [s]/E[s] = V [si]/E[si].

When the components are not identical, based on the mean
and variance of the sample as a whole, we cannot reconstruct
all the individual variance-to-mean ratios. However, we can
still reconstruct the ratio of the average variance to the average
mean. Indeed, we have E[s] = k · Eav and V [s] = k · Vav ,

where Eav and Vav are the average mean and variance of
different components:

Eav
def
=

E[s1] + . . .+ E[sk]

k
; Vav

def
=

V [s1] + . . .+ V [sk]

k
.

Thus,
V [s]

E[s]
=

Vav

Eav
.

Need to take uncertainty into account. Traditional statistical
estimates – like the above estimates for E and V – are based
on the simplifying assumption that we know the exact values
of the observations x1, . . . , xn. In practice, the sample values
x̃1, . . . , x̃n come from measurement or from expert estimation;
in both cases, these values are only approximately equal to the
actual (unknown) values xi.

Case of interval uncertainty. Traditional methods for taking
the measurement uncertainty into account are based on the
assumption that we know the probabilities of different values
of the measurement error ∆xi

def
= x̃i − xi. Often, however,

we do not know the probabilities, the only thing we know is
the upper bound ∆i on the measurement errors: |∆xi| ≤ ∆i;
see, e.g., [6]. In this case, based on the measurement result x̃i,
the only information that we have about the actual (unknown)
value xi is that xi belongs to the interval

xi = [x̃i −∆i, x̃i +∆i].

For different values xi within the corresponding intervals, in
general, we get different values of the variance-to-mean ratio
R. It is therefore desirable to find the range R = [R,R] of
this ratio when xi ∈ xi:

[R,R] = {R(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

Comment. The problem of computing this range is a particular
case of a general problem of interval computations, where we
need to compute the range

[y, y] = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

of a given function f(x1, . . . , xn) on given intervals x1, . . . ,
xn; see, e.g., [2], [4].



Case of fuzzy uncertainty. For expert estimates, we rarely
have the upper bounds on the estimation errors. Instead, we
have “fuzzy” estimates of the approximation error ∆xi, e.g.,
saying that “usually, the approximation error is about 0.1, and
it is rarely larger than 0.2”. Fuzzy logic is a natural way to
formalize such natural-language statements; see, e.g., [3], [5].
Thus, for each i, we have a membership function µi(xi) which
describe the degree to which different values xi are possible.

Based on these membership functions, we must find the
degree µ(R) to which different values of the ratio R are
possible. A value R is possible if it is equal to R(x1, . . . , xn)
for some possible values x1, . . . , xn:

R is possible ⇔

∃x1 . . . ∃xn (x1 is possible & . . . &xn is possible &

R(x1, . . . , Rn) = R).

We know the degrees µi(xi) to which different values xi

are possible. Thus, if we use min to describe &, and max
to describe ∨ (and thus ∃), we arrive at Zadeh’s extension
principle, according to which

µ(R) = max
xi:R(x1,...,Rn)=R

min(µ1(x1), . . . , µn(xn)).

From the computational viewpoint, the case of fuzzy un-
certainty can be reduced to the case of interval uncertainty.
An alternative way to describe a membership function µi(xi)
is to describe, for each possible values α ∈ [0, 1], the set of all
values xi for which the degree of possibility is at least α. This
set {xi : µi(xi) ≥ α} is called an alpha-cut and is denoted
by Xi(α).

It is known (see, e.g., [3], [5]), that the for alpha-cuts,
Zadeh’s extension principle takes the following form: for every
α, we have

R(α) = {R(x1, . . . , xn) : xi ∈ Xi(α)}.

Thus, for every α, finding the alpha-cut of the resulting
membership function µ(R) is equivalent to applying inter-
val computations to the corresponding intervals X1(α), . . . ,
Xn(α).

Because of this reduction, in the following text, we will
only consider the case of interval uncertainty. Thus, we are
arrive at the following problem:

Problem. Given the intervals [x1, x1], . . . , [xn, xn] with xi >

0, find the range [R,R] of possible values of the ratio R =
V

E
,

where E =
1

n
·

n∑
i=1

xi and V =
1

n
·

n∑
i=1

(xi − E)2.

II. EFFICIENT ALGORITHM FOR COMPUTING R

Main idea. To compute R, we apply the following algorithm.
First, we sort all 2n endpoints xi of the original intervals into
a sorted sequence

z1 ≤ z2 ≤ . . . ≤ z2n.

Thus, we divide the real line into 2n + 1 zones (−∞, z1],
[z1, z2], . . . , [zn−1, zn], and [zn,∞). If we denote z0

def
= −∞

and zn+1 = ∞, then we can describe all these zones as
[zk, zk+1], for k = 0, 1, . . . , n.

For each of these zones [zk, zk+1], for each i, we take the
following value xi ∈ [xi, xi]:

• if xi ≤ zk, we take xi = xi;
• if zk+1 ≤ xi, we take xi = xi;
• in all other cases, we take xi = z.

The value z is determined from the condition that for the
selected sequence xi, we have

E +
V

2E
= z,

i.e., equivalently, E2 +
1

2
· V = z · E. Both E2 and V are

quadratic functions of xi, so we get a quadratic equation to
determine z. Of all the roots of these quadratic equation, we
only consider the values z ∈ [zk, zk+1].

Algorithm in detail. First, we sort 2n values xi, xi in an
increasing order,

z1 ≤ z2 ≤ . . . ≤ z2n,

and define z0 = −∞ and z2n+1 = +∞. For each zone
[zk, zk+1], k = 0, . . . , 2n, we then do the following:

• For every i, we take:
– if xi ≤ zk, we take xi = xi;
– if xi ≥ zk+1, we take xi = xi.

We count the number nk of all the indices i for which
xi ≤ zk or xi ≥ zk+1.

• If nk = n, then we compute the ratio R based on the
selected values xi.

• If nk ̸= n, then, based on the above assignments, we
calculate the values

ek =
∑

i:xi≤zk

xi +
∑

j:xj≥zk+1

xj , (1)

mk =
∑

i:xi≤zk

(xi)
2 +

∑
j:x

j
≥zk+1

(xj)
2, (2)

Ak = nk · (nk − n); Bk = −2nk · ek · µk, (3)

Ck = e2k + n ·mk, (4)

and solve the quadratic equation

Ak · µ2
k +Bk · µk + Ck = 0. (5)

For each solution µk which is within the zone [zk, zk+1],
we compute

Ek =
ek
n

+
n− nk

n
· µk, (6)

Mk =
mk

n
+

n− nk

n
· µ2

k, (7)

and
R =

Mk − E2
k

Ek
. (8)



The smallest of all the computed values R is the desired lower
endpoint R.

Mathematical comment. For reader’s convenience, the justi-
fication of this algorithm is given in a special Justifications
section.

Computational comment. If we take the above algorithm
literally, then for each of the 2n+1 = O(n) zones, we need to
compute the sums ek and mk, each of which takes linear time
O(n) to compute – which would take O(n)×O(n) = O(n2)
time. Indeed, the initial values e0 and m0 take linear time.
However, once we have computed the sums ek and mk, to
find the next values ek+1 and mk+1, we only need to take
into account the values xi and xj which start satisfying the
inequality xi ≤ zk or which stop satisfying the inequality
xj ≥ zk+1. Each value i an j passes through this change only
once, so totally, we need to update O(n) terms in computing
all the sums e1,m1, . . .

Thus, after sorting, the total computation time is O(n) +
O(n) = O(n). Since sorting take times O(n · log(n)), the
total computation time of this algorithm is

O(n · log(n)) +O(n) = O(n · log(n)).

III. EFFICIENT ALGORITHM FOR COMPUTING R WHEN
NO MORE THAN C INTERVALS HAVE A COMMON POINT

Formulation of the case. We consider the case when, for
some fixed integer C, at most C intervals [xi, xi] can have a
common interior point.

For example, for C = 1, this means that no two intervals
can have a common point. For C = 2, this means that while
it is possible than a pair of intervals has a common point, no
three intervals have a common point, etc.

Algorithm. In this case, to compute R, we use the following
algorithm. First, we sort 2n values xi, xi in an increasing
order,

z1 ≤ z2 ≤ . . . ≤ z2n,

and define z0 = −∞ and z2n+1 = +∞. For each zone
[zk, zk+1], k = 0, . . . , 2n, we then do the following:

• For every i for which xi < zk, we take xi = xi.
• For every i for which zk+1 < xi, we take xi = xi.

For all other i, we take all possible combinations of xi and
xi. For each zone and for each such combination, we compute
the ratio R.

The largest of the resulting ratios is returned as R.

Computational complexity. Sorting requires time

O(n · log(n)).

After sorting, for each zone, we have no more than C intervals
with two possible values xi (see Justifications section). So,
for a fixed C, we have 2C = O(1) possible combinations
x = (x1, . . . , xn). For each combination, we need linear time
to compute R – but, similarly to the case of R, we can update
the values computed for the previous zone, and this requires
a total linear time.

Thus, similar to the case of R, we have an algorithm that
takes time O(n) after sorting and the total time

O(n · log(n)) +O(n) = O(n · log(n)).

IV. COMPUTING R: NUMERICAL EXAMPLE

Description of the example. To illustrate our algorithm for
computing the upper endpoint R, let us consider the following
5 intervals: x1 = [10, 20], x2 = [15, 25], x3 = [20, 30], x4 =
[25, 35], and x5 = [15, 30]. In this case, C = 3.

First step: sorting and computing zones. In this case, sorting
the endpoints of the given intervals leads to x(0) = −∞,
x(1) = 10, x(2) = 15, x(3) = 20, x(4) = 25, x(5) = 30,
x(6) = 35, x(7) = +∞. Here, we have 7 zones. Let us analyze
them one by one.

Zone corresponding to k = 0. In the zone (−∞, 10]
corresponding to k = 0, the algorithm leads to the following
choice of the values xi (the selected values are marked by a
star):

i xi xi

1 10 20*
2 15 25*
3 20 30*
4 25 35*
5 15 30*

For this zone, E0 = 28, M0 = 810, V0 = M0 − E2
0 = 26,

and R0 = V0/E0 = 0.928571.

Zone corresponding to k = 1. In the zone [10, 15] corre-
sponding to k = 1, the algorithm leads to the following choice
of the values xi (the selected values are marked by a star):

i xi xi

1 10* 20*
2 15 25*
3 20 30*
4 25 35*
5 15 30*

Here, for the element x1, we have two different options:
x1 = 10 and x1 = 20.

For the first choice x1 = 10, we get E1,1 = 26, M1,1 = 750,
V1,1 = 74, and R1,1 = 2.84615.

For the second choice x1 = 20, we get E1,2 = 28, M1,2 =
810, V1,2 = 76, and R1,2 = 0.928571.

Zone corresponding to k = 2. In the zone [15, 20] corre-
sponding to k = 2, the algorithm leads to the following choice
of the values xi:

i xi xi

1 10* 20*
2 15* 25*
3 20 30*
4 25 35*
5 15* 30*



Here, we have 8 possible combinations of the values x1,
x2, and x5. For these combinations, we get R2,1 = 4.47619,
R2,2 = 3.91667, R2,3 = 3.73913, R2,4 = 2.84615, R2,5 =
2.86957, R2,6 = 2.07692, R2,7 = 2, and R2,8 = 0.928571.

Zone corresponding to k = 3. In the zone [20, 25] corre-
sponding to k = 3, the algorithm leads to the following choice
of the values xi:

i xi xi

1 10* 20
2 15* 25*
3 20* 30*
4 25 35*
5 15* 30*

Here, we also have 8 different values R: R3,1 = 3.89474,
R3,2 = 3.90909, R3,3 = 4.47619, R3,4 = 3.91667,
R3,5 = 3.52381, R3,6 = 3.08333, R3,7 = 3.73913, and
R3,8 = 2.84615.

Zone corresponding to k = 4. In the zone [25, 30] corre-
sponding to k = 4, the algorithm leads to the following choice
of the values xi:

i xi xi

1 10* 20
2 15* 25
3 20* 30*
4 25* 35*
5 15* 30*

Here, we get the values R4,1 = 1.52941, R4,2 = 2.5,
R4,3 = 3.89474, R4,4 = 3.90909, R4,5 = 2.84211, R4,6 = 3,
R4,7 = 4.47619, and R4,8 = 3.91667.

Zone corresponding to k = 5. In the zone [30, 35] corre-
sponding to k = 5, the algorithm leads to the following choice
of the values xi:

i xi xi

1 10* 20
2 15* 25
3 20* 30
4 25* 35*
5 15* 30

Here, we have two cases corresponding to x4 = 25 and
x4 = 35: R5,1 = 1.52941 and R5,2 = 3.89474.

Zone corresponding to k = 6. Finally, in the zone [35,∞)
corresponding to k = 6, the algorithm leads to the following
choice of the values xi:

i xi xi

1 10* 20
2 15* 25
3 20* 30
4 25* 35
5 15* 30

Here, R6 = 1.52941.

Final result. As the desired value R, we return the largest of
the computed ratios, i.e., the value R = 4.47619.

V. JUSTIFICATIONS OF THE ALGORITHMS

Justification of an algorithm for computing R. From
calculus, we know that a continuous function R(x1, . . . , xn)
attains its minimum on a closed interval [xi, xi] when:

• either the minimum is attained in the interior (xi, xi) of

the interval and
∂R

∂xi
= 0,

• or the minimum is attained at the left endpoint xi of the

interval and
∂R

∂xi
≥ 0,

• or the minimum is attained at the right endpoint xi of the

interval and
∂R

∂xi
≤ 0.

Here,

∂E

∂xi
=

∂

∂xi

 1

n
·

n∑
j=1

xj

 =
1

n
,

and

∂V

∂xi
=

∂

∂xi

 1

n
·

n∑
j=1

x2
j − E2

 =
2

n
· xi − 2E · ∂E

∂xi
=

2 · (xi − E)

n
.

Thus,

∂R

∂xi
=

∂

∂xi

(
V

E

)
=

∂V

∂xi
· E − V · ∂E

∂xi

E2
=

2xi · E − 2E2 − V

2n · E2
,

i.e.,
∂R

∂xi
=

2

n · E
· (xi − z),

where z
def
= E +

V

2E
.

Thus:

• the condition
∂R

∂xi
= 0 is equivalent to xi = z,

• the condition
∂R

∂xi
≥ 0 is equivalent to xi ≥ z, and

• the condition
∂R

∂xi
≤ 0 is equivalent to xi ≤ z.

So, the above conclusions can be reformulated as follows:
• either the minimum is attained in the interior (xi, xi) of

the interval and xi = z,



• or the minimum is attained at the left endpoint xi of the
interval and xi = xi ≥ z,

• or the minimum is attained at the right endpoint xi of the
interval and xi = xi ≤ z.

Let us analyze what will be the consequences of these
conditions in three possible situations:

• when the interval [xi, xi] is to the left of z, i.e., when
xi ≤ z;

• when the interval [xi, xi] is to the right of z, i.e., when
z ≤ xi; and

• when z is strictly inside the interval, i.e., xi < z < xi.
In the first situation, we have xi ≤ z, thus z cannot be

the interior point of the interval. If the minimum is attained
for xi = xi, then, according to the above condition, we have
z ≤ xi but we also have xi = z, thus, xi ≤ xi ≤ z ≤ xi hence
xi = xi and thus, the minimum is attained for xi = xi. In
the remaining case, the minimum is also attained for xi = xi.
Thus, in the first situation, the minimum is always attained
when xi = xi.

Similarly, in the second situation, when z ≤ xi, the
minimum is attained when xi = xi.

Finally, in the third situation, when xi < z < xi, the
minimum cannot be attained at xi = xi, because then we
would have z ≤ xi < z and thus z < z – a contradiction.
Similarly, the minimum cannot be attained at xi = xi, because
then we would have z < xi ≤ z and z < z. Thus, in this
situation, the minimum has to be attained at an interior point,
and we know that in this case, xi = z.

Thus, once we know the location of the unknown value
z with respect to the endpoints of all the intervals, we can
uniquely determine, for every i, the value xi at which the
ratio R attains its minimum.

This is exactly what we do in the above algorithm: try all
possible locations of z with respect to these endpoints; for
each possible location, we assign the values xi according to
the above rule and see when we get the smallest possible value
of the ratio R.

Justification of an algorithm for computing R. Similarly to
the previous algorithm justification, from calculus, we know
that a continuous function R(x1, . . . , xn) attains its maximum
on a closed interval [xi, xi] when:

• either the maximum is attained in the interior (xi, xi) of

the interval,
∂R

∂xi
= 0, and

∂2R

∂x2
i

≤ 0,

• or the maximum is attained at the left endpoint xi of the

interval and
∂R

∂xi
≤ 0,

• or the maximum is attained at the right endpoint xi of

the interval and
∂R

∂xi
≥ 0.

We already have the formula for the first derivative of R.
Differentiating the corresponding expression with respect to
xi, we conclude that

∂2R

∂x2
i

=
∂

∂xi

(
∂R

∂xi

)
=

2

n · E2
· (V − 2xi ·E + (n+1) ·E2).

The expression V can be represented as

V =
1

n
·

n∑
j=1

x2
j − E2 =

1

n
·
∑
j ̸=i

x2
j +

1

n
· x2

i − E2.

Thus, we conclude that

V − 2xi · E + (n+ 1) · E2 =

1

n
·
∑
j ̸=i

x2
j +

1

n
· x2

i − E2 − 2xi · E + (n+ 1) · E2,

hence,

∂2R

∂x2
i

=
2

n2 · E2
·

∑
j ̸=i

x2
j + x2

i − 2n · xi · E + n2 · E2

 .

This expression can be represented as

∂2R

∂x2
i

=
2

n2 · E2
·

∑
j ̸=i

x2
j + (n · E − xi)

2

 .

This expression is a sum of squares of positive number and is,
thus, always positive. Thus, the maximum cannot be attained
at an interior point. Therefore, the maximum of the ratio R is
always attained at one of the endpoints xi = xi or xi = xi.

Taking into account the above conclusions and the known

expression for
∂R

∂xi
, the above conclusions can be reformulated

as follows:
• either the maximum is attained at the left endpoint xi of

the interval and xi = xi ≤ z,
• or the maximum is attained at the right endpoint xi of

the interval and xi = xi ≥ z.
Let us analyze what will be the consequences of these

conditions in three possible situations:
• when the interval [xi, xi] is completely to the left of z,

i.e., when xi < z;
• when the interval [xi, xi] is completely to the right of z,

i.e., when z < xi; and
• when z is inside the interval, i.e., xi ≤ z ≤ xi.
In the first situation xi < z, if the maximum is attained

for xi = xi, then, according to the above condition, we have
z ≤ xi, thus, z ≤ xi ≤ z hence z < z – a contradiction.
Thus, in the first situation, the maximum is always attained
when xi = xi.

Similarly, in the second situation, when z < xi, the
maximum is attained when xi = xi.

In the third situation, we can have both xi = xi and xi = xi.
This is exactly what we do in our algorithm: we consider

all possible locations of z in relation to the endpoints. For
each possible location, we assign unique values xi to all
intervals which are strictly to the left and strictly to the right
of the corresponding zone, and try all possible combination of
endpoints for intervals that contain this zone.

Since at most C intervals may have a common point, there
are no more than C such intervals, so for each zone, we must



consider no more than 2C such assignments. When C is fixed,
this is just a constant.

For each of these assignments, we compute R and take the
largest of the values R as R.
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