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Abstract—In many practical situations, we have a sample of
objects of a given type. When we measure the values of a certain
quantity for these objects, we get a sequence of values x1, . . . , xn.
When the sample is large enough, then the arithmetic mean E
of the values xi is a good approximation for the average value
of this quantity for all the objects from this class.

The values xi come from measurements, and measurements
are never absolutely accurate. Often, the only information that
we have about the measurement error is the upper bound ∆i

on this error. In this case, once we have the measurement result
x̃i, the condition that |x̃i − xi| ≤ ∆i implies that the actual
(unknown) value xi belongs to the interval [x̃i −∆i, x̃i +∆i].

In addition, we often know the upper bound V0 on the variance
V of the actual values – e.g., we know that the objects belong
to the same species, and we know that within-species differences
cannot be too high. In such cases, to estimate the average over
the class, we need to find the range of possible values of the
mean under the constraints that each xi belongs to the given
interval [xi, xi] and that the variance V (x1, . . . , xn) is bounded
by a given value V0. In this paper, we provide efficient algorithms
for computing this range.

I. FORMULATION OF THE PROBLEM

A standard way to analyze a sample. In many practical sit-
uations, we have a sample of values x1, . . . , xn corresponding
to objects of a certain type.

For example, xi may represent the height of the i-th person
in a group, or his or her weight, or the toxicity of the i-th
snake of a certain species.

In this case, a standard way to describe the corresponding
population is to estimate its mean

E =
1

n
·

n∑
i=1

xi (1)

and variance

V =
1

n
·

n∑
i=1

(xi − E)2. (2)

Case of interval uncertainty. The above formulas assume that
we know the exact values of the characteristics x1, . . . , xn.
In practice, these values usually come from measurements,
and measurements are never absolutely exact (see, e.g., [7]):

the measurement results x̃i are, in general, different from the
actual (unknown) values xi: x̃i ̸= xi.

Traditionally, it is assumed that we know the probability
distribution of the measurement errors ∆xi

def
= x̃i − xi.

However, often, the only information we have is the upper
bound ∆i on the (absolute value of the) measurement error:
|∆xi| ≤ ∆i.

In this case, based on the measurement result x̃i, the only
information that we have about the actual (unknown) value xi

is that xi belongs to the interval xi = [xi, xi], where xi =
x̃i −∆i and xi = x̃i +∆i.

Need to estimate mean and variance under interval uncer-
tainty. In general, different values xi from the corresponding
intervals xi lead to different values of the mean E and
variance V . It is therefore desirable to describe the range of
possible values of mean and variance when xi belong to the
corresponding intervals:

E = [E,E]
def
=

{E(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}; (3)

V = [V , V ]
def
=

{V (x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}. (4)

Comment. The problem of computing the corresponding
ranges is a particular case of a general problem of computing
the range

y = [y, y]
def
= {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn} (5)

of a given function f(x1, . . . , xn) when xi are in known inter-
vals. Computing such a range is called interval computations;
see, e.g., [3], [5].

Case of fuzzy uncertainty. A similar problem occurs when,
instead of measurement results x̃i, we have expert estimates
of the corresponding values xi. Expert estimates are often
formulated in terms of words from natural language, like
“somewhat”, “close to 1.0”, etc.



A natural way to describe these estimates is by using
fuzzy values Xi (i.e., membership functions µi(xi)); see,
e.g., [4], [6]. Instead of using membership functions, we can
alternatively use α-cuts

Xi(α)
def
= {xi : µ(xi) ≥ α} (6)

corresponding to different values α.
In this case, it is desirable to find the fuzzy numbers µf (y)

corresponding to the mean f = E(x1, . . . , xn) and to the
variance f = V (x1, . . . , xn).

A natural way is to use Zadeh’s extension principle

µf (y) =

max{min(µ1(x1), . . . , µn(xn)) : f(x1, . . . , xn) = x}, (7)

Processing fuzzy uncertainty can be reduced to processing
interval uncertainty. It is known (see, e.g., [4], [6]) that
for continuous functions f(x1, . . . , xn), Zadeh’s extension
principle is equivalent to requiring that for every α, the α-cut
Y (α) for y = f(x1, . . . , xn) is equal to the range of values
of f(x1, . . . , xn) when each xi belongs to the corresponding
α-cut Xi(α):

Y (α) =

{f(x1, . . . , xn) |x1 ∈ X1(α), . . . , xn ∈ Xn(α)}. (8)

Thus, computing the corresponding fuzzy set is equivalent to
solving several interval computation problems corresponding
to different values α: e.g., to α = 0.1, 0.2, . . . , 1.0.

In view of this equivalence, in the following text, we will
concentrate on the problem of computing mean and variance
under interval uncertainty.

Computing the range of the mean. When we pick any of
the variables xi and increase it to some value x′

i > xi (while
leaving others intact, i.e., x′

j = xj for all j ̸= i), the value E
would increase as well. Thus, the smallest value E is attained
when each of the variables xi attains its smallest possible value
xi = xi, and its largest value E is attained when each of the
variables xi attains its largest possible value xi = xi:

E =
1

n
·

n∑
i=1

xi; E =
1

n
·

n∑
i=1

xi. (9)

Computing the range of the variance. The variance (2) is,
in general, not monotonic; so, for the variance, the problem of
computing the range [V , V ] under interval uncertainty is more
complex.

Specifically, it turns out that while the lower endpoint V
can be computed in linear time [8], the problem of computing
V is, in general, NP-hard [1], [2].

Variance constraints. In the above expressions, we assume
that there is no a priori information about the values of E
and V .

In some cases, we have a priori constraints on the variance:
V ≤ V0 for a given V0. For example, we know that within a
species, there can be no more than 0.1 variation of a certain
characteristic.

Estimating mean under interval uncertainty and variance
constraint: a problem. In the presence of variance constraints,
the problem of finding possible values of the mean E takes
the following form:

• given: n intervals xi = [xi, xi] and a number V0 ≥ 0;
• compute: the range

[E,E] =

{E(x1, . . . , xn) |xi ∈ xi &V (x1, . . . , xn) ≤ V0}; (10)

• under the assumption that there exist values xi ∈ xi for
which V (x1, . . . , xn) ≤ V0.

This is a problem that we will solve in this paper.

Case when this problem is (relatively) easy to solve. Let us
first consider the case when V0 is larger than (or equal to) the
largest possible value V of the variance corresponding to the
given sample.

In this case, the constraint V ≤ V0 is always satisfied. Thus,
in this case, the desired range simply coincides with the range
of all possible values of E, i.e., with the arithmetic average
(9) of the corresponding intervals.

Comment. It should be mentioned that the the computation of
the range [E,E] is easy only if we already know that V ≤ V0.

Checking whether this inequality is satisfied is, as we have
mentioned, a computationally difficult (NP-hard) problem; see,
e.g., [1], [2].

Another case when this problem is (relatively) easy to solve.
Another such case is when V0 = 0.

In this case, the constraint V ≤ V0 means that the variance
V should be equal to 0. In this case, all non-negative values
(xi −E)2 should also be equal to 0 – otherwise, the average
V of these values (xi − E)2 would be positive. So, we have
xi = E for all i and thus, all the actual (unknown) values
should coincide: x1 = . . . = xn. In this case, we know that
this common value xi belongs to each of n intervals xi, so it
belongs to their intersection.

x1 ∩ . . . ∩ xn. (11)

A value E belongs to the interval [xi, xi] if it is larger than
or equal to its lower endpoint xi and smaller than or equal
to its upper endpoint xi. Thus, for a value E to belong to all
n intervals, it has to be larger than or equal to all n lower
endpoints x1, . . . , xn, and it has to be smaller than or equal
to all n upper endpoints x1, . . . , xn.

A number E is larger than or equal to n given numbers
x1, . . . , xn if and only if it is larger than or equal to the largest
of these n numbers, i.e., if max(x1, . . . , xn) ≤ E. Similarly,
a number E is smaller than or equal to n given numbers
x1, . . . , xn if and only if it is smaller than or equal to the



smallest of these n numbers, i.e., if E ≤ min(x1, . . . , xn). So,
the intersection consists of all the numbers which are located
between these two bounds, i.e., the intersection coincides with
the interval

[E,E] = [max(x1, . . . , xn),min(x1, . . . , xn)]. (12)

Comment. In this case, not only computing the range is easy,
it is also easy to check whether there exist values xi ∈ xi for
which V (x1, . . . , xn) ≤ V0 = 0.

Indeed, as we have mentioned, this inequality is equivalent
to the fact that x1 = . . . = xn. Thus, there exist values xi ∈ xi

that satisfy this inequality if and only if n intervals xi =
[xi, xi] have a common element, i.e., if and only if

max(x1, . . . , xn) ≤ min(x1, . . . , xn).

General case. In the general case, when V0 is larger than 0
but smaller than the upper endpoint V , we should get intervals
intermediate between intersection and arithmetic average. In
this paper, we show how to compute the corresponding interval
for E.

II. MAIN RESULT

Algorithm. The following feasible algorithm solves the prob-
lem of computing the range [E,E] of the range of the mean
under interval uncertainty and variance constraint:

• First, we compute the values

E− def
=

1

n
·

n∑
i=1

xi and V − def
=

1

n
·

n∑
i=1

(xi − E−)2;

E+ def
=

1

n
·

n∑
i=1

xi and V + def
=

1

n
·

n∑
i=1

(xi − E+)2.

• If V − ≤ V0, then we return E = E−.
• If V + ≤ V0, then we return E = E+.
• If at least one these inequalities does not hold, i.e., if

V0 < V − or V0 < V +, then we sort the all 2n endpoints
xi and xi into a non-decreasing sequence

z1 ≤ z2 ≤ . . . ≤ z2n

and consider 2n− 1 zones [zk, zk+1].
• For each zone [zk, zk+1], we take:

– for every i for which xi ≤ zk, we take xi = xi;
– for every i for which zk+1 ≤ xi, we take xi = xi;
– for every other i, we take xi = α; let us denote the

number of such i’s by nk.
The value α is determined from the condition that for the
selected vector x, we have V (x) = V0, i.e., from solving
the following quadratic equation:

1

n
·

 ∑
i:xi≤zk

(xi)
2 +

∑
i:zk+1≤xi

x2
i + nk · α2

−

1

n2
·

 ∑
i:xi≤zk

xi +
∑

i:zk+1≤xi

xi + nk · α

2

= V0. (13)

Then:
– if none of the two roots of the above quadratic

equation belongs to the zone, this zone is dismissed;
– if one or more roots belong to the zone, then for

each of these roots, based on this α, we compute the
value

Ek(α) =
1

n
·

 ∑
i:xi≤zk

xi +
∑

i:zk+1≤xi

xi + nk · α

 . (14)

• After that:
– if V0 < V −, we return the smallest of the values

Ek(α) as E: E = mink,α Ek(α);
– if V0 < V +, we return the largest of the values

Ek(α) as E: E = maxk,α Ek(α).

Comment. The correctness of this algorithm is proven in the
special Proof section.

Computation time of this algorithm. Sorting 2n numbers
requires time O(n · log(n)).

Once the values are sorted, we can then go zone-by-zone,
and perform the corresponding computations. A straightfor-
ward implementation of the above algorithm would require
time O(n2): for each of 2n zones, we need linear time to
compute several sums of n numbers.

However, in reality, only the sum for the first zone requires
linear time. Once we have the sums for each zone, computing
the sum for the next zone requires changing a few terms –
values xj which changed status. Each value xj changes once,
so overall, to compute all these sums, we still need linear time.

Thus, after sorting, the algorithm requires only linear com-
putations time O(n). So, if the endpoints are already given to
us as sorted, we only take linear time.

If we still need to sort, then we need time

O(n · log(n)) +O(n) = O(n · log(n)).

Toy example. Let us illustrate the above algorithm on a simple
example in which we have two intervals x1 = [−1, 0] and
x2 = [0, 1], and the bound V0 is equal to 0.16.

In this case, according to the above algorithm, we compute
the values

E− =
1

2
· (−1 + 0) = −0.5;

V − =
1

2
· (((−1)− (−0.5))2 + (0− (−0.5))2) = 0.25;

E+ =
1

2
· (0 + 1) = 0.5;

V + =
1

2
· ((0− 0.5)2 + (1− 0.5)2) = 0.25.



Here, V0 < V − and V0 < V +, so for computing both bounds
E and E, we need to consider different zones.

By sorting the 4 endpoints −1, 0, 0, and 1, we get z1 =
−1 ≤ z2 = 0 ≤ z3 = 0 ≤ z4 = 1. Thus, here, we have 3
zones [z1, z2] = [−1, 0], [z2, z3] = [0, 0], and [z3, z4] = [0, 1].

1) For the first zone [z1, z2] = [−1, 0], according to the above
algorithm, we select x2 = 0 and x1 = α. To determine the
value α, we form the quadratic equation (13):

1

2
· (02 + α2)− 1

4
· (0 + α)2 = V0 = 0.16.

This equation is equivalent to

1

2
· α2 − 1

4
· α2 =

1

4
· α2 = 0.16,

hence α2 = 0.64 and α = ±0.8. Of the two roots α = −0.8
and α = 0.8, only the first root belongs to the zone [−1, 0].
For this root, we compute the value (14):

E1 =
1

2
· (0 + α) =

1

2
· (0 + (−0.8)) = −0.4.

2) For the second zone [z2, z3] = [0, 0], according to the above
algorithm, we select x1 = x2 = 0. In this case, there is no
need to compute α, so we directly compute

E2 =
1

2
· (0 + 0) = 0.

3) For the third zone [z3, z4] = [0, 1], according to the above
algorithm, we select x1 = 0 and x2 = α. To determine the
value α, we form the quadratic equation (13):

1

2
· (02 + α2)− 1

4
· (0 + α)2 = V0 = 0.16.

This equation is equivalent to

1

2
· α2 − 1

4
· α2 =

1

4
· α2 = 0.16,

hence α2 = 0.64 and α = ±0.8. Of the two roots α = −0.8
and α = 0.8, only the second root belongs to the zone [0, 1].
For this root, we compute the value (14):

E3 =
1

2
· (0 + α) =

1

2
· (0 + 0.8) = 0.4.

Here, we have a value Ek for all three zones, so we return

E = min(E1, E2, E3) = −0.4;

E = max(E1, E2, E3) = 0.4.

III. PROOF OF THE ALGORITHM’S CORRECTNESS

1◦. Let us first show that it is sufficient to prove correctness
for the case of the upper endpoint E.

Indeed, one can easily see that if we replace the original values
xi with the new values x′

i = −xi, then the mean changes sign
E′ = −E while the variance remains the same V ′ = V .

When each xi is known with interval uncertainty xi ∈ xi =
[xi, xi], the corresponding interval for x′

i = −xi is equal to
x′
i = [−xi,−xi]. The resulting interval E′ = [E′, E

′
] for

E′ is similarly equal to [−E,−E], so E
′
= −E and thus,

E = −E
′
.

Thus, if we know how to compute the upper endpoint E
for an arbitrary set of intervals x1, . . . ,xn, we can compute
E or a given set of intervals x1 = [x1, x1], . . . , xn = [xn, xn]
as follows:

• we compute n auxiliary intervals x′
i = [−xi,−xi], i =

1, . . . , n;
• we use the known algorithm to find the upper endpoint E

′

for the range of the mean when x′
i ∈ x′

i and V (x′) ≤ V0;
• we take E = −E

′
.

2◦. Let us prove that the largest possible values E is attained
for some values xi ∈ [xi, xi] for which V (x) ≤ V0.

Indeed, the variance function V (x1, . . . , xn) is continuous;
thus, the set of all the values x = (x1, . . . , xn) for which
V (x1, . . . , xn) ≤ V0 is closed.

The box x1 × . . . × xn is closed and bounded and thus,
compact. The set S of all the values x ∈ x1 × . . . × xn

for which V (x) ≤ V0 is a closed subset of a compact set
and therefore, compact itself. A continuous function attains
its maximum on a compact set at some point. In particular,
this means that the function E(x) attains its maximum E at
some point x, i.e., that there exist values x = (x1, . . . , xn) for
which E(x1, . . . , xn) = E.

In the following text, we will consider these optimizing
values.

3◦. Let us prove that for the optimizing vector x, for all i for
which we have xi < E, we have xi = xi.

Indeed, since V = M − E2, where M
def
=

1

n
·

n∑
i=1

x2
i , we

conclude that

∂V

∂xi
=

∂M

∂xi
− ∂E2

∂xi
=

∂M

∂xi
− 2 · E · ∂E

∂xi
.

Here,
∂E

∂xi
=

1

n
,
∂M

∂xi
=

2xi

n
, and therefore,

∂V

∂xi
=

2 · (xi − E)

n
. (15)

If we change only one value xi, by replacing it with xi+∆xi,
with a small ∆xi, the value of V changes by

∆V =
∂V

∂xi
·∆xi+o(∆xi) =

2

n
·(xi−E)·∆xi+o(∆xi). (16)



When xi < E, i.e., when xi−E < 0, then for small ∆xi > 0,
we have a negative ∆V , i.e., the variance decreases, while the

mean E increases by
1

n
·∆xi > 0. Thus, if we had xi < E

and xi ̸= xi for some i, then we could, by slightly increasing
xi, further increase E while decreasing V (and thus, keeping
the constraint V ≤ V0). So, in this case, the vector x cannot
be the one that maximizes E under the constraint V ≤ V0.

This conclusion proves that for the optimizing vector, when
xi < E, we have xi = xi.

4◦. Let us assume that an optimizing vector has a component
xi which is strictly inside the corresponding interval [xi, xi],
i.e., for which xi < xi < xi. Due to Part 3 of this proof, we
cannot have xi < E, so we must have xi ≥ E. Let us prove
that in this case,

• for every j for which E ≤ xj < xi, we have xj = xj ,
and

• for every k for which xk > xi, we have xk = xk.

4.1◦. Let us first prove that if xi ∈ (xi, xi), and E ≤ xj < xi,
then xj = xj .

We will prove this by contradiction. Indeed, let us assume
that we have E ≤ xj < xi and xj < xj . In this case, we
can, in principle, slightly increase xj , to xj+∆xj and slightly
decrease xi, to xi−∆xi, and still stay within the corresponding
intervals xi and xj . We select ∆xj and ∆xi in such a way that
the resulting change ∆V in the variance V is non-negative.
Here,

∆V =
∂V

∂xj
·∆xj −

∂V

∂xi
·∆xi + o(∆xi) + o(∆xj). (17)

Substituting the formula (15) for the derivative
∂V

∂xj
into this

formula, we conclude that

∆V =
2

n
· ((xj − E)∆xj − (xi − E) ·∆xi)+

o(∆xi) + o(∆xj). (18)

Thus, for every ∆xj , to get ∆V = 0, we select

∆xi =
xj − E

xi − E
·∆xj + o(∆xj). (19)

For this selection, the variance does not change, but the mean
E is changed by

∆E =
1

n
· (∆xj −∆xi) =

(
1− xj − E

xi − E

)
·∆xj + o(∆xj) =

xi − xj

xi − E
·∆xj + o(∆xj). (20)

Since xj < xi, for small ∆xj , we have ∆E > 0. Thus, we can
further increase the mean without violating the constraint V ≤
V0. This contradicts our assumption that x is the optimizing
vector. Thus, when E < xj < xi, we cannot have xj < xj –
so we must have xj = xj .

4.2◦. Let us first prove that if xi ∈ (xi, xi), E ≤ xi, and
xk > xi, then xk = xk.

Similarly, let us assume that we have xk > xi and xk > xk. In
this case, we can, in principle, slightly increase xi, to xi+∆xi

and slightly decrease xk, to xk−∆xk, and still stay within the
corresponding intervals xi and xk. We select ∆xi and ∆xk

in such a way that the resulting change ∆V in the variance
V is non-negative. Here,

∆V =
∂V

∂xi
·∆xi −

∂V

∂xk
·∆xk + o(∆xi) + o(∆xk) =

2

n
·((xi−E)∆xi−(xk−E) ·∆xk)+o(∆xi)+o(∆xk). (21)

Thus, for every ∆xi, to get ∆V = 0, we select

∆xk =
xi − E

xk − E
·∆xi + o(∆xi). (22)

For this selection, the variance does not change, but the mean
E is changed by

∆E =
1

n
· (∆xi−∆xk) =

(
1− xi − E

xk − E

)
·∆xi+ o(∆xi) =

xk − xi

xk − E
·∆xi + o(∆xi). (23)

Since xk > xi, for small ∆xi, we have ∆E > 0. Thus, we can
further increase the mean without violating the constraint V ≤
V0. This contradicts our assumption that x is the optimizing
vector. Thus, when xi < xk, we cannot have xk > xk – so
we must have xk = xj .

5◦. Let us now consider the case when for all the components
xi ≥ E of the optimizing vector x, we have either xi = xi or
xi = xi. Let us show that in this case, all the values xi for
which xi = xi are smaller than or equal to all the values xj

for which xj = xj .

We will prove this statement by contradiction. Let us assume
that there exists i and j for which E ≤ xj < xi, xj = xj and
xi = xi. In this case, we can slightly increase the value xj ,
to xj +∆xj , and slightly decrease the value xi, to xi −∆xi,
and still stay within the corresponding intervals. Similarly to
Part 4 of this proof, for every ∆xj > 0, to get ∆V = 0, we
must select

∆xi =
xj − E

xi − E
·∆xj + o(∆xj). (24)

For this selection, the variance does not change, but the mean
E is changed by

∆E =
1

n
· (∆xj −∆xi) =

(
1− xj − E

xi − E

)
·∆xj + o(∆xj) =

xi − xj

xi − E
·∆xj + o(∆xj). (25)

Since xj < xi, for small ∆xj , we have ∆E > 0. Thus, we can
further increase the mean without violating the constraint V ≤
V0. This contradicts our assumption that x is the optimizing
vector. So, when E ≤ xj < xi, we cannot have xj = xj and
xi = xi.



This contradiction proves that all the values xi for which
xi = xi are indeed smaller than or equal to all the values xj

for which xj = xj .

6◦. Due to Parts 3, 4, and 5 of this proof, there exists a
threshold value α such that

• for all j for which xj < α, we have xj = xj , and
• for all k for which xk > α, we have xk = xk.

Indeed, in the case described in Part 4, as such α, we can take
the value xi that is strictly inside the corresponding interval xi.
In the case described in Part 5, since all the upper endpoints
from the optimizing vector are smaller than or equal to all the
lower endpoints, we can take any value α between the largest
of the optimal values xj and smallest of the optimal values xj .

7◦. Let us show that because of the property proven in Part 6,
once we know to which zone α belongs, we can uniquely
determine all the components xj of the corresponding vector
x – a candidate for the optimal vector.

7.1◦. Indeed, if xj < α, then, since we have xj < xj , we get
xj < α. Thus, due to Part 6, we have xj = xj .

7.2◦. If α < xj , then, since we have xj < xj , we get α < xj .
Thus, due to Part 6, we have xj = xj .

7.3◦. Let us now consider the remaining case when neither
of the above two conditions is satisfied and thus, we have
xj ≤ α ≤ xj .

In this case, we cannot have xj < α, because then, due
to Part 6, we would have xj = xj and thus, xj < α, which
contradicts the inequality α ≤ xj .

Similarly, we cannot have α < xj , because then, due to
Part 6, we would have xj = xj and thus, α < xj , which
contradicts the inequality xj ≤ α.

Thus, the only possible value here is xj = α.

7.3◦. Overall, we conclude that for each α, we get exactly the
arrangement formulated in our algorithm.

8◦. Let us prove that when V0 < V +, then the maximum is
attained when V = V0.

Let us prove this by contradiction. Let us assume that V0 <
V + and that the maximum of E is attained for some vector
x = (x1, . . . , xn), with xi ∈ [xi, xi], for which V (x) < V0.

Since V < V0 < V +, we have V (x) < V + =

V (x1, . . . , xn). Thus, x = (x1, . . . , xn) ̸= x
def
= (x1, . . . , xn)

– otherwise, we would get V (x) = V (x) = V +. So, there
exists an index i for which xi ̸= xi. Since xi ∈ [xi, xi], this
means that xi < xi. Thus, we can increase xi by a small
positive value ε > 0, to a new value x′

i = xi + ε > xi, and
still remain inside the interval [xi, xi].

The function V (x1, . . . , xn) describing covariance continu-
ally depends on xi. Since V (x) < V0, for sufficiently small ε,
we will have V (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) < V0. Thus,

the new vector still satisfies the constraint – but for this new
vector, the mean is larger (by ε/n > 0) than for the original
vector x.

This contradicts our assumption that the mean E(x) of the
vector x is the largest possible under the given constraint V ≤
V0.

The above contradiction shows that when V0 < V +, then for
the optimizing vector x, we have V (x) = V0. This fact enables
us to determine α – as do in the algorithm – by solving the
equation V (x(α)) = V0, where x(α) is a vector corresponding
to the given α.

Correctness is proven.
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