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Abstract—In natural language, “or” sometimes means “inclu-
sive or” and sometimes means “exclusive or”. To adequately
describe commonsense and expert knowledge, it is therefore
important to have not only t-conorms describing fuzzy “inclusive
or” operations, but also fuzzy “exclusive or” operations f⊕(a, b).
Since the degrees of certainty are only approximately defined, it
is reasonable to require that the corresponding operation be the
least sensitive to small changes in the inputs. In this paper, we
show that the least sensitive fuzzy “inclusive or” operation has
the form f⊕(a, b) = min(max(a, b),max(1− a, 1− b)).

I. INTRODUCTION

Need for fuzzy “exclusive or” operations. One of the
main objectives of fuzzy logic is to formalize commonsense
and expert reasoning. In commonsense and expert reasoning,
people use logical connectives like “and” and “or”. Depending
on the context, commonsense “or” can mean both “inclusive
or” – when “A or B” means that it is also possible to have
both A and B, and “exclusive or” – when “A or B” means
that one of the statements holds but not both.

For example, for a dollar, a vending machine can produce
either a coke or a diet coke, but not both.

In mathematics and computer science, “inclusive or” is the
one most frequently used as a basic operation. Because of this,
fuzzy logic – an extension of usual logic to fuzzy statements
characterized by “degree” of truth – is also mainly using
“inclusive or” operations. However, since “exclusive or” is
also used in commonsense and expert reasoning, there is a
practical need for a fuzzy versions of this operation.

Comment. The “exclusive or” operation is actively used in
computer design: since it corresponds to the bit-by-bit addition
of binary numbers (the carry is the “and”). It is also actively
used in quantum computing algorithms; see, e.g., [12].

Fuzzy versions of “exclusive or” operations are also known;
see, e.g., [1]. These fuzzy versions are actively used in
machine learning; see, e.g., [3], [7], [8], [14]. In particular,
some of these papers (especially [8]) use a natural extension
of fuzzy “exclusive or” from a binary to a k-ary operation.

A crisp “exclusive or” operation: a reminder. As usual
with fuzzy operations, the fuzzy “exclusive or” operation must
be an extension of the corresponding crisp operation. In the
traditional 2-valued logic, with two possible truth values 0

(false) and 1 (true), the “exclusive or” operation ⊕ is defined
as follows: 0⊕0 = 1⊕1 = 0 and 0⊕1 = 1⊕0 = 1. Thus, the
desired fuzzy “exclusive or” operation f⊕(a, b) must satisfy
the same properties:

f⊕(0, 0) = f⊕(1, 1) = 0; f⊕(0, 1) = f⊕(1, 0) = 1. (1)

Need for the least sensitivity: reminder. Fuzzy logic opera-
tions deal with experts’ degrees of certainty in their statements.
These degrees are not precisely defined, the same expert can
assign, say, 0.7 and 0.8 to the same degrees of belief. It is
therefore reasonable to require that the result of the fuzzy
operation not change much if we slightly change the inputs.
A reasonable way to formalize this requirement is to require
that the operation f(a, b) satisfy the following property:

|f(a, b)− f(a′, b′)| ≤ k ·max(|a− a′|, |b− b′|), (2)

with the smallest possible value k among all operations f(a, b)
satisfying the given properties. Such operations are called the
least sensitive or the most robust.

For t-norms and t-conorms, the least sensitivity require-
ment leads to reasonable operations. It is known that
there is only one least sensitive t-norm (“and”-operation)
f&(a, b) = min(a, b), and only one least sensitive t-conorm
(“or”-operation) f∨(a, b) = max(a, b); see, e.g., [13], [9],
[10].

What we do in this paper. In this paper, we describe the
least sensitive fuzzy “exclusive or” operation.

II. MAIN RESULT

Definition 1. A function f : [0, 1] × [0, 1] → [0, 1] is called
a fuzzy “exclusive or” operation if it satisfies the following
conditions: f(0, 0) = f(1, 1) = 0 and f(0, 1) = f(1, 0) = 1.

Comment. We could also require other conditions, e.g., com-
mutativity and associativity. However, our main objective is
to select a single operation which is the least sensitive. The
weaker the condition, the larger the class of operations that
satisfy these conditions, and thus, the stronger the result that
our operation is the least sensitive in this class.



Thus, to make our result as strong as possible, we selected
the weakest possible condition – and thus, the largest possible
class of “exclusive or” operations.

Definition 2. Let F be a class of functions from [0, 1]× [0, 1]
to [0, 1]. We say that a function f ∈ F is the least sensitive in
the class F if for some real number k, the function f satisfies
the condition

|f(a, b)− f(a′, b′)| ≤ k ·max(|a− a′|, |b− b′|),

and no other function f ∈ F satisfies this condition.

Theorem. In the class of all fuzzy “exclusive or” operations,
the following function is the least sensitive:

f⊕(a, b) = min(max(a, b),max(1− a, 1− b)). (3)

Comments.
• This operation can be understood as follows. In the crisp

(two-valued) logic, “exclusive or” ⊕ can be described in
terms of the “inclusive or” operation ∨ as

a⊕ b ⇔ (a ∨ b)&¬(a& b).

If we:
– replace ∨ with the least sensitive “or”-operation

f∨(a, b) = max(a, b),
– replace & with the least sensitive “and”-operation

f&(a, b) = min(a, b), and
– replace ¬ with the least sensitive negation operation

f¬(a) = 1− a,
then we get the expression (3) given in the Theorem.

• The above operation is associative and has a value a0
(equal to 0.5) which satisfies the property a ⊕ a0 = a
for all a. Thus, from the mathematical viewpoint, this
operation is an example of a nullnorm; see, e.g., [2].

III. PROOF OF THE MAIN RESULT

We will prove that the Theorem is true for k = 1.

1◦. First, let us prove that the operation (3) indeed satisfies
the condition (2) with k = 1. In other words, let us prove
that for every ε > 0, if |a − a′| ≤ ε and |b − b′| ≤ ε, then
|f⊕(a, b)− f⊕(a

′, b′)| ≤ ε.

1.1◦. It is known (see, e.g., [9], [10], [13]) that the functions
min(a, b), max(a, b), and 1− a satisfy the condition (2) with
k = 1. In particular, this means that if |a − a′| ≤ ε and
|b− b′| ≤ ε, then we have

|max(a, b)−max(a′, b′)| ≤ ε (4)

and also

|(1− a)− (1− a′)| ≤ ε and |(1− b)− (1− b′)| ≤ ε. (5)

1.2◦. From (5), by using the property (2) for the max opera-
tion, we conclude that

|max(1− a, 1− b)−max(1− a′, 1− b′)| ≤ ε. (6)

1.3◦. Now, from (4) and (6), by using the property (2) for the
min operation, we conclude that

|min(max(a, b),max(1− a, 1− b))−

min(max(a′, b′),max(1− a′, 1− b′))| ≤ ε. (7)

The statement is proven.

2◦. Let us now assume that f(a, b) is an exclusive or operation
that satisfies the condition (2) with k = 1. Let us prove that
then f(a, b) coincides with the function (3).

2.1◦. Let us first prove that f(0.5, 0.5) = 0.5.

The proof can be illustrated by the following picture.
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By the definition of the exclusive or operation, we have
f(0, 0) = 0 and f(0, 1) = 1. Due to the property (2), we
have

|f(0, 0)− f(0.5, 0.5)| ≤ max(|0− 0.5|, |0− 0.5|) = 0.5 (8)

thus,

f(0, 5, 0.5) ≤ f(0, 0) + 0.5 = 0 + 0.5 = 0.5. (9)

Similarly, due to the property (2), we have

|f(0, 1)−f(0.5, 0.5)| ≤ max(|0−0.5|, |1−0.5|) = 0.5 (10)

thus,

f(0.5, 0.5) ≥ f(0, 1)− 0.5 = 1− 0.5 = 0.5. (11)

From (9) and (11), we conclude that f(0.5, 0.5) = 0.5.

2.2◦. Let us now prove that f(a, a) = a for a ≤ 0.5.

This proof can be illustrated by the following picture.
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Due to the property (2), we have

|f(0, 0)− f(a, a)| ≤ max(|0− a|, |0− a|) = a (12)

thus,
f(a, a) ≤ f(0, 0) + a = 0 + a = a. (13)

Similarly, due to the property (2), we have

|f(0.5, 0.5)− f(a, a)| ≤ max(|0.5− a|, |0.5− a|) =

0.5− a (14)

thus,

f(a, a) ≥ f(0.5, 0.5)−(0.5−a) = 0.5−(0.5−a) = a. (15)

From (13) and (15), we conclude that f(a, a) = a.

2.3◦. Similarly:

• by considering the points (0.5, 0.5) and (1, 1), we con-
clude that

f(1− a, 1− a) = a

for a ≤ 0.5;
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• by considering the points (0.5, 0.5) and (0, 1), we con-
clude that

f(a, 1− a) = 1− a

for a ≤ 0.5;
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• by considering the points (0.5, 0.5) and (1, 0), we con-
clude that

f(1− a, a) = 1− a

for a ≤ 0.5.
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Summarizing: we have just proved that the formula (6) holds
when b = a and when b = 1− a.

2.4◦. Let us now prove that the formula (6) holds for arbitrary
a and b.

In principle, we can have four cases depending on whether
b ≤ a or b ≥ a and on whether b ≤ 1 − a or b ≥ 1 − a.
Without losing generality, let us consider the case when b ≤ a
and b ≤ 1−a; the other three cases can be proven in a similar
way.

The proof for this case can be illustrated by the following
picture.
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For this case, we know, from Parts 2.2 and 2.3 of this proof,
that f(b, b) = b and f(1− b, b) = 1− b. Here, b ≤ a ≤ 1− b.
Due to the property (2), we have

|f(a, b)− f(b, b)| ≤ max(|a− b|, |b− b|) = a− b, (16)

thus,

f(a, b) ≤ f(b, b) + (a− b) = b+ (a− b) = a. (17)

Similarly, due to the property (2), we have

|f(a, b)− f(1− b, b)| ≤ max(|a− (1− b)|, |b− b|) =

(1− b)− a, (18)

thus,
f(a, b) ≥ f(1− b, b)− ((1− b)− a) =

(1− b)− ((1− b)− a) = a. (19)

From (17) and (19), we conclude that f(a, b) = a.
Similarly:



• for b ≤ a and b ≥ 1 − a, i.e., when 1 − a ≤ b ≤ a, by
considering the points (a, 1− a) and (a, a), we conclude
that f(a, b) = 1− a;

• for b ≥ a and b ≤ 1 − a, i.e., when a ≤ b ≤ 1 − a, by
considering the points (a, a) and (a, 1− a), we conclude
that f(a, b) = b;

• for b ≥ a and b ≥ 1 − a, i.e., when 1 − b ≤ a ≤ b, by
considering the points (1− b, b) and (b, b), we conclude
that f(a, b) = 1− b.

In other words, we prove that the formula (6) holds for all a
and b. The theorem is proven.

IV. FUZZY “EXCLUSIVE OR” OPERATIONS WHICH ARE
THE LEAST SENSITIVE ON AVERAGE

Average sensitivity: reminder. As we have mentioned earlier,
the fuzzy degrees are given with some uncertainty. In other
words, different experts – and even the same expert at different
times – would assign somewhat different numerical values to
the same degree of certainty. In the main part of the paper,
we have showed how to select fuzzy operations c = f(a, b)
in such a way that “in the worst case”, the change in a and
b would lead to the smallest possible change in the value c =
f(a, b).

Another reasonable possibility is to select fuzzy operations
c = f(a, b) in such a way that “on average”, the change in a
and b would lead to the smallest possible change in the value
c = f(a, b).

For each pair of values a and b, it is reasonable to assume
that the differences ∆a and ∆b between the different numer-
ical values corresponding to the same degree of certainty are
independent random variables with 0 mean and small variance
σ2. Since the differences ∆a and ∆b are small, we can expand
the difference ∆c = f(a + ∆a, b + ∆b) − f(a, b) in Taylor
series with respect to ∆a and ∆b and keep only linear terms
in this expansion:

∆c ≈ ∂f

∂a
·∆a+

∂f

∂b
·∆b. (20)

Since the variance are independent with 0 mean, the mean of
∆c is also 0, and variance of ∆c is equal to

σ2(a, b) =

((
∂f

∂a

)2

+

(
∂f

∂b

)2
)

· σ2. (21)

This is the variance for given a and b. To get the average
variance, it is reasonable to average this value over all possible
values of a and b, i.e., to consider the value

I · σ2,

where

I
def
=

∫ a=1

a=0

∫ b=1

b=0

((
∂f

∂a

)2

+

(
∂f

∂b

)2
)

da db. (22)

Thus, the average sensitivity is the smallest if, among all
possible functions f(a, b) satisfying the given constraints, we
select a function for which the integral I takes the smallest
possible value.

Average sensitivity: known results. [11], [13]
• For negation operations, this approach select the standard

function
f¬(a) = 1− a.

• For “and”-operations (t-norms), this approach selects
f&(a, b) = a · b.

• For “or”-operations (t-conorms), this approach selects
f∨(a, b) = a+ b− a · b.

New result: formulation. We consider “exclusive or” op-
erations, i.e., functions f(a, b) from [0, 1] × [0, 1] to [0, 1]
for which f(0, b) = b, f(a, 0) = a, f(1, b) = 1 − b, and
f(a, 1) = 1− a.

Our main result is that among all such operations, the
operation which is the least sensitive on average has the form

f⊕(a, b) = a+ b− 2 · a · b. (23)

Comment. This operation can be explained as follows:
• First, we represent the classical (2-valued) “exclusive or”

operation a⊕ b as (a ∨ b)&(¬a ∨ ¬b).
• Then, to get a fuzzy analogue of this operation, we

replace p ∨ q with p + q − p · q, ¬p with 1 − p, and
p& q with max(p+ q − 1, 0).

Indeed, in this case,

a ∨ b = a+ b− a · b;

¬a ∨ ¬b = (1− a) ∨ (1− b) =

(1− a) + (1− b)− (1− a) · (1− b) =

1− a+ 1− b− (1− a− b+ a · b) =

1− a+ 1− b− 1 + a+ b− a · b = 1− a · b,

and thus,
(a ∨ b) + (¬a ∨ ¬b)− 1 =

a+ b− a · b+ 1− a · b− 1 =

a+ b− 2 · a · b.

For values a, b ∈ [0, 1], we have a2 ≤ a and b2 ≤ b, hence

(a ∨ b) + (¬a ∨ ¬b)− 1 =

a+ b− 2 · a · b ≥ a2 + b2 − 2 · a · b =

(a− b)2 ≥ 0,

therefore, indeed

(a ∨ b)&(¬a ∨ ¬b) =

max((a ∨ b) + (¬a ∨ ¬b)− 1, 0) =

(a ∨ b) + (¬a ∨ ¬b)− 1.

This replacement operation sounds arbitrary, but the result-
ing “exclusive or” operation is uniquely determined by the
sensitivity requirement.



V. PROOF OF THE AUXILIARY RESULT

It is known similarly to the fact that the minimum of a
function is always attained at a point where its derivative is 0,
the minimum of a functional is always attained at a function
where it variational derivative is equal to 0 (see, e.g., [5]; see
also [11], [13]):

δL

δf
=

∂L

∂f
−
∑
i

∂

∂xi

(
∂L

∂fi

)
= 0,

where f,i
def
=

∂f

∂xi
.

Applying this variational equation to the functional I =∫
Lda db, with L =

(
∂f

∂a

)2

+

(
∂f

∂b

)2

, we conclude that

− ∂

∂a

(
2 · ∂f

∂a

)
− ∂

∂b

(
2 · ∂f

∂b

)
= 0,

i.e., we arrive at the equation

∇2f = 0, (24)

where ∇ def
=

(
∂f

∂a
,
∂f

∂b

)
and

∇2f =
∂2f

∂a2
+

∂2f

∂b2
.

The equation (24) is known as the Laplace equation, and it
is known (see, e.g., [4]) that a solution to this equation is
uniquely determined by the boundary conditions – i.e., in our
case, by the values on all four parts of the boundary of the
square [0, 1]× [0, 1]: lines segments a = 0, a = 1, b = 0, and
b = 1. One can easily show that the above function f(a, b) =
a + b − 2 · a · b satisfies the Laplace equation – since both
its second partial derivatives are simply 0s. It is also easy to
check that for all four sides, this function coincides with our
initial conditions:

• when a = 0, we get f(a, b) = 0 + b− 2 · 0 · b = b;
• when a = 1, we get f(a, b) = 1 + b− 2 · 1 · b = 1− b;
• when b = 0, we get f(a, b) = a+ 0− 2 · a · 0 = a;
• when b = 1, we get f(a, b) = a+ 1− 2 · 1 · a = 1− a.

Thus, due to the above property of the Laplace equation,
the function f(a, b) = a + b − 2 · a · b is the only solution
to this equation with the given initial condition – therefore,
it coincides with the desired the least sensitive on average
“exclusive or” operation (which satisfies the same Laplace
equation with the same boundary conditions.

The theorem is proven.
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