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Abstract—In multi-zone areas, where the boundaries change
with time, it is desirable to place sensors in such a way that
the boundary is covered at all times. In this paper, we describe
the optimal sensor placement with this property. In this optimal
placement, sensors are placed along a see-saw trajectory going
between the current location of the boundary and its farthest
future location.

I. PRACTICAL PROBLEM: TO DETERMINE THE MOTION OF
THE INTER-ZONE BOUNDARY

Practical need for measurements at different spatial loca-
tions. In many areas such as weather prediction, the partial
differential equations that can be used for the prediction are
known. To make accurate predictions, we need to have a
very accurate picture of the initial conditions, a picture that
describes, in detail, current temperature, atmospheric pressure,
wind, and other characteristics at different spatial locations.
To find the values of these characteristics, we need to place
sensors at these locations and use these sensors to perform the
corresponding measurements.

Need for sensor placement. In some areas — e.g., in and
around big cities — there is usually a large number of sensors,
many of them operated by volunteers who place these sensors
in their homes and who regularly upload the readings of
these sensors to the corresponding open-access web-based data
networks. However, in other areas (e.g., in the Arctic), the
existing sensor coverage is too sparse, SO more Sensors are
needed.

The placement of new sensors not only helps in achieving
short-term goals such as weather predictions, it also helps in
analyzing long-term effects such as climate and environmental
changes.

Need for optimal sensor placements. Placement and main-
tenance of sensors in remote areas is often costly, so it is
desirable to come up with the optimal ways to place sensors
— so that we can achieve the desired accuracy and coverage at
the smallest possible cost.

Case of homogeneous (single-zone) regions. The problem of
optimal sensor placement is simpler for homogeneous (single-
zone) regions, in which the measured quantity smoothly
changes from one location to another. A value v; measured
by the ¢-th sensor represents — reasonably accurately — the

value v(x;) of the desired quantity v at this sensor’s location
x;. This measured value v; is also a good approximation
to the value v(z) of this quantity at locations  which are
close to the sensor’s location z;: v(z) =~ v; = v(x;). The
closer the location x to the sensor’s location z;, the better
this approximation. Vice versa, the farther away the location
z is from the sensor z;, the less accurate is the resulting
approximation v(x) &~ v; = v(x;).

Suppose that we have placed sensors at locations
Z1,...,Ty. Then, after we get the measurement results v; =
v(x1), ..., v, = v(x,) from all these sensors, we can, for
every spatial location x, approximate the value v(x) by the
result v(x;) measured by the closest sensor i.

In general, for every spatial location x, the closer this
location is to one of the sensor’s locations x1, . . ., ,, the more
accurate this approximation — and thus, the more accurately
we can determine the value v(z).

Our objective is to determine the values v(z) for all spatial
locations with a certain accuracy. Thus, the quality of a
sensor network can be measured by accuracy with which it
determines v(z) at all spatial locations . From this viewpoint,
the quality of a sensor network is determined by the “worst”
spatial location — i.e., by a spatial location which is the
farthest away from all the sensors (and for which, therefore,
the approximation accuracy is the worst).

With respect to this criterion, it does not make sense to place
sensors more densely in one subregion — because spreading
them to locations with the worst coverage will improve the
overall quality. In other words, for such homogeneous regions,
the optimal sensor placement should be uniformly distributed
throughout the region; see, e.g., [1], [2], [3].

Case of multi-zone measurements: we need to determine
the motion of the inter-zone boundaries. In practice, regions
are often not homogeneous, they consist of several distinct
zones with a sharp boundary between the zones. The simplest
example is a shoreline — the boundary between the land and
the ocean. In mountain regions, there is also a sharp lines
between a glacier and the grassy zone around it, etc.

For such multi-zone areas, we need not only to find the
values of the desired characteristics at different zones, we also
need to get a good understanding of the exact location of the



boundary between the zones.

Of course, if the boundary was absolutely stable, then we
would be able to map it once — and there would be no
need to continue monitoring the boundary by using sensors.
In practice, however, the boundaries change, and it is very
important to trace these changes. In order to detect these
changes, we need to place the sensors near the boundary, so
that these sensors will be able to detect how fast the boundary
moves.

II. How TO OPTIMALLY PLACE SENSORS NEAR THE
INTER-ZONE BOUNDARY: TOWARDS THE EXACT
FORMULATION OF THE PROBLEM

Sensors at the boundary. We assume that the boundary is
reasonably smooth, so that for some reasonably large (and
known) value /, if we place sensors at distance ¢ from each
other, we will get a pretty good picture of the whole boundary.

Since each sensor is located at a distance ¢ from the previous
one, to cover the boundary of total length L, we need L/¢
Sensors.

We need sensors at different distances from the boundary.
In practice, the boundary moves. As a result, after some time,
a sensor line that covers the current location of the boundary,
will become far away from it and not cover the boundary
anymore. To cover the boundary for a long term, we therefore
need to place several lines of sensors — to cover not only the
current boundary, but also its future locations.

Each sensor line requires L/¢ sensors. So, if we place k
sensor lines, we thus place a total of k - (L/{) sensors. Let
N denote the total number of sensors that our budget can
afford. Under this budget restriction, the number of sensor
lines k that we can afford can be determined by the condition
k-(L/¢) = N. Thus, we can place k = N/(L/{) sensor lines.

It is reasonable to assume that we have a rough estimate 1}
of the velocity with which the boundary moves. We plan the
sensor network to be in place for a certain period of time, e.g.,
T years. During this time, the boundary will move a distance
D =V, -T. So, to cover all the distances between 0 and D,
we must place k sensor lines at & different distances from the
current border.

Similarly to the above, it is reasonable to select these
distances to be equally spaced, i.e., to have sensor lines at
distance 0, d = D/k, 2-d, 3-d, ..., from the boundary.

How to arrange different sensor lines relative to each
other? For each distance 7 - d, ¢ = 0,1,..., we place the
corresponding sensors on a line which is parallel to the border
and which is located at this distance from the border. On this
line, the sensors are equally spaced, with a distance ¢ between

two neighboring sensors. Once we determine a place for one
of the sensors on this line, the location of other sensors from
this line will be fully determined — namely, we place sensors
on this line at distances ¢, 2- /4, ..., from this original sensor.

To make this arrangement more specific, let us start with
such an equally spaced arrangement of sensors on the original
boundary. In this arrangement, let us pick two neighboring
sensors at distance ¢ from each other. For each sensor line, we
can then select the segment parallel to the segment between
these two sensors. This segment is also of length ¢, so on
this segment, each sensor line has exactly one sensor. Once
the locations of all these sensors is fixed, the location of all
other sensors is uniquely determined — on each sensor line,
we place sensors on this line at distances ¢, 2/, ..., from the
sensor from this segment. Thus, to fully determine the sensor
configuration, we must decide how to place sensors within this
segment.

How to place sensors within a segment: selecting an
optimal path. When we place sensors, we need to physically
travel from one sensor to the next one. We are talking about
sensors in a remote area, where travel is difficult. It is therefore
reasonable to place sensor in such a way as to minimize the
total length of the path connecting all these sensors.

Often, sensors require periodic check-up and maintenance.
In this case, in addition to the original sensor placement, we
periodically need to re-visit these sensor locations. In this case,
it is even more important to minimize the sensor-connecting
path.

Let us formulate the problem of selecting the path in precise
terms. Each sector is obtained from the previous one by a shift
by ¢, so it makes sense to repeat the same path in every sector.
Among other sensors, we need to visit all the sensors along
the original boundary, so let us consider the part of the path
that starts with a sensor S at the original boundary and ends
us at the next sensor S’ on this boundary.

We also need to visit sensors which are farthest away — at
distance D — from the original boundary. Thus, our sensor-
visiting path must start from a point on the original boundary,
go to a point F' on the line at distance D, and then go back:



S s’
Out of all paths with this property, we must select the shortest
one.

III. ANALYSIS OF THE PROBLEM

First conclusion: the desired shortest path must consist of
two straight segments. We need to go from the location S
of the first sensor on the original boundary to the location F'
of a sensor on the farthest sensor line, and then back to the
location S’ of the next sensor on the original boundary. If the
points S and F' are fixed, then the shortest path from S to F’
is the straight line. Similarly, the shortest path from F to S’
is also a straight line. Thus, the shortest path must consist of
two straight-line segments: a straight line from S to F' and a
straight line from F' to S’:

How to select the optimal location of the farthest sensor. In
the above two-segment configuration, the sensor locations S
and S’ are fixed. Thus, to finalize the path, we must select an
appropriate location of the point F'. We must select it from the
condition that the resulting path SF'S’ is the shortest. Let us
solve the corresponding optimization problem. Let P denote
the projection of the point F' onto the original boundary. Let
x denote the distance between the sensor location S and this
projection P. Then, since the distance between the sensors S
and S’ is equal to ¢, the distance PS’ is equal to £ — x:

Due to Pythagoras theorem, the length of the segment SF'
is v/ D? + 22, and the length of the segment F'S’ is equal
to \/D? + (£ — z)2. Thus, to find the optimal location of the
sensor F', we must minimize the overall length p of the path
SFS"

p=VD?+a22+/D?+ ({ —x)2. (1)
Differentiating this expression and equating the derivative to
0, we get

x {—z

VD2 + 22 /D% + ({ — )2

i.e., equivalently,

=0, 2

T B {—x
VD? + 22 \/D2+(£—x)2.
One can easily see that the left-hand side of this formula (3) is

the cosine cos(a) of the angle « = ZFSP, and its right-hand
side is the cosine cos(3) of the angle 5 = /FS’P:

3)
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The two angles « and 3 has equal cosines, so they are equal
to each other. Thus, the triangle SF'S’ is an isosceles triangle
and therefore, its sides SF and S’F are also equal to each
other. Therefore, the projections SP and PS’ are also equal,
ie,z={¢—x, and x = £/2.

The resulting optimal path. As a result, we get the following
optimal path: starting from the location S, we take a straight
line to a point F' which is located on the farthest sensor line
midway between S and the next sensor S’. From that F, we
take a straight line path back to S’, etc. As a result, we get
the following “see-saw” path:

Where to place sensors along the path? Within each
segment, the path intersect each sensor line twice, so we can
place a sensor either on the ascending or on the descending
parts of the path:



Similarly to the above, it makes sense to place the sensors in
such a way that they are distributed along the path as uniformly
as possible. Thus, we can, e.g., place sensors on the even-
numbered sensor lines on the ascending path, and sensors from
the odd-numbered sensor lines on the descending path:

IV. CONCLUSION: RESULTING OPTIMAL PLACEMENT

We assume:

« to maintain desired accuracy, we need to place sensor at
distance at most ¢ along the boundary;

o that during the sensor lifetime, the boundary will move
by the distance D; and

o that, based on the available (or affordable) number of
sensors, we can place the sensors along k sensor lines,
located at distance 0, d = D/k, 2d, ..., from the original
boundary.

Our objectives are to minimize the path that we need to
traverse to place and to maintain the sensor, and to maintain
the most accurate (hence, homogeneous) spatial coverage at
any given moment of time. To satisfy these objectives, we
place the sensor at equal distance ¢ along the original sensor
boundary, and then place other sensors along the see-saw path
that goes from every sensor on the original boundary to the
farthest (distance D) sensor line and then back — at the exact
same angle.

Sensors from the even-numbered sensors are then placed
on the ascending part of the sensor-connecting path, and
sensors from the odd-numbered sensors are then placed on
the descending part of the sensor-connecting path.
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