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Abstract—Unique highly reliable components are typical for
aerospace industry. For such components, due to their high
reliability and uniqueness, we do not have enough empirical
data to make statistically reliable estimates about their failure
rate. To overcome this limitation, the empirical data is usually
supplemented with expert estimates for the failure rate. The
problem is that experts tend to be – especially in aerospace
industry – over-cautious, over-conservative; their estimates for
the failure rate are usually much higher than the actual observed
failure rate. In this paper, we provide a new fuzzy-related
statistically justified approach for reducing this over-estimation.

I. FORMULATION OF THE PROBLEM

Reliability: how it is usually described and evaluated.
Failures are ubiquitous. As a result, reliability analysis is an
important part of engineering design.

In reliability analysis of a complex system, it is important to
know the reliability of its components; see, e.g., [1]. Reliability
of a component is usually described by an exponential model,
in which the probability P (t) for a system to be intact by the
time t is equal to exp(−λ · t) for some constant λ. For this
model, the average number of failures per unit time is equal
to λ; as a result, this value is called a failure rate. Another
important characteristic – mean time between failure (MTBF)
θ – is, in this model, equal to 1/λ.

Usually, the failure rate λ (or, equivalently, the MTBF θ) are
determined by analyzing the records of actual failures. When
we observe a sufficient number of failures, we can then take
an arithmetic average of the observed times between failures
– and this average is a statistically justified estimate for θ.

Reliability estimates in aerospace industry: a challenge.
In aerospace industry, especially in designing spaceships for
manned flights, reliability is extremely important. Because of
this importance, aerospace systems use unique, highly reliable
components.

This reliability, however, leads to a challenge: since the
components are unique and highly reliable, we do not have
enough failure records to make statistically reliable estimates

about their failure rate: in most cases, we have up to 5 failures.
This scarcity of data is especially critical on the stage when
we are still designing a spaceship.

Need to use expert estimates. To overcome this limitation, the
empirical data is usually supplemented with expert estimates
for the failure rate.

Expert estimations are over-conservative: a problem. A
problem with expert estimates is that experts tend to be – espe-
cially in aerospace industry – over-cautious, over-conservative.
The experts’ estimates for the failure rate are usually much
higher than the actual observed failure rate.

What we do in this paper. In this paper, we propose an
algorithm that reduces this over-conservativeness.

II. AVAILABLE DATA

We have n components. For each of these components
i = 1, . . . , n, we have ni observed times-between-failures
ti1, . . . , tini . We also have expert estimates e1, . . . , en for the
failure rate of each component.

III. TRADITIONAL ENGINEERING APPROACH TO
RELIABILITY ESTIMATION: A BRIEF REMINDER

Before describing our new approach, let us briefly recall
the main formulas and ideas of the traditional engineering
approach to reliability; see, e.g., [1].

Assumptions about the corresponding probabilities. Let λi
denote the actual (unknown) failure rate of the i-th component.
It is usually assumed that the failure rate has an exponential
probability distribution, i.e., that the probability density is
equal to λi · exp(−λi · t).

Thus, the probability density corresponding to each obser-
vation tij is equal to λi · exp(−λi · tij).

Different observations are assumed to be independent –
and different components are also assumed to be independent.
Thus, the probability density ρ corresponding to all observed



failures is equal to the product of the corresponding probabil-
ities:

ρ =

n∏
i=1

ni∏
j=1

(λi · exp(−λi · tij)). (1)

How parameters are determined: idea. The desired values
λi are usually determined from the Maximum Likelihood
approach (see, e.g., see, e.g., [2], [3]), according to which
we select the values λi for which the probability density (18)
takes the largest possible value. In other words, we find the
values λi that maximize the expression (18).

Analysis of the corresponding optimization problem. To
solve the corresponding optimization problem, we can use the
usual statistical trick according to which, since logarithm is a
monotonic function, maximizing ρ is equivalent to minimizing
ψ

def
= − ln(ρ). Since the logarithm of a product is equal to the

sum of the logarithms, the product (18) transforms into a sum
– and terms in this sum which do not depend on the unknowns
λi can be safely ignored.

As a result, we arrive at the problem of minimizing the
following function:

ψ(λi) = −
n∑

i=1

ni · ln(λi) +
n∑

i=1

ni∑
j=1

λi · tij . (2)

If we denote the arithmetic average of the values tij by

ti
def
=

1

ni
·

ni∑
j=1

tij , (3)

then we get
ni∑
j=1

tij = ni · ti and thus, the formula (4) takes a

simplified form:

ψ(λi) = −
n∑

i=1

ni · ln(λi) +
n∑

i=1

ni · λi · ti. (4)

Differentiating this expression by λi and equating the deriva-
tive to 0, we get

∂ψ

∂λi
= −ni

λi
+ ni · ti = 0, (5)

thus
λi =

1

ti
. (6)

Resulting formula for the failure rate. For each component
i, based on the observed times-to-failure ti1, . . . , tini , we

compute the average time-to-failure ti =
1

n
·

ni∑
j=1

tij and then

estimate the failure rate as λi =
1

ti
.

How to determine the accuracy of this estimate. We have
found the most probable values λi. This value is based on a
finite sample, and is, thus, only an approximation to the actual
(unknown) value λi.

To determine the accuracy with which this most probable
value represents the actual value λi, it is reasonable to deter-
mine the standard deviation σi of this estimate. Due to the
Central Limit Theorem (see, e.g., [2], [3]), when we have a
large amount of data, the distribution of all the values is close
to normal. In particular, the distribution of λi takes the form

ρ(λi) = const · exp
(
− (λi − µi)

2

2 · σ2
i

)
(7)

for some µi ad σi.
Thus, for ψ = − ln(ρ), we have

ψ(λi) = const− (λi − µi)
2

2 · σ2
i

. (8)

Differentiating both sides by λi, we get

∂ψ

∂λi
= const− λi − µi

σ2
i

. (9)

We have determined our maximum Likelihood estimate from
the condition that this derivative is equal to 0. When this
derivative is equal to 0, we get λi = µi. Thus, µi is exactly
our estimate for λi.

Differentiating the equality (9) with respect to λi once
again, we conclude that

∂2ψ

∂λ2i
=

1

σ2
i

. (10)

Thus, the desired standard deviation can be determined from
the condition

σ2
i =

(
∂2ψ

∂λ2i

)−1

. (11)

In particular, for the expression (12), we have

∂2ψ

∂λ2i
=
ni
λ2i
, (12)

thus,

σ2
i =

(
∂2ψ

∂λ2i

)−1

=
λ2i
ni

(13)

and
σi =

λi√
ni
. (14)

Resulting accuracy of this estimate. The standard deviation

of the Maximum Likelihood estimate is equal to σi =
λi√
ni

.

Thus, the relative accuracy of this estimate – i.e., the ratio of
the standard deviation to the estimate – is equal to

σi
λi

=
1

√
ni
.

Confidence interval. In general, once we have an estimate
λi and an estimate σi for its standard deviation, we can form
a confidence interval [λi − k0 · σi, λi + k0 · σi] that contains
the actual failure rate λi with a given confidence. Here, the



value of k0 depends on the desired degree of confidence. For
example:

• we take k0 = 2 if we want 90% confidence;
• we take k0 = 3 if we want 99.9% confidence;
• we take k0 = 6 if we want 99.9999999% = 1 − 10−8

confidence.
In the traditional approach, we have an estimate λi =

1

ti
and

an estimate (33) for σi. In this case, the confidence interval
takes the form[

λi ·
(
1− k0√

ni

)
, λi ·

(
1 +

k0√
ni

)]
. (15)

Example. For ni = 5 and k0 = 2, we have
√
ni ≈ 2, so

k0√
ni

≈ 1, and the confidence interval is approximately equal

to [0, 2λi]. In other words, the actual failure rate can be 0 or it
can be twice higher than what we estimated. Thus, if we only
have 5 measurements, we cannot extract much information
about the actual failure rate.

IV. NEW APPROACH: MAIN IDEA

Our main idea is to use the fact that here, we have two
sources of knowledge:

• the empirical failure data tij , and
• the expert estimates e1, . . . , en for the failure rates of

different components.
For each individual component i, we do not have enough
data to provide us with a meaningful statistically significant
estimate for its failure rate λi.

However, as we will show,
• when we combine all these data together, we will get

enough data points to gauge the accuracy of an expert –
as an instrument for estimating the failure rates,

• as a result of this statistical analysis, an expert becomes
a statistically justified estimation tool; so, we can add the
expert estimates to the observed times tij ; this additional
data allows us to get better estimates for λi.

Discussion. One may ask a natural question: if the empirical
data tij are not sufficient to make statistically reliable esti-
mates about the failure rate, why these data are considered
sufficient for gauging/reducing the over-conservativeness of
experts’ estimates? The answer to this question is as follows.

Failures of different components are considered statistically
independent. Thus, in the absence of expert estimates, to find
the failure rate λi, we can only use the values tij correspond-
ing to this component. Since we have only ni = 5 such values,
this data is not sufficient to make accurate statistically reliable
estimates about λi.

On the other hand, the over-conservativeness of an expert is
reflected in the expert’s estimates of the failure rates of all the
components. Thus, to estimate this over-conservativeness, we
can use the data from all the components. We may have about
5 measurement values for each component, but since we have
dozens of components, we thus have hundreds of values tij

that can be used to estimate this over-conservativeness, and
a hundred data points is already enough to make statistically
reliable estimates.

V. NEW FUZZY/STATISTICAL MODEL AND THE
RESULTING OPTIMIZATION PROBLEM

Experts over-estimate. As we have mentioned, expert esti-
mates are usually over-conservative, they over-estimate the
failure rates. In terms of our notations, this means that
λi ≈ k · ei for some k < 1. In other words, experts as
a collective “measuring instrument” are characterized by an
(unknown) parameter k.

Over-estimation may be different for different components.
Of course, the relation λi ≈ k · ri is only approximate. The

actual ratio ki
def
=

λi
ei

, in general, differs from a component to
a component.

Normal distribution for each ki. As usual in statistics (see,
e.g., [2], [3]), it is reasonable to assume that the ratios ki are
normally distributed, with mean k and an (unknown) standard
deviation σ2.

Thus, we have
λi = ki · ei, (16)

and the corresponding Gaussian probability density has the
form

1√
2 · π · σ

· exp
(
− (ki − k)2

2σ2

)
. (17)

Comment. A similar formula can be obtained if we do not
use any assumptions about the probability distributions, but
simply use a Gaussian membership function to describe the
inaccuracy of expert estimates.

Approximation errors corresponding to different compo-
nents are independent. It is natural to assume that, in contrast
to the “bias” k, the approximation errors ki−k corresponding
to different components are independent.

Resulting formula. Thus, the probability density correspond-
ing to all the components is equal to the product of expressions
(17), i.e., to the expression

ρ′ =
n∏

i=1

1√
2 · π · σ

· exp
(
− (ki − k)2

2σ2

)
. (18)

Substituting the formula (16) into (1) and multiplying the
result by the probability (18), we get the final expression for
the probability density function ρ:

ρ =

 n∏
i=1

ni∏
j=1

(ki · ei · exp(−(ki · ei · tij))

 · ρ′, (19)

where ρ′ is determined by the formula (18).

Comment. In the fuzzy case, a similar formula can be obtained
without any independence assumption, if we use a product t-
norm f&(a, b) = a · b to combine information about different
components.



Resulting optimization problem. Similarly to the traditional
engineering approach to reliability, we will use the Maximum
Likelihood Method to find the desired values λi.

Specifically,
• we find the values of k, ki, and σ that maximize the

expression (19), and then
• we estimate the values λi as λi = ki · ei.

VI. HOW TO SOLVE THE NEW OPTIMIZATION PROBLEM:
ANALYSIS

First simplification. Let us first observe that in the expression
(19), the observed times tij occur only in product with the
expert estimates ei. Thus, the expression (19) can be somewhat
simplified if we introduce new parameters Tij

def
= ei · tij . In

terms of these new parameters Tij , the expression (19) takes
a simplified form n∏

i=1

ni∏
j=1

(ki · ei · exp(−(ki · Tij))

 ·

[
n∏

i=1

1√
2 · π · σ

· exp
(
− (ki − k)2

2σ2

)]
. (20)

First simplification. Let us use the fact that maximizing L is
equivalent to minimizing ψ

def
= − ln(ρ). Since the logarithm

of a product is equal to the sum of the logarithms, the product
(19) transforms into a sum – and terms in this sum which
do not depend on the unknowns k, ki, and σ can be safely
ignored.

As a result, we arrive at the problem of minimizing the
following function:

ψ = −
n∑

i=1

ni · ln(ki) +
n∑

i=1

ni∑
j=1

ki · ei · tij+

n · ln(σ) +
n∑

i=1

(ki − k)2

2σ2
. (21)

Second simplification. If we denote the arithmetic average of
the times-between-failures by

ti
def
=

1

ni
·

ni∑
j=1

tij , (22)

then we get
ni∑
j=1

tij = ni · ii. Then, the function ψ takes the

following form:

ψ = −
n∑

i=1

ni · ln(ki) +
n∑

i=1

ki · ni · ei · ti+

n · ln(σ) +
n∑

i=1

(ki − k)2

2σ2
. (23)

From the optimization problem to the system of equations.
A function attains its minimum when its partial derivatives
with respect to all its unknown are equal to 0.

Differentiating the above expression (23) relative to σ and
equating the derivative to 0, we conclude that

n

σ
− 1

σ3
·

n∑
i=1

(ki − k)2 = 0. (24)

Differentiating the expression (21) by k, we conclude that
n∑

i=1

k − ki
σ2

= 0. (25)

Finally, differentiating the expression (21) by ki, we get

∂ψ

∂ki
= −ni

ki
+ ni · ei · ti +

ki − k

σ2
= 0. (26)

So, in order to find the values k, ki, and σ, it is sufficient to
solve a system consisting of the equations (24), (25), and (26).

Simplifying the resulting system of equations: equation
coming from differentiating by σ. Multiplying both sides
of the equation (24) by σ3 and dividing by n, we get the
following formula

σ2 =
1

n
·

n∑
i=1

(ki − k)2. (27)

Simplifying the resulting system of equations: equation
coming from differentiating by k. The equation (25) is

equivalent to
n∑

i=1

(k − ki) = 0 and

k =
1

n
·

n∑
i=1

ki. (28)

Simplifying the resulting system of equations: equation
coming from differentiating by ki. Multiplying both sides
of the equation (26) by the common denominator ki · σ2, we
get the following equation:

−ni · V + ni · ei · ti · σ2 · ki + k2i − ki · k = 0.

This equation is quadratic w.r.t. ki:

k2i + ki · (ni · ti · ei · σ2 − k)− ni · σ2 = 0. (29)

Once we know k and σ, we can explicitly solve the quadratic
equation and get ki for all i, as

ki =
k − nitieiσ

2 +
√

(k − nitieiσ2)2 + 4niσ2

2
. (30)

Comment. In principle, a quadratic equation has two roots, but
the second root (with a minus in front of the square root) is
negative, while the failure rate λi is always positive and so,
ki = ei/λi > 0; thus, we only consider the positive square
root.



Simplified system of equations. As a result of the above
simplifications, we get the following system of equations: (27),
(28), and (29) (or (30)).

How we can actually solve this system of equations. We
need to solve the equations (27), (28), and (30) to find the
unknown k, ki, and σ2. Each of these equations explicitly
describes how to find one of the unknowns if we know others:

• once we know k and ki, the formula (27) enables us to
compute σ2;

• once we know ki, the equation (28) enables us to compute
k; and

• once we know k and σ2, the equation (30) enables us to
compute ki.

Thus, it is reasonable to find all the unknown as follows.
We start with some initial values k(0)i for ki. For example,
as the first approximation, we can take the values coming
from processing the observed times-between-failures. In this

approximation, λi =
1

ti
, and, since λi = ki · ei, we take

k
(0)
i =

λi
ei

=
1

ei · ti
.

Then, on each iteration p, p = 0, 1, 2 . . .:
• we use the formula (28) and the current approximations
k
(p)
i to ki to compute a approximation to k and the for-

mula (27) to compute the corresponding approximation
to k and σ2:

k(p) =
1

n
·

n∑
i=1

k
(p)
i ; (σ2)(p) =

1

n
·

n∑
i=1

(k
(p)
i − k(p))2;

• after that, we use the formula (30) to compute the next
approximation k(p+1)

i to ki:

z = k(p) − ni · ti · ei · (σ2)(p);

k
(p+1)
i =

z +
√
z2 + 4ni · (σ2)(p)

2
.

We stop when the values on the two consequent iterations are
close to each other with a given accuracy, i.e., when |k(p+1)

i −
k
(p)
i | ≤ ε · k(p)i for all i, where ε > 0 is the relative accuracy

with which we want to determine the values ki.
After that, we can find the estimate for λi; by definition of

the factor ki, we take λi = ki · ei.

Resulting accuracy of this estimate. Similarly to the standard
approach, the standard deviation σi of the estimate ki can be
determined by the formula

σ2
i =

(
∂2ψ

∂k2i

)−1

.

In particular, for the expression (26), we have

∂2ψ

∂k2i
=
ni
k2i

+
1

σ2
, (31)

thus,

σ2
i =

(
∂2ψ

∂λ2i

)−1

=
k2i

ni + k2i · σ−2
(32)

and
σi =

ki√
ni + k2i · σ−2

. (33)

Thus, the relative accuracy
σi
ki

of this estimate is equal to

σi
ki

=
1√

ni + k2i · σ−2
.

The relative accuracy does not change if we simply multiply
the value by ei. Thus, for λi = ki · ei, we have the same
relative accuracy. As a result, we get the following confidence
interval.

Confidence interval. Based on the estimate λi and on the
standard deviation σi, we can form a confidence interval [λi−
k0 ·σi, λi+k0 ·σi] that contains the actual failure rate λi with
a given confidence. In our case, the confidence interval takes
the form [

λi ·

(
1− k0√

ni + k2i · σ−2

)
,

λi ·

(
1 +

k0√
ni + k2i · σ−2

)]
. (34)

VII. RESULTING ALGORITHM

Available data: reminder. For each of these components
i = 1, . . . , n, we have ni observed times-between-failures
ti1, . . . , tini . We also have expert estimates e1, . . . , en for the
failure rate of each component.

Pre-processing. First, for each component, we compute the
average of the observed times-between-failures

ti =
1

ni
·

ni∑
j=1

tij . (35)

Then, we compute the first approximation k(0)i to the auxiliary
parameter ki describing the expert’s over-estimation of failure
rate for the i-th component:

k
(0)
i =

1

ei · ti
. (36)

Iterations. On each iteration p, p = 0, 1, 2 . . ., based on the
current approximations k(p)i to ki, we do the following:

• we compute the corresponding approximation to the
auxiliary variables k and σ2:

k(p) =
1

n
·

n∑
i=1

k
(p)
i ; (37)

(σ2)(p) =
1

n
·

n∑
i=1

(k
(p)
i − k(p))2; (38)

• after that, we compute the next approximation k
(p+1)
i

to ki:

z = k(p) − ni · ti · ei · (σ2)(p);



k
(p+1)
i =

z +
√
z2 + 4ni · (σ2)(p)

2
. (39)

We stop when the values on the two consequent iterations are
close to each other with a given accuracy, i.e., when

|k(p+1)
i − k

(p)
i | ≤ ε · k(p)i

for all i, where ε > 0 is the relative accuracy with which we
want to determine the values ki.

Once we have ki = k
(p)
i , we then estimate λi as ki · ei, and

the corresponding confidence interval as[
λi ·

(
1− k0√

ni + k2i · σ−2

)
,

λi ·

(
1 +

k0√
ni + k2i · σ−2

)]
. (40)

Discussion. The difference between this new confidence in-
terval and the confidence interval based only on the observed
times-between-failures is that we replace ni in the denomi-
nator with a larger value ni + k2i · σ−2. Thus, the resulting
confidence interval is indeed narrower.

When the values ki are very close and σ ≈ 0, this
denominator tends to ∞, so we get very narrow confidence
intervals for λi even when we have the same small number
of observations – because we also use expert estimates ei as
the additional source of information about the components’
reliability.
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