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Abstract—In many practical problems, we need to estimate the
range of a given expression f(x1,...,2,) when each input z;
belongs to a known interval [z, ;] — or when each input x; is
described by a known fuzzy set. It is known that this problem
is easy to solve when we have a Single Use Expression, i.e., an
expression in which each variable x; occurs only once. In this
paper, we show that for similarly defined Double Use Expressions,
the corresponding range estimation problem is NP-hard. Similar
problems are analyzed for the problem of solving linear systems
under interval (and fuzzy) uncertainty.

I. FORMULATION OF THE PROBLEM

Need for data processing. In many real-life situations, we
need to process data, i.e., use the estimated values Z1, ..., T,
to estimate the value y of another quantity.

This may happen because we are interested in the value
of a quantity that is difficult or even impossible to measure
directly — e.g., the amount of oil in a well or the distance to
a faraway star — but which can be estimated based on some
related easier-to-measure quantities (e.g., the angles to the star
from two different telescopes).

It can be because we are trying to predict the future
values of some quantities based on the their current values
and the known dynamical equations — e.g., if we want to
predict tomorrow’s weather based on today’s meteorological
measurements.

In all these cases, we apply an appropriate algorithm f
to the known estimates and get the desired estimate y =
f(@1,...,%,). This algorithm can be as simple as applying an
explicit formula (to find the distance to a star) or as complex
as solving a system of partial differential equations (to predict
weather).

Need for interval data processing and into account. Es-
timates are never absolutely accurate: for each of the input
quantities the estimate Z; is, in general, different from its
actual (unknown) value z;. As a result, even if the algorithm
f is exact — i.e., it would have produced the exact value
y = f(x1,...,x,) if we plug in the exact values x; — because

of the uncertainty z; # x;, the value y is, in general, different
from the desired value y.

It is therefore necessary to analyze how the uncertainty in
estimating x; affects the uncertainty with which we deter-
mine y.

Need for interval data processing and interval computa-
tions. When estimates come from measurements, the differ-
ence A\; = T; — x; is, is called a measurement error.

Sometimes, we know the probabilities of different values of
measurement errors, but often, the only information that we
have about the measurement error Az; is the upper bound A;
provided by the manufacturer: |Az;| < A;; see, e.g., [14]. In
such situations, the only information that we have about z; is
that x; belongs to the interval x; = [T; — A, T; + Ay

Different values x; from these intervals x; lead, in general,
to different values y = f(z1,...,2,). So, to gauge the
uncertainty in y, it is necessary to find the range of all possible
values of y:

v=[,y ={f(x1,...;2n) : ®1 EX1,..., Ty € Xp}.

This range is usually denoted by f(x1,...,Xp).

The problem of estimating this range based on given inter-
vals x; constitutes the main problem of interval computations;
see e.g., [7], [10].

Need for fuzzy data processing. In many practical situa-
tions, estimates x; come from experts. In this case, we do
not have guaranteed upper bounds on the estimation error
Ax; = x; — x;. Instead, we have expert estimates of their
accuracy — estimates formulated in terms of words from
natural language such as “approximately 0.1”. One of the main
ways to formalize such informal (“fuzzy”) statements is to
use fuzzy logic (see, e.g., [8], [11]), techniques specifically
designed for the purpose of such formalization.

In fuzzy logic, to describe a fuzzy property P(x) of real
numbers (such as “approximately 0.17), we assign, to every
real number z, the degree up(x) € [0, 1] which, according to



an expert, the number x satisfies this property: if the expert is
absolutely sure, this degree is 1, else it takes value between
0 and 1. Once we know the experts’ degrees dj, da, ..., of
different statements S, So, ..., we need to estimate the degree
d to which a logical combination like S7V .Sy or S7 & S3 hold.
In other words, for each pair of values d; and dy, we must
select the estimate for S; V Ss — which will be denoted by
fv(dy,ds), an estimate for S; & So - which will be denoted
by fe(di,d2), etc.

Natural requirements — e.g., that S &S mean the same
as S, that S; & Sy means the same as S, & S, etc. —
uniquely determine operations fg (d1,d2) = min(ds,ds) and
f\/(dl,dg) = max(dl, d2) [8], [11]

A real number y is a possible value of the desired quan-
tity if and only if there exist values z;,...,z, which are
possible values of the input quantities and for which y =
flay, ... xy):

y is possible <
Jzq ... 3z, ((x1 is possible) & ... & (x,, is possible) &
S Tp)).

Once we know the degrees p;(x;) corresponding to the
statements “z; is possible”, we can then the above “and” and
“or” operations fg (dq,ds) = min(dy,ds) and fy(dy,ds) =
max(ds, ds2) (and the fact that an existential quantifier 3 is, in
effect, an infinite “or”) to estimate the degree p(y) to which
y is possible:

y = f(z1,..

S Tn)}

This formula was first proposed by Zadeh, the father of fuzzy
logic, and is usually called Zadeh'’s extension principle.

w(y) = max{min(p1 (z1), ..., pn(xn) 1y = f(z1, ..

From the computational viewpoint, fuzzy data processing
can be reduced to interval data processing. An alternative
way to describe a membership function p;(x;) is to describe,
for each possible values « € [0, 1], the set of all values z; for
which the degree of possibility is at least «. This set

{wi : (i) > a}

is called an alpha-cut and is denoted by X;(«).

It is known (see, e.g., [8], [11]), that the for alpha-cuts,
Zadeh'’s extension principle takes the following form: for every
«, we have

R(a) ={R(z1,...,2n) : 2; € X;(a)}.

Thus, for every «, finding the alpha-cut of the resulting
membership function p(R) is equivalent to applying inter-
val computations to the corresponding intervals X;(«), ...,
X ().

Because of this reduction, in the following text, we will
only consider the case of interval uncertainty.

In general, interval computations are NP-hard. In general,
the main problem of interval computations is NP-hard —
meaning that, if (as most computer scientists believe) P#£NP,
no algorithm can always compute the desired range in feasible

time (i.e., in time which is bounded by the polynomial of the
length of the input).

Thus, every feasible algorithm for estimating the range y
sometimes leads to an over- (or under-) estimation.

Comment. NP-hardness of interval computations was first
proven in [4], [5] by reducing, to this problem, a known NP-
hard problem of propositional satisfiability (SAT) for propo-
sitional formulas in Conjunctive Normal Form (CNF): given
an expression of the type

(Ul\/_‘UQ\/’l}g)&(Ul\/_"L}4)&...7

check whether there exist Boolean (true-false) values v; that
make this formula true.

The disjunctions (vy V —wg Vus), (v1V —wy), ..., are called
clauses, and variables and their negations are called literals.

An overview of related NP-hardness results is given in [9].
Later papers showed that many simple interval computation
problems are NP-hard: e.g., the problem of computing the
range of sample variance

1 n
where E = . ;xz, see, e.g., [2], [3].
Naive (straightforward) interval computations. Historically
the first algorithm for estimating the range consists of the
following. For each elementary arithmetic operation & like
addition or multiplication, due to monotonicity, we can ex-
plicitly describe the corresponding range x; @ Xao:

(21, T1] + [29, 2] = [21 + 25,71 + Ta);
[21,71] = [29, T2] = [71 — T2, 71 — 2);
[21,T1] - [29,T2] = [min(z; - 29,21 - T2, T1 - 29, T1 - T2),

max(x; - Lo, Ly - T2, T1 - Lo, T1 - T2));

1 1 1. _
mea il b RCLERE
T, T _ 1
@ = [glwxl] : — 1
2271‘2] [&1,1’2]

These formulas form interval arithmetic.

To estimate the range, we then parse the original algorithm
f — i.e., represent it as a sequence of elementary arithmetic
operations, and then replace each operation with numbers with
the corresponding operation with intervals.

Sometimes we thus get the exact range, but sometimes, we
only get an enclosure — i.e., an interval that contains the exact
range but is different from it. For example, for a function
f(z1) = 21 - (1 — z1) on the interval x; = [0, 1], the actual
range is [0,0.25], but naive interval computations return an
enclosure. Specifically, the original algorithm can be described
as the sequence of the following two steps:

rm=1—x1; y=x1-7r1.



Thus, the resulting naive interval computations lead to
r1=[1,1]-100,1]=[1-1,1-0] = [0, 1];
y =[0,1]-[0,1] =
[min(0-0,0-1,1-0,1-1),max(0-0,0-1,1-0,1-1)] =

[0,1].

Comment. It should be mentioned there exist more sophisti-
cated algorithms for computing the interval range, algorithms
that produce much more accurate estimation for the ranges,
and these algorithms form the bulk of interval computations
results [7], [10].

Single Use Expressions. There is a known case when naive
interval computations lead to an exact range — case of Single
Use Expressions (SUE), i.e., expressions f(z1,...,z,) in
which each variable occurs only once; see, e.g., [6], [7], [10].

For example, 1 -x5+x3 is a SUE, while the above example
x1-(1—21) is not, because in this expression, the variable z;
occurs twice.

A natural open problem. What if we have double-use
expressions, i.e., expressions in which each variable occurs
at most twice? is it possible to always compute the range of
such expressions in feasible time? Ff yes, then what about
triple-use expressions?

These are the questions that we answer in this paper.

II. ANALYSIS OF THE PROBLEM AND THE MAIN RESULT

Since the original proof of NP-hardness of interval com-
putations comes from reduction to SAT, let us consider the
corresponding SAT problems. Namely, we will say that

o a propositional formula of the above type is a Single-

Use Expression (SUE) if in this formula, each Boolean
variable occurs only once; and

« a Double-Use Expression (DUE) if each Boolean variable

occurs at most twice.
For example:
o (v1V w2 Vuz)& (vs&vs) is a SUE formula, and
o (v1V-wyVuz)& (v1 & —w3) is a DUE formula: here v;
and v3 occur twice, and vy occurs once.
For propositional formulas, checking satisfiability of SUE
formulas is feasible:

Proposition 1. There exists a feasible algorithm for checking
propositional satisfiability of SUE formulas.

Comment. For reader’s convenience, all the proofs are placed
in the special Proofs section.

For DUE formulas, we have a similar result:

Proposition 2. There exists a feasible algorithm for checking
propositional satisfiability of DUE formulas.

One may thus expect that the interval computations problem
for DUE expressions is also feasible. However, our result is
opposite:

Proposition 3. The main problem of interval computations for
DUE formulas is NP-hard.

III. BEYOND RANGE ESTIMATION: SOLVING INTERVAL
LINEAR SYSTEMS

Systems of interval linear equations: reminder. In many
cases, instead of a known algorithm, we only have implicit
relations between the inputs x; and the desired value y. The
simplest such case is when these relations are linear, i.e., when
we need to determine the desired values v, ..., ¥y, from the
system of equations

n
> " aij-y; = bi,
i=1

where we know estimates for a;; and b; — e.g., intervals a;;
and b; of possible values of these variables.

In this case, a natural question is to find the range of all
possible values y; when a;; takes values from a;; and b; takes
values from the interval b;.

Systems of interval linear equations: what is known about
their computational complexity. It is known that computing
the desired ranges is an NP-hard problem; see, e.g., [9].
However, a related problem is feasible: given a sequence of
values z1,...,x, check whether there exist values a;; € a;;
and b; € b, for which the above system is true.
This algorithm can bg easily described in SUE terms: for

every 4, the expression » a;j-y; is a SUE, thus, its range can
j=1
n

be found by using naive interval computation, as ) a;; - y;.
=1

]_
The above equality is possible if and only if this range and
the interval b; have a non-empty intersection for every i:

Zaijwyj ﬂbz#@

Jj=1

Checking whether two intervals [z;,71] and [z, T2] have a
non-empty intersection is easy:

(21, T1] N [29,To] # 0 & 2 <Tr&zy <71

Thus, we indeed have a feasible algorithm; this criterion is
known as the Oettli-Prager criterion [7], [10].

Parametric interval linear systems: reminder. In some
cases, we have additional constraints on the values a;;. For
example, we may know that the matrix a;; is symmetric:
a;; = aj;. In this case, not all possible combinations a;; € a;;
are allowed: only those for which a;; = a;;. In this case, it is
sufficient to describe the values a;; for ¢ < j, the others can
be expressed in terms of these ones.

In general, we can consider a parametric system in which
we have k parameters p, . .., py that take values from known



intervals p1, ..., Pk, and values a;; and b; are linear functions

Z Qij¢ - Pe and b = Z blg Des for
{=1

of these variables: a;; =

known coefficients a;j¢ and bir.

Parametric interval linear systems: what is known about
their computational complexity. This problem is more gen-
eral than the above problem of solving systems of linear
equations. Thus, since the above problem is NP-hard, this
problem is NP-hard as well.

The next natural question is: is it possible to check whether
a given tuple * = (x1,...,2,) is a solution to a given
parametric interval linear system, i.e., whether there exist

values p, for which E aij - yj = b.

The first result of th1s type was proven in [12], [13]. In this
paper, it is shown that if each parameter p; occurs only in one
equation (even if it occurs several times in this equation), then
checking is still feasible.

The proof can also be reduced to the SUE case: indeed, in
this case, it is sufficient to consider one equation at a time
— since no two equation share a parameter. For each i, the

n
corresponding equation Y a;; - y; = b; takes the form
j=1

n k
Zzaij‘e “Yj - Pe

j=1 =1

i.e., the (SUE) linear form

k
Z Aig-pe =0,
=1

k
= Zbil *Des
=1

where
n
A = aije -y — b,
=1

and we already know that checking the solvability of such an
equation is feasible.

Natural questions. What happens if we we allow each param-
eter to occur several times? What if each parameter occurs
only in one equation, but the dependence of a;; and b; on
the parameters can be quadratic(this question was asked by
G. Alefeld):

-—ng0+za1jf P£+Zzawﬂ’ De - pers

(=1 4'=1

b; —bbo+zbze pe+zzbzw De - Der-

(=1 (=1

In this paper, we provide answers to both questions.

Proposition 4. When we only allow linear dependence on pa-
rameters, then exists a feasible algorithm that checks whether
a given tuple x belongs to a solution set of a parametric
interval linear system.

Proposition 5. For parametric interval linear systems with
quadratic dependence on parameters, the problem of checking
whether a given tuple x belongs to a solution set of a given
system is NP-hard even if we only consider systems in which
each parameter occurs only on one equation.

IV. PROOFS

Proof of Proposition 1. This algorithm is simple because
every SUE propositional formula is satisfiable. Indeed, each
variable v; occurs only once. If it occurs as negation —w;, we
set v; to false, the n —w; is true. If it occurs without negation,
then we set v; to be true. In both cases, for this choice, all
the literals v; or —w; are true, and thus, the whole formula is
true.

Proof of Proposition 2. Let us show that we can “eliminate”
each variable v; — i.e., in feasible time, reduce the problem of
checking satisfiability of the original formula to the problem
of checking satisfiability of a formula of the same (or smaller)
length, but with one fewer variable.

Indeed, since the formula is DUE, each variable v; occurs
at most twice.

If it occurs only once as —w;, then the formula has the
form (—wv; V 1) & R, where r denotes the remaining part of
the clause containing —wv;, and R is the conjunction of all the
other literals. Let us show that the satisfiability of the original
formula is equivalent to satisfiability of a shorter formula R
that does not contain v; at all. Indeed:

o If the original formula (—v; V )& R is satisfied, this
means that it is true for some selection of variables. For
this same selection of variables, R is true as well, so the
formula R is also satisfied.

e Vice versa, let us assume that R is satisfied. This means
that for some selection of variables, R is true. If we now
take v; to be false, then the clause (—w; V ) will be true
as well, and thus, the whole formula (—wv; V r) & R will
be true.

Similarly, if the variable v; occurs once as v;, then the
formula has the form (v; V r) & R, and its satisfiability is
equivalent to satisfiability of a shorter formula R that does
not contain v; at all.

If the variable v; occurs twice, and both times as v;, then
the formula has the form (v; V 7)& (v; V ') & R, and its
satisfiability is equivalent to satisfiability of a shorter formula
R that does not contain v; at all.

If the variable v; occurs twice, and both times as —w;, then
the formula has the form (—v; V r) & (—wv; V r') & R, and its
satisfiability is equivalent to satisfiability of a shorter formula
R that does not contain v; at all.

Finally, if it occurs once as v; and once as —w;, i.e., if
it has the form two clauses (v; V )& (—v; V 7') & R, then
its satisfiability is equivalent to the satisfiability of the new
formula (r V r') & R (this fact is known as resolution rule).
Indeed:

o If the formula (r V r') & R is satisfied, this means that

for some combination of variables, both R and rV r’ are
true. Thus, either r is true, or r’ is true.



— In the first case, we can take v; to be false, then both
v; - and —v; V r’ are true.

— In the second case, we can take v; to be true, then
both v; - r and —w; V r’ are true.

Thus, in both cases, the formula (v; V) & (—v; V') & R
is true as well.

« Vice versa, if the original formula (v;Vr) & (—v;Vr') & R
is satisfied by some selection of the values, then, in this
selection, either v; is true or it is false.

— In the first case, from the fact that —v; V 7’ is true
and —w; is false, we conclude that v’ is true. Thus,
the disjunction r V 7’ is also true.

— In the second case, from the fact that v; V r is true
and v; is false, we conclude that r is true. Thus, the
disjunction 7 V 7/ is also true.

Thus, in both cases, the formula (r V') & R is satisfied
as well.

The proposition is proven.
Proof of Proposition 3. As we mentioned, computing the

range of variance under interval uncertainty is NP-hard, but
variance is a DUE:

x%—&—...—l—xf—i—...—i—x%
V= -
n
o1zt )\
- .

The proposition is proven.

Proof of Proposition 4. In this case, we need to check whether
there are values p, that satisfy the system of linear equations

k
> Ay - pe = 0 and linear inequalities P, < p¢ < P, (that

é?:écribe interval constraints on py).

It is known that checking consistency of a given system
of linear equations and inequalities is a feasible problem, a
particular case of linear programming; see, e.g., [1]. Thus, any
feasible algorithm for solving linear programming problem
solves our problem as well. The proposition is proven.

Proof of Proposition 5. We have already mentioned that
finding the range of a quadratic function f(p1,...,px) under
interval uncertainty py € py, is NP-hard. It is also true (see,
e.g., [9]) that checking, for a given value vg, where there exists
values py € py for which f(p1,...,pr) = v is also NP-hard.

We can reduce this NP-hard problem to our problem by con-
sidering a very simple system consisting of a single equation
aiy-y1 = by, with yy = 1, by = vo, and a11 = f(p1,- .-, pk).
The tuple 2z = (1) belongs to the solution set if and only if
there exist values p, for which f(p1,...,pr) = vo.

The reduction is proven, so our checking problem is indeed
NP-hard.
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