
How to Tell When a Product of Two Partially
Ordered Spaces Has a Certain Property?

Francisco Zapata, Olga Kosheleva
University of Texas at El Paso

500 W. University
El Paso, Texas 79968, USA

fazg74@gmail.com, olgak@utep.edu

Karen Villaverde
Department of Computer Science

New Mexico State University
Las Cruces, New Mexico 88003, USA

Email: kvillave@cs.nmsu.edu

Abstract—In this paper, we describe how checking whether a
given property F is true for a product A1 × A2 of partially
ordered spaces can be reduced to checking several related
properties of the original spaces Ai.

I. FORMULATION OF THE PROBLEM

Degrees of certainty: from {0, 1} to [0, 1] to general
partially ordered sets. In the traditional 2-valued logic, every
statement is either true or false. Thus, the set of possible truth
values consists of two elements: true (1) and false (0).

Fuzzy logic takes into account that people have different
degrees of certainty in their statements; see, e.g., [2], [10].

Traditionally, fuzzy logic uses values from the interval [0, 1]
to describe uncertainty. In this interval, the order is total
(linear) in the sense that for every two elements a, a′ ∈ [0, 1],
either a ≤ a′ or a′ ≤ a.

However, often, partial orders provide a more adequate
description of the expert’s degree of confidence. For example,
since an expert cannot describe her degree of certainty by an
exact number, it makes sense to describe this degree by an
interval [d, d] of possible numbers [7], [9] – and intervals are
only partially ordered; e.g., the intervals [0.5, 0.5] and [0, 1]
are not easy to compare.

More complex sets of possible degrees are also sometimes
useful. Not to miss any new options, in this paper, we consider
general partially ordered spaces.

Need for product operations. Often, two (or more) experts
evaluate a statement S. Then, our certainty in S is described
by a pair (a1, a2), where ai ∈ Ai is the i-th expert’s degree
of certainty. To compare such pairs, we must therefore define
a partial order on the set A1 ×A2 of all such pairs.

Two examples of product operations. One example of a
partial order on A1 ×A2 is a Cartesian product:

(a1, a2) ≤ (a′1, a
′
2) ⇔ ((a1 ≤ a′1)& (a2 ≤ a′2)).

This product corresponds to a cautious approach, when our
confidence in S′ is higher than in S if and only if it is higher
for both experts.

Another example is a lexicographic product:

(a1, a2) ≤ (a′1, a
′
2) ⇔

((a1 ≤ a′1)& a1 ̸= a′1) ∨ ((a1 = a′1)& (a2 ≤ a′2))).

This product corresponds to the case when we have the
absolute confidence in the first expert; then, we only use the
opinion of the second expert when, to the first expert, the
degrees of certainty are indistinguishable.

We can have other product operations in which the relation
between the pairs (a1, a2) and (a′1, a

′
2) is defined in terms of

the relations between the elements a1, a
′
1 ∈ A1 and between

the elements a2, a
′
2 ∈ A2.

A natural question. Once a product is defined, it is reasonable
to ask when the resulting partially ordered set A1 × A2 it
satisfies a certain property: is it a total order? is it a lattice
order? etc. It is desirable to have some criteria that would
transform the question about the product space into questions
about related properties of component spaces.

Some such criteria are known (see, e.g., [13] and references
therein). For example:

• A Cartesian product is a total order if and only if one of
the components is a total order, and the other consists of
a single element.

• A lexicographic product is a total order if and only if
both components are totally ordered.

What we do in this paper. In this paper, we provide a general
algorithm that reduced the question whether a certain property
is satisfied for a product to several properties of component
spaces.

Applications beyond logic. Similar questions arise in other
applications of ordered sets, e.g., in space-time geometry
where the causality ordering relation a ≤ b means that an
event a can influence the event b; see, e.g., [1], [3], [4], [5],
[6], [8], [11], [12].

Applications beyond orders. Our algorithm does not use
the fact that the original relations are orders (i.e., transitive
antisymmetric relations). Thus, our algorithm is applicable to
a general case when we have an arbitrary binary relation –
equivalence, similarity, etc. Moreover, this algorithm can be



applied to the case when we have a space with several binary
relations – e.g., an order relation and a similarity relation.

II. DEFINITIONS AND THE MAIN RESULT

In the following text, we fix a positive integer m; this integer
will be called a number of binary relations. Our main case is
m = 1, when we consider a single binary relation, and this
binary relation is an order. However, our result is applicable
to an arbitrary finite set of binary relations.

Definition 1. By a space, we mean a set A with m binary
relations P1(a, a

′), . . . , Pm(a, a′).

Clarification. In this definition and in the following definitions,
we only consider crisp relations – such as an order between the
traditional fuzzy degrees of belief, i.e., between the numbers
from the interval [0, 1].

Terminological comment. Strictly speaking, a space is thus
defined as a tuple (A,P1, . . . , Pm). Following the usual
mathematical practice, we will, however, usually simplify our
notations and simply talk about a space A – implicitly meaning
the relations as well.

Definition 2. By a first order property (or simply property, for
short), we mean a (closed) formula F which is obtained from
formulas Pi(x, x

′) by using logical connectives ∨, &, ¬, and
→, and quantifiers ∃x and ∀x.

Comment. Most properties in which we may be interested are
first order properties. For example, the property to be a total
order has the form

∀a∀a′ ((a ≤ a′) ∨ (a′ ≤ a)).

The property to be a lattice L means that for every two
elements a and a′ there is a least upper bound and a greatest
lower bound: L ⇔ L&L, where

L ⇔ ∀a∀a′∃a+ ((a ≤ a+)& (a′ ≤ a+)&

∀a′′(((a ≤ a′′)& (a′ ≤ a′′)) → a+ ≤ a′′)),

and
L ⇔ ∀a∀a′∃a− ((a− ≤ a)& (a− ≤ a′)&

∀a′′(((a′′ ≤ a)& (a′′ ≤ a′)) → a′′ ≤ a−)).

Notations. When a property F is true for a space X , we will
denote it by F (X).

Definition 3. By a product operation, we mean a
collection of m propositional formulas that describe
the relation Pi((a1, a2), (a

′
1, a

′
2)) between the elements

(a1, a2), (a
′
1, a

′
2) ∈ A1 × A2 in terms of the relations be-

tween the components a1, a
′
1 ∈ A1 and a2, a

′
2 ∈ A2 of

these elements, i.e., in terms of the relations P1(a1, a
′
1),

. . . , Pm(a1, a
′
1), P1(a

′
1, a1), . . . , Pm(a′1, a1), P1(a2, a

′
2), . . . ,

Pm(a2, a
′
2), P1(a

′
2, a2), . . . , Pm(a′2, a2).

Comment. The above formulas that define Cartesian and lex-
icographic products of partially ordered sets show that these

two product operations are examples of product operations in
the sense of Definition 3.

Notational comment. For each operation, the space of all the
elements is the set of all pairs A1 × A2; so, in line with the
above terminological comment, we will simply talk about the
space A1 ×A2.

Main result. There exists an algorithm that, given a product
operation and a property F , generates a finite list of properties
F11, F12, F21, F22, . . . , Fp1, Fp2, such that

F (A1 ×A2) ⇔

((F11(A1)&F12(A2)) ∨ . . . ∨ (Fp1(A1)&Fp2(A2))).

Comment. The above examples of checking when a Cartesian
or a lexicographic products are total orders are examples of
such equivalences. For example, for the Cartesian product, we
have p = 2,

• F11(A1) meaning that A1 is a total order,
• F12(A2) meaning that A2 is a one-element set,
• F21(A1) meaning that A1 is a one-element set, and
• F22(A2) meaning that A2 is a total order.

Generalizations. As we will see from the proof, a similar
algorithm can be formulated for a product of three or more
spaces, and for the case when we allow ternary and higher
order operations in the definition of a space.

III. PROOF

1◦. Let us start with the desired property F . This property uses
basic relations Pi(a, a

′) between elements a, a′ ∈ A1×A2 and
quantifiers ∀a and ∃a over elements a ∈ A1 ×A2.

2◦. Every element a ∈ A1×A2 is, by definition, a pair (a1, a2)
in which a1 is an element of the set A1 and a2 is an element
of the set A2.

Let us explicitly replace each variable with such a pair.

3◦. By definition of a product operation, each relation Pi(a, a
′)

– i.e., each relation Pi((a1, a2), (a
′
1, a

′
2)) – can be replaced

by a propositional combination of relations between elements
a1, a

′
1 ∈ A1 and between elements a2, a

′
2 ∈ A2.

Let us perform this replacement.

4◦. Each quantifier can also be replaced by two quantifiers
corresponding to components:

• ∀(a1, a2) is equivalent to ∀a1∀a2, and
• ∃(a1, a2) is equivalent to ∃a1∃a2.

Let us perform this replacement as well.

5◦. As a result, we get an equivalent reformulation of the
original formula F in which elementary formulas are relations
between elements of A1 or between A2 and quantifiers are
over A1 or over A2.

We want to reduce this formula to the desired form

((F11(A1)&F12(A2)) ∨ . . . ∨ (Fp1(A1)&Fp2(A2))). (1)



We will reduce this by induction. Elementary formulas are
already of the desired form – provided, of course, that we
allow free variables.

We will show that if we apply a propositional connective
or a quantifier to a formula of this type, then we can reduce
the result again to the formula of this type.

6◦. When we apply propositional connectives to formulas
of type (1), we thus get a propositional combination of the
formulas of the type Fij(Aj). It is known that an arbitrary
propositional combination can be described in a Disjunctive
Normal Form (DNF), i.e., as a disjunction of conjunctions.
Each conjunction combines properties related to A1 and prop-
erties related to A2, i.e., has the form

G1(A1)& . . . &Gp(A1)&Gp+1(A2)& . . . &Gq(A2).

Thus, each conjunction has the from G(A1)&G′(A2), where

G(A1) ⇔ (G1(A1)& . . . &Gp(A1))

and
G′(A2) ⇔ (Gp+1(A2)& . . . &Gq(A2)).

Thus, the disjunction of such properties has the desired
form (1).

7◦. When we apply an existential quantifier, e.g., ∃a1, then
we get a formula

∃a1 ((F11(A1)&F12(A2)) ∨ . . . ∨ (Fp1(A1)&Fp2(A2))).

It is known that ∃a (A∨B) is equivalent to ∃aA∨∃aB. Thus,
the above formula is equivalent to a disjunction

∃a1 (F11(A1)&F12(A2)) ∨ . . . ∨ ∃a1 (Fp1(A1)&Fp2(A2)).

If we prove that each term in this disjunction can be trans-
formed into the desired form (1), then, by using the Part 6
of this proof, we will be able to conclude that the entire
disjunction has the desired form. Thus, it is sufficient to prove
that each formula

∃a1 (Fi1(A1)&Fi2(A2)) (2)

has the desired form. The term Fi2(A2) does not depend on
a1 at all, it is all about elements of A2. Thus, the formula (2)
is equivalent to

(∃a1 Fi1(A1))&Fi2(A2),

i.e., to the formula

F ′
i1(A1)&Fi2(A2),

where
F ′
i1 ⇔ ∃a1 Fi1(A1)

is a formula depending only on the space A1.
The reduction is proven.

8◦. When we apply a universal quantifier, e.g., ∀a1, then we
can use the fact that ∀a1 F is equivalent to ¬∃a1 ¬F . We have
assumed that the formula F is of the desired type (1). Thus,

• by using Part 6 of this proof, we can conclude that the
formula ¬F can be reduced to the desired type;

• now, by applying Part 7 of this proof, we can conclude
that the formula ∃a1 (¬F ) can also be reduced to the
desired type;

• finally, by using Part 6 again, we conclude that the
formula ¬(∃a1 ¬F ) can be reduced to the desired type.

9◦. By induction, we can now conclude that the original
formula can be reduced to the desired type. The main result
is proven.

IV. EXAMPLE

To clarify our algorithm, let us apply it to the above
simple case of checking whether a Cartesian product is totally
ordered. In this case, the formula F that we want to check has
the form

∀a∀a′ ((a ≤ a′) ∨ (a′ ≤ a)).

According to our algorithm, we first explicitly replace each
variable a, a′ ∈ A1 × A2 with the corresponding pair. As a
result, we get the following formula:

∀(a1, a2)∀(a′1, a′2)

(((a1, a2) ≤ (a′1, a
′
2)) ∨ ((a′1, a

′
2) ≤ (a1, a2))).

Replacing the ordering relation on the Cartesian product with
its definition, we get

∀(a1, a2)∀(a′1, a′2)

((a1 ≤ a′1 & a2 ≤ a′2)) ∨ ((a′1 ≤ a1 & a′2 ≤ a2))).

Replacing quantifiers over pairs with individual quantifiers, we
get

∀a1∀a2∀a′1∀a′2
((a1 ≤ a′1 & a2 ≤ a′2)) ∨ ((a′1 ≤ a1 & a′2 ≤ a2))).

By using the relation ∀ ⇔ ¬∃¬, we get an equivalent form

¬∃a1∃a2∃a′1∃a′2
¬((a1 ≤ a′1 & a2 ≤ a′2) ∨ (a′1 ≤ a1 & a′2 ≤ a2))).

Moving negation inside the propositional formula, we get

¬∃a1∃a2∃a′1∃a′2
((a1 ̸≤ a′1 ∨ a2 ̸≤ a′2)& (a′1 ̸≤ a1 ∨ a′2 ≤ a2))).

The propositional formula

(a1 ̸≤ a′1 ∨ a2 ̸≤ a′2))& (a′1 ̸≤ a1 ∨ a′2 ̸≤ a2)

must now be transformed into a DNF form. The result is

(a1 ̸≤ a′1 & a′1 ̸≤ a1)∨

(a1 ̸≤ a′1 & a′2 ̸≤ a2)∨

(a2 ̸≤ a′2 & a′1 ̸≤ a1)∨

(a2 ̸≤ a′2 & a′2 ̸≤ a2).



Thus, the formula
∃a1∃a2∃a′1∃a′2

¬((a1 ≤ a′1 & a2 ≤ a′2) ∨ (a′1 ≤ a1 & a′2 ≤ a2)))

is equivalent to
F1 ∨ F2 ∨ F3 ∨ F4,

where

F1 ⇔ ∃a1∃a2∃a′1∃a′2 (a1 ̸≤ a′1 & a′1 ̸≤ a1),

F2 ⇔ ∃a1∃a2∃a′1∃a′2 (a1 ̸≤ a′1 & a′2 ̸≤ a2),

F3 ⇔ ∃a1∃a2∃a′1∃a′2 (a2 ̸≤ a′2 & a′1 ̸≤ a1),

F4 ⇔ ∃a1∃a2∃a′1∃a′2 (a2 ̸≤ a′2 & a′2 ̸≤ a2).

By applying the quantifiers to the corresponding parts of the
formulas, we get

F1 ⇔ ∃a1∃a′1 (a1 ̸≤ a′1 & a′1 ̸≤ a1),

F2 ⇔ (∃a1∃a′1 a1 ̸≤ a′1)& (∃a2∃a′2 a′2 ̸≤ a2),

F3 ⇔ (∃a1∃a′1 a′1 ̸≤ a1)& (∃a2∃a′2 a2 ̸≤ a′2),

F4 ⇔ ∃a2∃a′1∃a′2 (a2 ̸≤ a′2 & a′2 ̸≤ a2).

Then, we again reduce

¬(F1 ∨ F2 ∨ F3 ∨ F4)

to DNF.
The result is more complex than the above criterion –

because our algorithm does not use the fact that ≤ is an order
relation.

ACKNOWLEDGMENT

The authors are thankful to all the participants of the
14th GAMM-IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics
SCAN’2010 (Lyon, France, September 27–30, 2010), espe-
cially to Vladik Kreinovich and Jürgen Wolff von Gudenberg,
for valuable discussions.

REFERENCES

[1] H. Busemann, Timelike spaces, PWN: Warszawa, 1967.
[2] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applica-

tions, Upper Saddle River, New Jersey: Prentice Hall, 1995.
[3] O. Kosheleva and P. G. Vroegindeweij, “When is the product of intervals

also an interval?”, Reliable Computing, 1998, Vol. 4, No. 2, pp. 179–190.
[4] V. Kreinovich and O. Kosheleva, “Computational complexity of determin-

ing which statements about causality hold in different space-time models”,
Theoretical Computer Science, 2008, Vol. 405, No. 1–2, pp. 50–63.

[5] E. H. Kronheimer and R. Penrose, “On the structure of causal spaces”,
Proc. Cambr. Phil. Soc., vol. 63, No. 2, pp. 481–501, 1967.

[6] A. Levichev and O. Kosheleva, “Intervals in space-time”, Reliable Com-
puting, 1998, Vol. 4, No. 1, pp. 109–112.

[7] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions, Prentice-Hall, 2001.

[8] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, New York:
W. H. Freeman, 1973.

[9] H. T. Nguyen, V. Kreinovich, and Q. Zuo, “Interval-valued degrees
of belief: applications of interval computations to expert systems and
intelligent control”, International Journal of Uncertainty, Fuzziness, and
Knowledge-Based Systems (IJUFKS), 1997, Vol. 5, No. 3, pp. 317–358.

[10] H. T. Nguyen and E. A. Walker, First Course on Fuzzy Logic, CRC
Press, Boca Raton, Florida, 2006.

[11] R. I. Pimenov, Kinematic spaces: Mathematical Theory of Space-Time,
N.Y.: Consultants Bureau, 1970.

[12] P. G. Vroegindeweij, V. Kreinovich, and O. M. Kosheleva. “From a
connected, partially ordered set of events to a field of time intervals”,
Foundations of Physics, 1980, Vol. 10, No. 5/6, pp. 469–484.

[13] F. Zapata, O. Kosheleva, and K. Villaverde, “Product of Partially Ordered
Sets (Posets) and Intervals in Such Products, with Potential Applica-
tions to Uncertainty Logic and Space-Time Geometry”, Abstracts of the
14th GAMM-IMACS International Symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics SCAN’2010, Lyon, France,
September 27–30, 2010, pp. 142–144.

APPENDIX: AUXILIARY RESULT

Formulation of the auxiliary result. Let us prove that for
partial orders, the only product operations that always leads
to a partial order on A1 ×A2 for which

(a1 ≤1 a′1 & a2 ≤2 a′2) → (a1, a2) ≤ (a′1, a
′
2)

are Cartesian and lexicographic products.

Proof.

1◦. According to the definition, whether (a1, a2) ≤ (a′1, a2)
depends on the two relation: the relation between a1 and a′1
and on the relation between a2 and a′2. For each pair ai and
a′i, we have four possible relations:

• the relation ai <i a
′
i; we will denote this case by +;

• the relation a′i <i ai; we will denote this case by −;
• the relation ai = a′i; we will denote this relation by =;

and
• the relation ai ̸≤i a

′
i and a′i ̸≤i ai; we will denote this

relation by ∥.
The case when we have relation R1 for a1 and a′1 and relation
R2 for a2 and a′2 will be denoted by R1R2. So, we have 16
possible pairs of relations: ++, +−, + =, + ∥, −+, −−, etc.
To describe the product, it is sufficient to describe which of
these 16 pairs correspond to (a1, a2) ≤ (a′1, a2).

Due to the consistency requirement, pairs ++, + =, = +,
and == always result in ≤, so it is sufficient to classify the
remaining 12 pairs. If only these four pairs result in ≤, then
we have the Cartesian product. So, to prove our theorem, it
is sufficient to prove that if at least one other pair leads to
≤, then we get a lexicographic product. To prove this, let us
consider the remaining 12 pairs one by one.

2◦. Let us first consider pairs that contain −.

2.1◦. Let us prove that the pair −− cannot lead to ≤. Indeed,
when both A1 and A2 are real lines IR with the usual order,
due to the fact that ++ leads to ≤, we get (0, 0) ≤ (1, 1),
while due to the fact that −− leads to ≤, we get (1, 1) ≤
(0, 0). Hence, we have (0, 0) ≤ (1, 1) and (1, 1) ≤ (0, 0) but
(0, 0) ̸= (1, 1) – a contradiction to antisymmetry.

2.2◦. Similarly, the pair − = cannot lead to ≤ because
otherwise, for the same example A1 = A2 = IR, we would
get (0, 0) ≤ (1, 0) and (1, 0) ≤ (0, 0) but (0, 0) ̸= (1, 0) –
also a contradiction to antisymmetry.

2.3◦. Let us now consider the pair − ∥.



To prove that it cannot lead to ≤, we consider A1 = IR and
A2 = IR× IR with Cartesian order. In this case,

(0, 0) ∥2 (1,−2)

and (1,−2) ∥2 (−1,−1). Thus, if − ∥ leads to ≤,
we have (0, (0, 0)) ≤ (−1, (1,−2)) and (−1, (1,−2)) ≤
(−2, (−1,−1)). Thus, due to transitivity of ≤, we get
(0, (0, 0)) ≤ (−2, (−1,−1)). On the other hand, due to
consistency, from −2 ≤1 0 and (−1,−1) ≤2 (0, 0), we
conclude that (−2, (−1,−1)) ≤ (0, (0, 0)) – a contradiction
with antisymmetry.

2.4◦. Similarly, pairs = − and ∥ − cannot lead to ≤. Thus,
the only pais containing − that can potentially lead to ≤ are
pairs containing a +.

3◦. Let us prove a similar property for pairs containing ∥. We
already know that pairs ∥ − and − ∥ cannot lead to ≤, so it
is sufficient to consider pairs ∥=, =∥, and ∥∥.

3.1◦. To prove that the pair =∥ cannot lead to ≤, let us
consider the same case A1 = IR and A2 = IR × IR. In this
case, due to

(0, 0) ∥2 (1,−2)

and (1,−2) ∥2 (−1,−1), if =∥ leads to ≤, we have
(0, (0, 0)) ≤ (0, (1,−2)) and (0, (1,−2)) ≤ (0, (−1,−1)).
Thus, due to transitivity of ≤, we get

(0, (0, 0)) ≤ (0, (−1,−1)).

On the other hand, due to consistency, from 0 ≤1 0 and
(−1,−1) ≤2 (0, 0), we conclude that (0, (−1,−1)) ≤
(0, (0, 0)) – a contradiction with antisymmetry.

3.2◦. Similarly, it is possible to prove that the pair ∥= cannot
lead to ≤.

3.3◦. To prove that the pair ∥∥ cannot lead to ≤, let us consider
the case when A1 = A2 = IR× IR. In this case, due to

(0, 0) ∥i (1,−2)

and (1,−2) ∥i (−1,−1), if ∥∥ leads to ≤, we have
((0, 0), (0, 0)) ≤ ((1,−2), (1,−2)) and ((1,−2), (1,−2)) ≤
((−1,−1), (−1,−1)). Thus, due to transitivity of ≤, we get
((0, 0), (0, 0)) ≤ ((−1,−1), (−1,−1)). On the other hand,
due to consistency, from (−1,−1) ≤i (0, 0), we conclude
that ((−1,−1), (−1,−1)) ≤ ((0, 0), (0, 0)) – a contradiction
with antisymmetry.

4◦. Thus, due to Part 2 and 3 of this proof, the only additional
pairs that can, in principle, lead to ≤ are pairs containing +,
i.e., pairs +−, + ∥, −+, and − ∥.

5◦. Let us prove that the pair +− leads to ≤ if and only if
the pair + ∥ leads to ≤.

5.1◦. Let us first prove that if the pair +− leads to ≤, then
the pair + ∥ also leads to ≤.

Indeed, let us consider the case when A1 = IR and A2 =
IR×IR. If +− leads to ≤, then 0 <1 1 and (−1,−1) <2 (0, 0)

imply (0, (0, 0)) ≤ (1, (−1,−1)). Due to consistency, 1 ≤1 1
and (−1,−1) ≤2 (−1, 1) lead to (1, (−1,−1)) ≤ (1, (−1, 1)).
Due to transitivity of ≤, we get (0, (0, 0)) ≤ (1, (−1, 1)). In
this case, ≤ holds for a pair for which 0 <1 1 and (0, 0) ∥2
(−1, 1), i.e., for a pair of type + ∥. By our definition of an
order on the product, this means that ≤ must hold for all pairs
of this type, i.e., that the pair + ∥ indeed leads to ≤.

5.2◦. Let us now prove that if the pair + ∥ leads to ≤, then
the pair +− also leads to ≤.

Let us consider the same case A1 = IR and A2 = IR×IR. If
+ ∥ leads to ≤, then 0 <1 1 and and (1,−2) ∥2 (−1,−1) im-
ply (0, (0, 0)) ≤ (1, (1,−2)), and 1 <1 2 and (0, 0) ∥2 (1,−2)
imply and (1, (1,−2)) ≤ (2, (−1,−1)). Due to transitivity of
≤, we get (0, (0, 0)) ≤ (2, (−1,−1)). In this case, ≤ holds
for a pair for which 0 <1 2 and (−1,−1) <2 (0, 0), i.e., for a
pair of type +−. By our definition of an order on the product,
this means that ≤ must hold for all pairs of this type, i.e., that
the pair +− indeed leads to ≤.

6◦. Similarly, we can prove that the pair −+ leads to ≤ if and
only if the pair ∥ + leads to ≤. Thus, adding +− is equivalent
to adding + ∥, and adding −+ is equivalent to adding ∥ +.

If we add +− (and hence + ∥), we get the lexicographic
product A1 ×A2. If we add −+ (and hence ∥ +), we get the
lexicographic product A2 × A1. Thus, to complete the proof,
it is sufficient to show that we cannot simultaneously add +−
and −+.

7◦. Let us prove that +− and −+ cannot simultaneously lead
to ≤.

We will prove this by contradiction. Let us assume that adding
both +− and −+ always leads to a consistent partial order.
In this case, let us take A1 = A2 = IR. Since +− leads to ≤,
the conditions 0 <1 1 and −2 <2 0 lead to (0, 0) ≤ (1,−2).
Similarly, since −+ leads to ≤, from −1 <1 1 and −2 <2 −1,
we conclude that (1,−2) ≤ (−1,−1). By transitivity of ≤,
we can now conclude that (0, 0) ≤ (−1,−1). However, due
to consistency, (−1,−1) ≤ (0, 0) – a contradiction to anti-
symmetry.

The statement is proven, and so is the main result of this
Appendix.


