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Abstract—Fuzzy methodology transforms expert ideas – for-
mulated in terms of words from natural language – into precise
rules and formulas. In this paper, we show that by applying this
methodology to intuitive physical ideas, we can get fundamental
physical equations. This fact provides an additional justification
for the fuzzy methodology.

I. INTRODUCTION

Fuzzy methodology: main objective. Fuzzy methodology
has been invented to transform expert ideas – formulated in
terms of words from natural language – into precise rules and
formulas, rules and formulas understandable by a computer
and implementable on a computer; see, e.g., [3], [4].

Fuzzy methodology: main success. Up to now, the main suc-
cess – and thus, the main confirmation – of fuzzy methodology
was in intelligent (fuzzy) control [3], [4].

What we plan to do. In this paper, we show that the same
fuzzy methodology can also lead – when applied appropriately
– to the exact fundamental equations of physics. This fact
provides an additional justification for the fuzzy methodology.

II. CASE STUDY: NEWTON’S PHYSICS

Newton’s physics: informal description. Let us consider a
simple case when we have a single body in a potential field
V (x). It is a commonsense knowledge that a body usually tries
to go to the points x where its potential energy V (x) is the
smallest. For example, a rock left at the top of the mountain,
when it starts moving, it may sometimes move up (due to the
original push), but mostly it tries to go down.

If we take friction into account, then a body also tried to
stop. In the idealized case when there is no friction, there is a
conservation of energy: the sum of the potential energy V (x)
and the kinetic energy

K =
1

2
·m ·

3∑
i=1

(
dxi

dt

)2

is constant. Thus, when the body minimizes its potential
energy, it thus tries to maximize its kinetic energy.

What we plan to do. The above text does not sound like a
very accurate description of a physical system. However, we
will show that when we apply the usual fuzzy methodology

to this description, we get a very precise formulation – all the
way to Newton’s equations

m · d
2xi

dt2
= − ∂V

∂xi
. (1)

We will perform this derivation step-by-step.

First step: selecting a physically meaningful membership
function corresponding to “small V (x)”. The body tries to
get to the areas where the potential energy V (x) is small.
“Small” is an imprecise word from natural language. For
such words, the fuzzy methodology recommends to select a
membership function µ(V ) describing, for each possible value
V , to what extent this value V is small.

How membership functions are determined: one of the
possible ways. For each individual value V , the value µ(V )
can be obtained, e.g., by polling several (n) experts and
assigning, as µ(V ), the ratio

µ(V ) =
n(V )

n
,

where n(V ) is the number of experts who answered that this
value V is small.

Specifics of a physical system. In assigning the appropriate
membership function, we must take into account the specifics
of the physical system. One of the features of this physical
system (see, e.g., [2]) is that the potential energy has no
absolute numerical value. All we know is the relative potential
energy relative to some level. If we change that level by some
value V0, then all the numerical values of the potential energy
get shifted, from V to V + V0.

Crudely speaking, this means that the numerical values V
and V +V0 may represent the exact same value of the potential
energy – but measured in comparison to different levels.

How to describe this physical specifics: first try. A seem-
ingly natural formalization of this idea is to simply require
that the degrees to which the values V and V + V0 are small
should be the same: µ(V ) = µ(V + V0).

The first try does not work. However, this formalization
does not work: if we require that this equality holds for all V
and V0, then for ever two real numbers V and V ′, by taking



V0 = V ′ − V , we would be able to conclude that µ(V ) =
µ(V +V0) = µ(V ′) – and thus, that the resulting membership
function is simply constant. This does not make intuitive sense,
since we know that the smaller the value V , the larger should
be our confidence that V is small.

A better idea. We therefore cannot simply require that the
functions µ(V ) and µ(V +V0) corresponding to two different
levels are identical. However, we should require that these two
membership functions be, to some extent, equivalent to each
other.

How to formalize this idea: re-analyzing the polling
method. How can we formalize this idea? To do that, let us
go back to the polling method of determining a membership
function.

Our objective is to find the value µ(V ) as accurately as
possible. It is known that in the poll, the more people we
ask, the more accurate is the resulting opinion. Thus, a natural
way to improve the accuracy of the poll is to ask more experts.
However, here is a catch. When at first, we could only afford to
poll n people, we thus select top experts in the filed. Now that
we add m extra folks, these folks may be too intimidated by
the original experts to voice their opinions – especially in case
the original experts disagree. With the new experts mute, we
still have the same number n(V ) of experts who believe that
the value V is small – but now we have to divide it not by the
original number n, but by the new number n+m. As a result,

instead of the original value µ(V ) =
n(N)

n
, we get a new

value µ′(V ) =
n(N)

n+m
. It is easy to see that µ′(V ) = c ·µ(V ),

where c =
n

n+m
.

Thus, for the exact same opinion, by selecting two different
numbers of experts n and n + m, we get two numerically
different membership functions: µ(V ) and c ·µ(V ). These two
membership functions represent the same expert opinion and
are, thus, equivalent in some reasonable sense.

Resulting formalization of the physical intuition. Now, we
have a meaningful interpretation of the requirement that the
membership functions µ(V ) and µ(V + V0) – corresponding
to two different starting levels for measuring potential energy
– are equivalent: that for every V0, there should be a value
c(V0) for which

µ(V + V0) = c(V0) · µ(V ).

Resulting selection of the membership function. This func-
tional equation is known (see, e.g., [1]). Its only monotonic
solution is a function

µ(V ) = a · exp(−k · V ).

So we will use this exponential function to describe the fact
that potential energy should be small.

Comment. Since, as we have mentioned, the membership func-
tion is determined modulo a factor c, we can, for simplicity, set

a to 1 and get an even simpler formula µ(V ) = exp(−k ·V ).

Second step: selecting a membership function correspond-
ing to “large value of kinetic energy K”. As we have
mentioned, kinetic energy tends to increase, i.e., should be
large.

Instead of starting a derivation from scratch, let us use the
fact that we already have a physically meaningful membership
function for “small”. Intuitively, a value K is large if −K is
small.

So, the statement “kinetic energy K is large” is equivalent
to saying “the value −K is small”. By using the above
membership function for small, we thus conclude that the
membership function describing our intuition about the kinetic
energy is

µ(K) = exp(−k · (−K)) = exp(k ·K).

Third step: selecting a physically meaningful t-norm
(“and”-operation). We want to describe the intuition that
the potential energy is small and that the kinetic energy is
large and that the same is true at different moments of time.
According to fuzzy methodology, we must therefore select an
appropriate “and”-operation (t-norm) to combine our degree
of certainty in individual statements into a single degree
describing the degree to which we believe in the composite
statement.

Let us use physical intuition to select such a t-norm
f&(a, b).

Specific of the physical system. In principle, if we have two
completely independent systems, we can consider them as a
single system. Since these systems do not interact with each
other, the total energy E of the combined system is simply
equal to the sum E1+E2 of the energies of the components.

Using the physical specifics. Intuitively, if both component
energies are small, then the resulting total energy should also
be small. We can therefore estimate the smallness of the total
energy in two different ways:

• first, we can simply apply the above membership function
“small” to the total energy E = E1 + E2, and get the
value µ(E1 + E2);

• second, we can first estimate the degrees µ(E1) and
µ(E2) to which each of the components is small, and then
use a t-norm f&(a, b) to combine these degrees into a de-
gree that E1 is small and E2 is small: f&(µ(E1), µ(E2)).

In view of the above motivation, it is reasonable to require
that these two estimates should coincide, i.e., that we should
have

µ(E1 + E2) = f&((µ(E1), µ(E2)).

We know that µ(E) = exp(−k · E), thus, we conclude that
the following equality should hold for all E1 and E2:

exp(−k · (E1 + E2)) = f&(exp(−k · E1), exp(−k · E2)).



This requirement enables us to uniquely determine the cor-
responding t-norm. Namely, to find the value f&(a1, a2), we
must first find the values Ei for which exp(−k ·Ei) = ai. For
these values, we then have

f&(a1, a2) = exp(−k · (E1 + E2)) =

exp(−k · E1) · exp(−k · E2) = a1 · a2.

Resulting selection of a t-norm. Thus, the physically mean-
ingful t-norm is the algebraic product f&(a1, a2) = a1 · a2.

Resulting model. Now, we are ready to estimate to what
extent a given trajectory x(t) satisfies the intuitive ideas that
the potential energy be small and the kinetic energy be large
at all moments of time t1, . . . , tN . We know the degrees to
which each of these requirements is satisfied at each moment
of time, so to get the overall degree, we can simply multiply
all these degrees. As a result, we get the following product:

N∏
i=1

exp(−k · V (ti)) ·
N∏
i=1

exp(k ·K(ti)).

Since, as we have already mentioned,

exp(−k · a) · exp(−k · b) = exp(−k · (a+ b)),

this expression can be reformulated as exp(−k · S), where

S
def
=

N∑
i=1

(V (ti)−K(ti)).

It is reasonable to select, as the most reasonable, a trajectory
for which our degree of confidence that this trajectory is
treasonable is the highest. To find such a trajectory, we must
maximize the value exp(−k·S). Since the function exp(−k·S)
is strictly decreasing, this is equivalent to minimizing S.

So, we arrive at the requirement that we should minimize the
sum S. In reality, the number of moments of time is infinite,
so instead of a sum, we get an integral

S ∼
∫

Ldt,

where we denoted

L = V (t)−K(t) = V (t)− 1

2
·m ·

3∑
i=1

(
dxi

dt

)2

.

This model leads to Newton’s equations. In modern physics,
most physical laws are formulated in terms of the Principle of
Least Action, according to which the trajectory is selected in
such a way that the action S =

∫
Ldt is the smallest possible.

In particular, for Newtonian physics, the exact same expression
S – as we came up with based on fuzzy methodology – leads
exactly to Newton’s laws.

Comment. With the fuzzy approach, we not only get the
most reasonable Newton’s trajectory, we also get the degree

exp(−k · S) with which all other trajectories are reasonable.
In Newton’s physics, only one trajectory is possible, but in
quantum physics, non-Newtonian trajectories are also possible,
and the “amplitude” of each trajectory is determining by
exactly this formula exp(−k ·S) – albeit with a complex value
k. This fact makes the above derivation even more interesting.

III. BEYOND THE SIMPLEST NETWON’S EQUATIONS

Need to go beyond Newton’s equations. In our analysis of
the Newton’s equations, we assume that the expression for
the potential energy V (x) is given. However, in reality, this
expression also needs to be determined. The potential energy
represents a field – e.g., electrostatic, gravitational, etc. – so,
in addition to mechanics, we must also find the equations that
describe the corresponding field.

Gravitational field: main idea. Let us consider the simplest
case of a gravitational field. We will consider it in the
Newtonian approximation, where it is described by a scalar
function V (x).

The main physical property of the gravitational field is that
it changes very slowly: gravitational pull of the Earth, for
example, is caused by the Earth as a whole, so if we move a
little bit, we still feel approximately the same gravitation. It is
a known empirical fact that the differences in the gravitational
field at different earth location are very small (but, by the
way, very important for geophysics, because they provide a
good overall understanding of what is located below the Earth
surface).

Thus, all the components ∂V ∂xi of the gradient of the
gravitational field must be small. This situation is similar to
kinetic energy and different from potential energy in the sense
that we want these values to be close to 0. Similarly to the
case of kinetic energy, this is equivalent to requiring that the
squares of the derivatives be small.

Derivation of the resulting model. Thus, we arrive at the
condition that for all locations x, all squares of partial deriva-
tives must be small. For each location and for each i, the
corresponding requirement that the square of the derivative is
small can be described by the degree

exp

(
−k ·

(
∂V

∂xi

)2
)
.

By using the product t-norm to combine these values, we get
the expression

∏
x

3∏
i=1

exp

(
−k ·

(
∂V

∂xi

)2
)
.

As in the Newton’s case, this expression can be represented
as exp(−k · S), where

S =
∑
x

3∑
i=1

(
∂V

∂xi

)2

.



Taking into account that we have infinitely many spatial
locations x, we get an integral instead of the sum: S =

∫
Ldx,

where

L(x) =

3∑
i=1

(
∂V

∂xi

)2

.

This model leads to Newton’s formulas for the gravitation
force. It is known that minimizing this expression leads to the
equation

3∑
i=1

∂2V

∂x2
i

= 0,

that leads to Newton’s gravitational potential

V (x) ∼ 1

r

that, in turns, leads to the known expression for the gravita-
tional force F ∼ r−2.

Comment. Similar arguments can lead to other known action
principles and thus, to other fundamental physical equations.
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APPENDIX: VARIATIONAL EQUATIONS

General derivation. Let us recall how we can transform the
Least Action Principle into a differential equation. Let us first
do it on the example on Newton-type situation, where we need
to find a function x(t) that minimizes the following expression:

S =

∫
L(x, ẋ) dt → min .

Minimizing means, in particular, that if we take any function
∆x(t) and consider a function S(α) = x + α · ∆x, then
this function must attain its maximum for α = 0. Thus, the
derivative of S(α) at α = 0 must be 0. Differentiating the
expression

S(α) =

∫
L(x+ α ·∆x, ·x+ α ·∆ẋ) dt

and equating derivative to 0, we conclude that∫ (
∂L

∂x
·∆x+

∂L

∂ẋ
·∆ẋ

)
dt =∫ (

∂L

∂x
·∆x

)
dt+

∫ (
∂L

∂ẋ
·∆ẋ

)
dt = 0.

Integrating the second term by parts, we conclude that∫ (
∂L

∂x
− d

dt

(
∂L

∂ẋ

))
·∆x dt = 0.

This must be true for every function ∆x(t), in particular
for a function that is equal to 0 everywhere except for a
small vicinity of a moment t, For this function, the integral is
proportional to the value of the expression

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
at the point t. Since the integral is 0, this expression must also
be equal to 0:

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0.

The resulting equations are known as Euler-Lagrange equa-
tions.

Case of Newton’s laws. In particular, for the Newton’s case,
when

L = V (x)− 1

2
·m ·

3∑
i=1

(
dxi

dt

)2

,

for each of the components xi(t), we have

∂L

∂xi
=

∂V

∂xi

and
∂L

∂ẋi
= −m · dxi

dt
.

Thus, Euler-Lagrange’s equations lead to

∂V

∂x
+m · d

dt

(
dxi

dt

)
= 0,

i.e., to Newton’s equations

m · d
2xi

dt2
= − ∂V

∂xi
.

General case. In the general case, Euler-Lagrange equations
take the form

∂L

∂φ
−

3∑
i=1

∂

∂xi

(
∂L

∂φ,i

)
= 0,

where
φ,i

def
=

∂φ

∂xi
.


