
Journal of Uncertain Systems
Vol.5, No.x, pp.x-x, 2011

Online at: www.jus.org.uk

Towards Simpler Description of Properties like Commutativity and

Associativity: Using Expression Fragments

Shubhra Datta∗, Valeria Fierro, Krasen Petrov,
Jessica Romo, Gesuri Ramirez, and Cesar Valenzuela,

Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA

Received 15 December 2009; Revised 23 February 2010

Abstract

Properties like commutativity and associativity are very important in many applications. To make
detecting these properties easier, it is desirable to reformulate them in the simplest possible way. A known
way to simplify these descriptions is to use postfix notations, in which there is no need to use parentheses.
We show that some of these properties can be further simplified if we represent them as equalities not
between well-defined expressions, but as equalities between expression fragments.
c⃝2011 World Academic Press, UK. All rights reserved.
Keywords: commutativity, associativity, expression fragments

1 Formulation of the Problem

Formulation of the problem: it is desirable to have simpler descriptions of basic properties like
commutativity or associativity. Many binary operations ◦ have properties like commutativity

a ◦ b = b ◦ a (1)

or associativity
a ◦ (b ◦ c) = (a ◦ b) ◦ c. (2)

Since these properties are very important in many applications, it is desirable to describe them in the simplest
possible way. This may help, e.g., if we want to check these properties – the simpler the property’s description,
usually the easier (and faster) it is to check this property.

For example, the above standard description of commutativity consists of 7 symbols, and the associativity
consists of 15 symbols. Can we describe this property by using fewer symbols?

Postfix notations: a way to get shorter descriptions. For properties whose description contains
parentheses – like associativity – we can get a shorter description if we use postfix notations. For readers who
are not familiar with these notations, let us explain what they are and how they can help.

In the standard notations, the operation symbol is placed between the two operands, so that the result of
applying the operation ◦ to a and b is denoted by a◦b. In these notations, it is important to have parentheses.
For example, a ◦ b ◦ c can mean either (a ◦ b) ◦ c or a ◦ (b ◦ c). These two expressions have the same value
for associative arithmetic operations like addition or multiplication, but for non-associative operations like
division, the results are, in general, different.

It is known that the need for parentheses disappears if we use postfix notations in which the operation
symbol is listed after the two operands. In these notations, the result of applying the operation ◦ to a and b
is denoted by ab◦. To find the postfix expression for (a ◦ b) ◦ c, i.e., for the result of applying the operation ◦
to a ◦ b and c,

• we first list the first operand a ◦ b – which in postfix notation has the form ab◦;

• then, we list the second operand c;

• finally, we list the operation symbol ◦.
∗Corresponding author. Email: sdatta2@miners.utep.edu (S. Datta).

4 S. Datta et al.: Towards Simpler Description of Properties like Commutativity and Associativity

The resulting postfix expression is ab ◦ c◦.
Postfix notations are actively used in computer science: to compute the value of an arithmetic expression,

a compiler usually first transforms this expression into the postfix form, and then uses this form to compute
the value; see, e.g., [1].

Postfix notations do not need parentheses and are, therefore, usually shorter. For example, in these
notations, commutativity has the form

ab◦ = ba◦ (3)

which happens to have the same length (7 symbols) as in the standard notation. However, for associativity,
the postfix description

ab ◦ c◦ = abc ◦ ◦ (4)

is shorter: it requires 11 symbols instead of the original 15.
This is well known. The next natural question is: can we make this description even shorter?

2 Main Idea: Using Expression Fragments

Our main idea: use expression fragments instead of complete expressions. In the equality (3)
that describes commutativity, the last symbol on both sides is the same: the operation symbol ◦. Thus, the
right-hand side can be obtained from the left-hand side if we replace all the other symbols, i.e., if we replace
ab with ba.

It therefore seems reasonable to represent commutativity as the formal equality

ab = ba. (5)

Please note that while ab◦ is a well-defined expression, the combination ab is an expression fragment but
not a well-defined expression because it lacks the operation symbol.

The meaning of the original formula ab◦ = ba◦ is that whenever a and b are well-formed expressions,
the corresponding expressions ab◦ and ba◦ have the same value. Since the equality (5) is about expression
fragments not well-formed expressions, and the values are defined only for well-formed expressions, it is
reasonable to interpret this equality in fragment terms:

• whenever we have a well-formed expression with a fragment ab, for which replacing ab with ba also leads
to a well-formed expression,

• these two expressions – the original one and the one formed by replacement – must have the same value.

Similarly, in the equality (4) that describes associativity, the last symbol on both sides is the same: the
operation symbol ◦, and the first two symbols are the same in both sides: a and b. Thus, the right-hand side
can be obtained from the left-hand side if we replace all the other symbols, i.e., if we replace ◦c with c◦.

It therefore seems reasonable to represent associativity as the formal equality

◦c = c ◦ . (6)

Here, in contrast to commutativity, where replacing ab with ba and replacing ba with ab mean the same thing
– swapping two fragments, here, replacing ◦c with c◦ and replacing c◦ with ◦c are two different replacement
operations, so they must be described separately.

Historical comment. The idea of using fragments came from the bra- and ket-notations in quantum mechanics
and quantum computing; see, e.g., [2]. In quantum mechanics, originally, researchers used the “bracket”
notation ⟨a|b⟩ to describe the amplitude corresponding to the transition from the state a to the state b.
However, P. A. M. Dirac, a future Nobel prize winner, noticed that many formulas become much easier if we
formulate them in terms of expression fragments ⟨a| and |b⟩. Dirac started using the word “bra” for the first
fragment ⟨a| of the bracket notation, and the word “ket” for the second fragment |b⟩.

For example, in bracket notations, the fact that the state b is a superposition of states b′ and b′′ with equal

coefficients
1√
2
, can be described as

⟨a|b⟩ = 1√
2
· ⟨a|b′⟩+ 1√

2
· ⟨a|b′′⟩. (7)

Journal of Uncertain Systems, Vol.5, No.x, pp.x-x, 2011 5

In bra-ket notations, we have a simpler formula

|b⟩ = 1√
2
· |b′⟩+ 1√

2
· |b′′⟩. (8)

The original formula (7) can be recovered if we “multiply” the bra fragment ⟨a| by both sides of the new
formula (8).

3 Definitions and Results

Towards formal definitions. Let us now give formal definitions of the fragment equality and analyze
whether the fragment equalities (5) and (6) are indeed equivalent to, correspondingly, commutativity and
associativity.

Let us first recall the standard definitions.

Definition 1. Let V , C, and Op be sets, and let ar : Op → N be a function from the set Op to the set N
of natural numbers (= non-negative integers).

• Elements v of the set V are called variables.

• Elements c of the set C are called constants.

• Elements op of the set Op are called operation symbols.

• For each operation symbol op ∈ Op, the value ar(op) is called its arity.

• A well-formed expression is defined as follows:

– every variable and every constant is a well-formed expression;

– if ◦ is an operation of arity m = ar(op) and t1, . . . , tN are well-formed expressions, then t1 . . . tm◦
is a well-formed expression;

– nothing else is a well-formed expression.

• By an interpretation f , we mean a mapping that assigns, to every operation symbol op ∈ Op of arity
m = ar(op), a function fop : Cm → C.

• For every interpretation f and for every well-formed expression t that does not contain variables, its
value vf (t) is defined as follows:

– for every constant c, its value is this same constant: vf (c) = c;

– if an expression has the form t1 . . . tm◦ for some operation ◦ of arity m = ar(op), then its value is
defined as vf (t) = f◦(vf (t1), . . . , vf (tm)).

• By a property, we mean a set of equalities of the type t = t′, where t and t′ are well-formed expressions.

• We say that the property t = t′ is satisfied for a given interpretation if, every time we substitute constants
instead of the variables into the formula t = t′, the resulting expressions T and T ′ have the same value.

Comment. Instead of requiring that the values are equal when we substitute constants, we can also require
that the values are equal when we substitute well-formed expressions; the result will be the same since for the
above definition,

• when we first substitute the expressions and then compute the value of the result, and

• when we first compute the values of the expressions, substitute these values, and then compute the
result,

we get the exact same result.

6 S. Datta et al.: Towards Simpler Description of Properties like Commutativity and Associativity

Let us now give formal definitions of expression fragments and equality between them.

Definition 2. Let V , C, and Op be sets, and let ar : Op → N be a function from the set Op to the set N
of natural numbers.

• An arbitrary sequence of variables, constants, and operation symbols is called an expression fragment.

• We say that an expression t contains a fragment e if t has the form eee for some fragments e and e.

• By a fragment equality, we mean an equality of the type e = e′, where e and e′ are expression fragments.

• We say that the fragment equality e = e′ with variables v1, . . . , vp, is satisfied for a given interpretation
f if, for every p expression fragments E1, . . . , Ep without variables and for the results E and E′ of
substituting Ej instead of vj into e and e′, the following two statements hold:

– for every well-defined expression t that contains E, if the result t′ of replacing E with E′ is also a
well-formed expression, then t and t′ have the same value: vf (t) = vf (t

′);

– for every well-defined expression t′ that contains E′, if the result t of replacing E′ with E is also a
well-formed expression, then t and t′ have the same value: vf (t) = vf (t

′).

Comment. In the definition of fragment equality being satisfied, we have a condition that the replacement
result must be a well-formed expression. The following simple example shows that this condition is necessary:
for the fragment equality

E
def
= c◦ = ◦c def

= E′ (9)

that describes associativity,

• the expression t = ac◦ contains E and is well-defined,

• but the result t′ = a ◦ c of replacing E with E′ is no longer well-defined.

Proposition 1. For a single operation ◦, the fragment equality a◦ = ◦a is equivalent to associativity.

Comment. For readers’ convenience, all the proofs are placed at the end of this paper.

What if there are other operations? When we have other operations in addition to ◦, the fragment
equality a◦ = ◦a corresponding to associativity of ◦ is, in general, no longer equivalent to associativity of
◦. As an example, let us take the set of integers with two operations: multiplication ◦ = · and addition
+. Multiplication is associative. However, for a = +, the fragment equality a◦ = ◦a corresponding to
multiplication ◦ = · would allow us to transform the expression c1c2c3 ·+ corresponding to c1 + (c2 · c3) into
a different expression c1c2c3 + · corresponding to c1 · (c2 + c3) whose value is, in general, different.

Commutativity: discussions. As we have mentioned earlier, for commutativity, a natural fragment equal-
ity is ab = ba. At first glance, it sound reasonable to assume that this fragment equality is equivalent to
commutativity. However, if we take b = ◦, we see that it also implies the fragment equality corresponding to
associativity. The next natural hypothesis – that this fragment equality is equivalent to commutativity and
associativity – turns out to be absolutely correct.

Proposition 2. For a single operation ◦, the fragment equality ab = ba is equivalent to a combination of
commutativity and associativity.

Comment. When there is a single operation, sometimes, the symbol for this operation is omitted, so we right
ab instead of a ◦ b. In such notations, ab = ba would mean a ◦ b = b ◦ a, i.e., commutativity. In this notation,
both ab and ba are well-defined expressions.

To avoid confusion, it is important to emphasis that we are not using this operation-less notation. In our
notation, there is an explicit operation symbol. So, in our notation, ab and ba are not well-defined expressions,
they are expression fragments.

Journal of Uncertain Systems, Vol.5, No.x, pp.x-x, 2011 7

What if there are other operations? When we have several operations, this equivalence is no longer true,
even if all these operations are commutative and associative. To show this, we can use the same example as
we used after Proposition 1. Both addition and multiplication are commutative and associative. However, the
fragment equality ab = ba with a = · and b = + allows us to transform the expression c1c2c3 ·+ corresponding
to c1 + (c2 · c3) into a different expression c1c2c3 + · corresponding to c1 · (c2 + c3) whose value is, in general,
different.

Remaining open problems. We have described simple equivalents for associativity and for a combina-
tion of associativity and commutativity. It is desirable to use expression fragments to find similar simpler
expressions for other algebraic properties.

4 Proofs

Proof of Proposition 1. To prove the desired equivalence, we need to show that associativity implies the
fragment equality c◦ = ◦c and that, vice versa, this fragment equality implies associativity.

It is clear that the fragment equality implies associativity. Indeed, if the fragment equality c◦ = ◦c holds,
then, whenever a, b, and c are well-formed expressions, the expressions ab ◦ c◦ and abc ◦ ◦ can be obtained
from each other by replacing the fragment ◦c with c◦. Thus, the two expressions ab ◦ c◦ and abc ◦ ◦ have the
same value – i.e., we have associativity.

Vice versa, let us show that associativity implies the fragment equality c◦ = ◦c, i.e., that associativity
implies all the equalities that follow from this fragment equality.

Indeed, every time we apply the transformation c◦ = ◦c, we simply move the operation symbol ◦ to a
different place in the original expression. This transformation does not change the order in which the constants
appear in the expression. Thus, when we start with an expression with constants c1, . . . , cn (in this order),
we end up with an expression in which these same constants appear in this same order – but the order of
operations may change.

For n = 2, there is only one expression: c1 ◦ c2 whose postfix expression is c1c2◦.
For n = 3, there are two possible expressions and their equality is what associativity is about:

• the expression (c1 ◦ c2) ◦ c3 whose postfix description is c1c2 ◦ c3◦;

• the expression c1 ◦ (c2 ◦ c3) whose postfix description is c1c2c3 ◦ ◦.

For n = 4, we have the following expressions corresponding to all possible ways to combine c1, c2, c3, and
c4. In all case, we start by applying the operation ◦ to two neighboring values of ci.

When we start with c1 ◦ c2, we get the following two expressions:

• the expression (c1 ◦ c2) ◦ (c3 ◦ c4) whose postfix description is c1c2 ◦ c3c4◦;

• the expression (c1 ◦ c2) ◦ c3) ◦ c4 whose postfix description is c1c2 ◦ c3 ◦ c4◦.

When we start with c2 ◦ c3, we get the following two expressions:

• the expression (c1 ◦ (c2 ◦ c3)) ◦ c4 whose postfix description is c1c2c3 ◦ ◦c4◦;

• the expression c1 ◦ ((c2 ◦ c3) ◦ c4) whose postfix description is c1c2c3 ◦ c4 ◦ ◦.

Finally, if we start with c3 ◦ c4, then, in addition to the expression (c1 ◦ c2) ◦ (c3 ◦ c4) that we have already
counted earlier, we also have the following new expression:

• the expression c1 ◦ (c2 ◦ (c3 ◦ c4)) whose postfix description is c1c2c3c4 ◦ ◦◦.

It is know that, in general, for associative operations, all these expressions coincide. The proposition is
thus proven.

8 S. Datta et al.: Towards Simpler Description of Properties like Commutativity and Associativity

Proof of Proposition 2. We have already shown that the fragment equality ab = ba implies both commu-
tativity and associativity.

Vice versa, if we allow transformations related to the fragment equality ab = ba, this means that we can
change the order of all the symbols in the original sequence. Thus, if we have any sequence of operations
applied to the constants c1, . . . , cn in arbitrary order of ci and arbitrary order of operations, we may end up
with a different order of ci and different order of operations.

For example, we may add up with expressions

(c1 ◦ c2) ◦ (c3 ◦ c4) and c2 ◦ ((c4 ◦ c3) ◦ c1), (10)

i.e., in postfix notations, c1c2 ◦ c3c4 ◦ ◦ and c2c4c3 ◦ c1 ◦ ◦.
Here:

• commutativity makes sure that the value is preserved when we change the order of the constants, and

• associativity makes sure that the value is preserved when we change the order of operations.

Thus, the new expression indeed has the same value as the original one.
The proposition is proven.

References

[1] Collins, W. Data Structures and the Java Collections Framework, McGraw Hill, 2004.

[2] Nielsen, M. A., and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press,
Cambridge, Massachusetts, 2000.

