
Negative Results of Computable Analysis Disappear If We Restrict

Ourselves to Random (Or, More Generally, Typical) Inputs

Vladik Kreinovich
Department of Computer Science

University of Texas, El Paso, Texas 79968, USA, vladik@utep.edu

Real numbers in computable analysis: a brief reminder. In practice, many quantities
such as weight, speed, etc., are characterized by real numbers. To get information about the
corresponding value x, we perform measurements. Measurements are never absolute accurate. As
a result of each measurement, we get a measurement result x̃; for each measurement, we usually

also know the upper bound ∆ on the (absolute value of) the measurement error ∆x
def
= x̃ − x:

|x− x̃| ≤ ∆.
To fully characterize a value x, we must measure it with a higher and higher accuracy. As a

result, when we perform measurements with accuracy 2−n with n = 0, 1, . . ., we get a sequence of
rational numbers rn for which |x− rn| ≤ 2−n.

From the algorithmic viewpoint, we can view this sequence as an oracle that, given an integer
n, returns a rational number rn. Such sequences represent real numbers in computable analysis;
see, e.g., [9, 10].

First negative result. In computable analysis, several negative results are known. For example,
it is known that no algorithm is possible that, given two numbers x and y, would check whether
these numbers are equal or not.

Computable functions and relative negative results. Similarly, we can define a function
f(x) from real numbers to real numbers as a mapping that, given an integer n, a rational number
xm and its accuracy m, produces either a message that this information is insufficient, or a rational
number yn which is 2−n-close to all the values f(x) for d(x, xm) ≤ 2−m – and for which, for every x
and for each desired accuracy n, there is an m for which a rational number yn is produced. We can
also define a computable function f(x1, . . . , xk) of several real variables (and, even more generally,
a function on a computable compact).

Several negative results are known about computable functions as well. For example,

• while there is an algorithm that, given a function f(x) on a computable compact setK (e.g., on
a box [x1, x1]× . . .× [xk, xk] in k-dimensional space), produces the values max{f(x) : x ∈ K},

• no algorithm is possible that would always return a point x at which this maximum is attained
(and similarly, with minimum).

From the physicists’ viewpoint, these negative results seem rather theoretical. From
the purely mathematical viewpoint, if two quantities coincide up to 13 digits, they may still turn
to be different: for example, they may be 1 and 1 + 10−100.
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However, in the physics practice, if two quantities coincide up to a very high accuracy, it is a
good indication that they are actually equal. This is how physical theories are confirmed: if an
experimentally observed value of a quantity turned out to be very close to the value predicted based
on a theory, this means that this theory is (triumphantly) true. This is, for example, how General
Relativity has been confirmed.

This is how discoveries are often made: for example, when it turned out the speed of the waves
described by Maxwell equations of electrodynamics is very close to the observed speed of light c,
this led physicists to realize that light is formed of electromagnetic waves.

How physicists argue. A typical physicist argument is that while numbers like 1 + 10−100 (or
c · (1 + 10−100)) are, in principle, possible, they are abnormal (not typical).

When a physicist argues that second order terms like a · ∆x2 of the Taylor expansion can be
ignored in some approximate computations because ∆x is small, the argument is that

• while abnormally high values of a (e.g., a = 1040) are mathematically possible,

• typical (= not abnormal) values appearing in physical equations are usually of reasonable
size.

How to formalize the physicist’s intuition of typical (not abnormal). A formalization
of this intuition was proposed and analyzed in [1, 2, 3, 4, 5, 6, 7]. Its main idea is as follows. To
some physicist, all the values of a coefficient a above 10 are abnormal. To another one, who is
more cautious, all the values above 10 000 are abnormal. Yet another physicist may have another
threshold above which everything is abnormal. However, for every physicist, there is a value n such
that all value above n are abnormal.

This argument can be generalized as a following property of the set T of all typical elements.
Suppose that we have a monotonically decreasing sequence of sets A1 ⊇ A2 ⊇ . . . for which

∩
n
An = ∅

(in the above example, An is the set of all numbers ≥ n). Then, there exists an integer N for which
T ∩AN = ∅.

We thus say that T is a set of typical elements if for every definable decreasing sequence {An}
for which

∩
n
An = ∅, there exists an N for which T ∩AN = ∅.

Comment. Of course, to make this definition precise, we must restrict definability to a subset of
properties, so that the resulting notion of definability will be defined in ZFC itself (or in whatever
language we use); for details, see, e.g., [3].

Relation to randomness. The above notion of typicality is related to the randomness. Indeed,
a usual definition of a random sequence (see, e.g., [8]) is based on the idea that a sequence is random
if it satisfies all the probability laws – like the law of large numbers, the central limit theorem, etc.
A probability law is then described as a definable property that is satisfied with probability 1, i.e.,
as a complement to a definable set S of probability measure 0 (P (S) = 0). Thus, we can say that
a sequence is random if it does not belong to any definable set of measure 0. (If we use different
languages to formalize the notion “definable”, we get different versions of Kolmogorov-Martin-Löf
randomness.)

Informally, this definition means that (definable) events with probability 0 cannot happen. In
practice, physicists also assume that events with a very small probability cannot happen. It is not
possible to formalize this idea by simply setting a threshold p0 > 0 below which events are not
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possible – since then, for N for which 2−N < p0, no sequence of N heads or tails would be possible
at all. However, we know that for each monotonic sequence of properties An with lim p(An) = 0
(e.g., An = “we can get first n heads”), there exists an N above which a truly random sequence
cannot belong to AN . In [1, 2, 3, 4, 5, 6, 7], we thus propose to describe a set R as a set of random
elements if it satisfies the following property: for every definable decreasing sequence {An} for
which limP (An) = 0, there exists an N for which R ∩AN = ∅.

It turns out that properties of T and R are related:

• every set of typical elements is also a set of random elements, and

• for every set of random elements R, the difference R−RK , where RK is the set of the elements
random in the usual Komogorov-Martin-Löf sense, is a set of typical elements [2].

Physically interesting consequences of these definitions. These definitions have useful
consequences [1, 2, 3, 4, 5, 6, 7].

For example, when the universal set X is a metric space, both sets T and R are pre-compact –
with the consequence that all inverse problems become well-defined: for any 1-1 continuous function
f : X → X, the restriction of the inverse function to T is also continuous. This means that, in
contrast to ill-defined problem, if we perform measurements accurately enough, we can reconstruct
the state of the system with any desired accuracy.

Another example is a justification of physical induction: crudely speaking, there exists an N
such that if for a typical sequence, a property is satisfied in the first N experiments, then it is
satisfied always.

New results: when we restrict ourselves to typical elements, algorithms become pos-
sible. In this paper, we analyze the computability consequences of the above definitions. Specifi-
cally, we show that most negative results of computability analysis disappear if we restrict ourselves
to typical elements.

For example, for every set of typical pairs of real numbers T ⊆ IR2, there exists an algorithm,
that, given real numbers (x, y) ∈ T , decides whether x = y or not. To prove it, consider a decreasing
sequence of definable sets An = {(x, y) : 0 < d(x, y) < 2−n}. By definition of T , there exists an N
such that AN ∩ T = ∅. Thus, if we compute d(x, y) with accuracy 2−(N+1) and get a value < 2−N ,
this means that x = y – otherwise x ̸= y.

Similar (but somewhat more complex) arguments lead to

• an algorithm that, given a typical function f(x) on a computable compact K, computes a
value x at which f(x) attains its maximum,

• an algorithm that, given a typical function f(x) on a computable compact K that attains a
0 value somewhere on K, computes a value x at which f(x) = 0,

• etc.
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