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ABSTRACT. It is well known that many computational problems are, in general, not al-
gorithmically solvable: e.g., it is not possible to algorithmically decide whether two com-
putable real numbers are equal, and it is not possible to compute the roots of a computable
function. We propose to constraint such operations to certain “sets of typical elements”
or “sets of random elements”.

In our previous papers, we proposed (and analyzed) physics-motivated definitions for
these notions. In short, a set T is a set of typical elements if for every definable sequences
of sets A,, with A, D A,41 and (A, = 0, there exists an N for which Ay NT = @; the

definition of a set of random elements with respect to a probability measure P is similar,
with the condition (| A, = 0 replaced by a more general condition lim P(A,) = 0.
n

n
In this paper, we show that if we restrict computations to such typical or random
elements, then problems which are non-computable in the general case — like comparing
real numbers or finding the roots of a computable function — become computable.

1. PHYSICALLY MEANINGFUL COMPUTATIONS WITH REAL NUMBERS: A BRIEF REMINDER

In practice, many quantities such as weight, speed, etc., are characterized by real num-
bers. To get information about the corresponding value z, we perform measurements.
Measurements are never absolute accurate. As a result of each measurement, we get a
measurement result x; for each measurement, we usually also know the upper bound A on

the (absolute value of) the measurement error Ax L lx —z| < A.

To fully characterize a value x, we must measure it with a higher and higher accuracy.
As a result, when we perform measurements with accuracy 27" with n = 0,1, ..., we get a
sequence of rational numbers r,, for which |z —r,| < 27".

From the algorithmic viewpoint, we can view this sequence as an oracle that, given
an integer n, returns a rational number r,. Such sequences represent real numbers in
computable analysis; see, e.g., [Pou89, Wei00].
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2. FIRST NEGATIVE RESULT

In computable analysis, several negative results are known. For example, it is known
that no algorithm is possible that, given two numbers = and y, would check whether these
numbers are equal or not.

3. COMPUTABLE FUNCTIONS AND RELATIVE NEGATIVE RESULTS

Similarly, we can define a function f(x) from real numbers to real numbers as a mapping
that, given an integer n, a rational number x,, and its accuracy m, produces either a message
that this information is insufficient, or a rational number y, which is 27 "-close to all the
values f(x) for d(z,x,,) < 27™ — and for which, for every = and for each desired accuracy n,
there is an m for which a rational number ¥, is produced. We can also define a computable
function f(x1,...,xx) of several real variables (and, even more generally, a function on a
computable compact).

Several negative results are known about computable functions as well. For example,

e while there is an algorithm that, given a function f(x) on a computable compact
set K (e.g., on a box [z,,Z1] X ... X [z}, Tk in k-dimensional space), produces the
values max{f(x) : z € K},

e no algorithm is possible that would always return a point x at which this maximum
is attained (and similarly, with minimum).

4. FROM THE PHYSICISTS’ VIEWPOINT, THESE NEGATIVE RESULTS SEEM RATHER
THEORETICAL

From the purely mathematical viewpoint, if two quantities coincide up to 13 digits,
they may still turn to be different: for example, they may be 1 and 1 + 107109,

However, in the physics practice, if two quantities coincide up to a very high accuracy,
it is a good indication that they are actually equal. This is how physical theories are
confirmed: if an experimentally observed value of a quantity turned out to be very close to
the value predicted based on a theory, this means that this theory is (triumphantly) true.
This is, for example, how General Relativity has been confirmed.

This is how discoveries are often made: for example, when it turned out the speed of
the waves described by Maxwell equations of electrodynamics is very close to the observed
speed of light ¢, this led physicists to realize that light is formed of electromagnetic waves.

5. HOwW PHYSICISTS ARGUE

A typical physicist argument is that while numbers like 14 107100 (or ¢- (1 4+ 107109))
are, in principle, possible, they are abnormal (not typical).

When a physicist argues that second order terms like a - Az? of the Taylor expansion
can be ignored in some approximate computations because Az is small, the argument is
that

e while abnormally high values of a (e.g., a = 10%°) are mathematically possible,

e typical (= not abnormal) values appearing in physical equations are usually of rea-
sonable size.
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6. HOW TO FORMALIZE THE PHYSICIST’S INTUITION OF TYPICAL (NOT ABNORMAL)

A formalization of this intuition was proposed and analyzed in [FK87, Kre09, KF06,
KKO03, KK03a, KK04, KLK98]. Its main idea is as follows. To some physicist, all the values
of a coefficient a above 10 are abnormal. To another one, who is more cautious, all the
values above 10 000 are abnormal. Yet another physicist may have another threshold above
which everything is abnormal. However, for every physicist, there is a value n such that all
value above n are abnormal.

This argument can be generalized as a following property of the set 7 of all typical
elements. Suppose that we have a monotonically decreasing sequence of sets A; D Ay D ...
for which () A4,, = 0 (in the above example, A, is the set of all numbers > n). Then, there

n

exists an integer N for which 7N Ay = 0.
We thus arrive at the following definition:

Definition 6.1. We say that T is a set of typical elements if for every definable decreasing
sequence {A,} for which (| A, = 0, there exists an N for which 7N Ay = 0.
n

Mathematical comment. The word “definable” is understood in the usual way. Let £ be a
theory, let P(x) be a formula from the language of the theory £, with one free variable x
so that the set {z | P(x)} is defined in £. We will then call the set {z | P(z)} L-definable.

Our objective is to be able to make mathematical statements about £-definable sets.
Thus, we must restrict definability to a subset of properties, so that the resulting notion of
definability will be defined in ZFC itself (or in whatever language we use). In other words,
we must have a stronger theory M in which the class of all £-definable sets is a countable
set. One can prove that such M always exists; for details, see, e.g., [KF06].

One can prove that the above definition of the set of typical elements is consistent in
the following sense:

Theorem 6.2. For every probability measure P on the universal set X which is defined on
all definable subsets of X, and for every real number € > 0, there exists a set T of typical
elements for which the lower probability is > 1 —e: P(T)>1—e.

Proof. There are countably many monotonically decreasing definable sequences with empty
intersection: {A,}: {AS)}, {Ag)}7 ...For each k, since the sequence is monotonically
decreasing and has an empty intersection, we have P (A%k)) — 0 as n — oo. Hence,

there exists Ny for which P (A%Z) < e-27% We can now take 7 & — U AE\]Z Since
k=1
P (Agljk) <e-27% we have
P (U 4@3) S p(A) <3t =
k=1 k=1 k=1

Hence,P(T):1—P<EjA§]\;z>21—6. [

k=1
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7. RELATION TO RANDOMNESS

The above notion of typicality is related to the notion of a random object (see, e.g.,
[LVO08]).

Namely, Kolmogorov and Martin-Lof proposed a new definition of a random sequence, a
definition that separates physically random binary sequences — e.g., sequences that appear
in coin flipping experiments or sequences that appear in quantum measurements — from
sequence that follow some pattern. Intuitively, if a sequence s is random, it satisfies all the
probability laws — like the law of large numbers, the central limit theorem, etc. Vice versa,
if a sequence satisfies all probability laws, then for all practical purposes we can consider it
random. Thus, we can define a sequence to be random if it satisfies all probability laws.

What is a probability law? In precise terms, it is a statement S which is true with
probability 1: P(S) = 1. So, to prove that a sequence is not random, we must show that it
does not satisfy one of these laws.

Equivalently, this statement can be reformulated as follows: a sequence s is not random
if s € C for a (definable) set C' (= —5) with P(C) = 0. As a result, we arrive at the
following definition:

Definition 7.1. We say that a sequence is random if it does not belong to any definable
set of measure 0.

(If we use different languages to formalize the notion “definable”, we get different ver-
sions of Kolmogorov-Martin-Lof randomness. )

It is easy to prove that this definition is consistent, in the sense that almost all sequences
are random. Indeed, every definable set C' is defined by a finite sequence of symbols (its
definition). Since there are countably many sequences of symbols, there are (at most)
countably many definable sets C. So, the complement —R to the class R of all random
sequences also has probability 0.

Informally, this definition means that (definable) events with probability 0 cannot hap-
pen. In practice, physicists also assume that events with a very small probability cannot
happen. For example, they believe that it is not possible that all the molecules in the origi-
nally uniform air move to one side of the room — although, from the viewpoint of statistical
physics, the probability of this event is not zero. This fits very well with a commonsense
understanding of rare events: e.g., if a coin falls head 100 times in a row (or a casino roulette
gets to red 100 times in a row), any reasonable person will conclude that this coin is not
fair.

It is not possible to formalize this idea by simply setting a threshold pg > 0 below which
events are not possible — since then, for N for which 2=V < pg, no sequence of N heads
or tails would be possible at all. However, we know that for each monotonic sequence of
properties A, with limp(4,,) = 0 (e.g., A, = “we can get first n heads”), there exists an
N above which a truly random sequence cannot belong to Ay. In [FK87, Kre09, KF06,
KKO03, KK03a, KK04, KLK98], we thus propose the following definition of a set of random
elements:

Definition 7.2. We say that R is a set of random elements if for every definable decreasing
sequence {A,} for which lim P(4,) = 0, there exists an N for which R N Ay = 0.

Let us show, on the example of coin tossing, that this definition indeed formalizes our
intuition. In this case, the universal set is the set of all sequences of Heads (H) and Tails
(T): U = {H, T}N Here, A, is the set of all the sequences that start with n heads. The
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sequence {A,} is decreasing and definable, and its intersection has probability 0. Therefore,
for every set R of random elements of U, there exists an integer N for which Ay N R = 0.
This means that if a sequence s € R is random and starts with N heads, it must consist
of heads only. In physical terms, this means that a random sequence cannot start with N
heads. This is exactly what we wanted to formalize.

The above definition is very similar to the definition of the set of typical elements; the

only difference is that the condition [ A, = 0 is replaced with a more general condition
n

lim P(A,,) = 0. This relation leads to the following relation between these two definitions.
Let R denote the set of the elements random in the usual Kolmogorov-Martin-Lof sense.
Then the following is true [Kre09]:

Theorem 7.3.

e Fuery set of random elements is also a set of typical elements.
e For every set of typical elements T, the intersection T N Ry is a set of random
elements.

Proof. If NA,, = 0 then P(A,) — 0. Thus, every set of random elements is also a set of
typical elements.

Vice versa, let T be a set of typical elements. Let us prove that 7 N Ry is a set of

random elements. Indeed, if P(NA,) = 0 then for By, def Ap — NA,, we have By, O By

and NB, = (. Thus, by definition of a set of typical elements, we conclude that there exists
an integer N for which ByN7T = (). Since P(NA,) = 0, we also know that (NA,)NRx = 0.
Thus, Ay = By U (NA,,) has no common elements with the intersection 7 N R . ]

8. PHYSICALLY INTERESTING CONSEQUENCES OF THESE DEFINITIONS

These definitions have useful consequences [FK87, Kre09, KF06, KK03, KK03a, KK04,
KLKO98|.

8.1. Ill-posed problems. The first example is related to inverse problems (see, e.g., [Tik77]).
These problems are related to the main objectives of science: ro provide (ideally) guaranteed
estimates for physical quantities and (ideally) guaranteed predictions for these quantities.
The problem with getting such guarantees is that estimation and prediction are ll-posed
problems in the sense that very small changes in the measurement results can lead to very
large changes in the reconstructed state.

One reason for this phenomenon is that measurement devices are inertial. As a result,
they suppress high frequencies w in the measured signal. For such high frequencies w, signals
@(t) and ¢(t) + A -sin(w - t) are indistinguishable. So, based on the measurements only, we
cannot tell whether the actual signal is the original signal ¢(t) or — for some large A — a
very difference signal ¢(t) + A - sin(w - £).

The existing approaches to this problem are based on some prior assumptions about
the actual signal. For example, if we know the actual probability distribution on the set of
all possible signals, we can get statistical regularization (filtering). If we know bounds on
the actual signal’s rate of change, e.g., if we know that |¢| < A for some known A, then we
can use Tikhonov reqularization. Experts can provide other information about the actual
signal, in which case we have expert-based regularization. The problem is that we rarely
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have this information. We may assume some bounds on the rate of change — but then there
is no guarantee that the prediction based on this assumption is correct.

In precise terms, this problem can be formulated as follows. Let S denote the set of
all possible states, and let R denote the set of all possible measurement results. In this
description, an (ideal) measurement is a continuous 1-1 mapping f : S — R. In principle,
we can reconstruct the original state s from the measurement result » = f(s) by applying
the inverse function s = f~!(r). However, the inverse function is, in general, not continuous.
As a result, very small measurement errors (changes in r) can lead to drastic changes in the
reconstructed state f~!(r). It turns out that if we take into account that the actual states
should be typical (i.e., belong to a set of typical states), then this problem disappears:

Definition 8.1. A definable metric space S is called definably separable if there exists a
definable sequence si, ..., Sy, ... which is everywhere dense in S.

Theorem 8.2. Let S be a definably separable metric space, let T be a set of all not abnormal
elements of S, and let f: S — R be a continuous 1-1 function. Then, the inverse mapping
f~': R — S is continuous for every r € f(T).

Proof. 1t is well known that if a f is continuous and 1-1 on a compact, then the inverse
function f~! is also continuous. So, to prove our result, it is sufficient to prove that the set
f(T) is pre-compact, i.e., that its closure is compact. In a metric space, a set X is compact
if and only if it is closed and for every ¢, it has a finite e-net.

Since the metric space S is definably separable, there exists a definable sequence

n
S1y...,8n,... which is everywhere dense in S. Let us take take A, def _ U B.(s;). Since
i=1
s; are everywhere dense, we have NA, = (). Hence, there exists N for which Ay N7 = 0.
N N
Since Ay = — U Bc(s;), this means 7 C U B(s;). Hence {si,...,sy} is an e-net for
i=1 i=1
T. 0]

This continuity means that, in contrast to general ill-defined problem, if we perform
measurements accurately enough, we can reconstruct the state of the system with any
desired accuracy.

8.2. Justification of physical induction. What is physical induction? This is a conclu-
sion that physicists make: if a property P is satisfied in the first N experiments, and this
number N is sufficiently large, then the property is satisfied always. It turns out that our
definition enables us to formalize this idea.
For every property P and for every system o, we can define a sequence of values s def

5189 ..., where:

e s; =T if P holds in the i-th experiment with the system o, and

e s; = F if =P holds in the i-th experiment with the system o.
Let X be the set of all such sequences. It is reasonable to require that if the system is
typical, then the resulting sequence s is also typical i.e., belongs to some set T of typical
elements.

Theorem 8.3. For every set of typical element T C X, there exists an integer N such that
if or some s € T, we have s1=...= Sy =T, then s, =T for all m.
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Proof. Let us consider the following sequence of sets:

Andéf{ozsl:...zsn:T&Elm(sm:F)}.

Once can easily check that A, O A, and UA,, = (). Thus, there exists an integer N for

which Ay N7 = (). This means that if s € T and s; = ... = sy = T, then we cannot have
m for which s, = F, i.e., s, = T for all m. 0]

In other words, there exists an N such that if for a typical sequence, a property is
satisfied in the first N experiments, then it is satisfied always — this is exactly physical
induction.

9. NEW RESULTS: WHEN WE RESTRICT OURSELVES TO TYPICAL ELEMENTS,
ALGORITHMS BECOME POSSIBLE

In this paper, we analyze the computability consequences of the above definitions.
Specifically, we show that most negative results of computability analysis disappear if we
restrict ourselves to typical elements.

9.1. Deciding equality. Our first result is about checking whether two given real numbers
are equal or not, the problem which, as we have mentioned, is, in general, algorithmically
unsolvable.

Theorem 9.1. For every set of typical pairs of real numbers T C IR2, there exists an
algorithm, that, given computable real numbers (x,y) € T, decides whether x =y or not.

Proof. The main idea behind this proof is that we can take the sets

Ap =A{(z,y) : 0 < d(z,y) <27"}.
Then, we have A, D A1 and NA, = (), so there exists an integer N for which AyNT = 0,
i.e., for which, if (z,y) € T, then either d(z,y) = 0 (i.e., x = y) or d(x,y) > 27V,

Thus, if we know that the pair (x,y) belongs to the set 7, we can decide whether z = y
by using the following algorithm. We compute d(zx,y) with accuracy 2-(N+2) i e., compute
d such that |d(z,y) — d| < 2-N+2) Then:

o if d > 2N+ then d(z,y) > d — 2~ V+2) > 2=(N+1) _ 9=(N+2) 5 ( hence z # y;
o if d < 2=WNH+D then d(z,y) < d+2-N+2) < 2=(V+1) 4 9=(N+2)  _9-N hence
x=y.
L]

Comment. This and following results are similar to results of Matheiu Hoyrup on layerwise
computability (see, e.g., [Hoyll]: we have computability on each set IC, and — as we have
mentioned earlier — we can have such sets with probability P(K) > 1 — ¢, for any given e.
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9.2. Finding roots. As we have mentioned, in general, it is not possible, given a com-
putable function, to compute its root. This becomes possible if we restrict ourselves to
typical functions:

Theorem 9.2. Let K be a computable compact, and let X be the set of all functions
f: K — IR that attains 0 value somewhere on K. Then, for every set of typical elements
T C X, there exists an algorithm that, given a function f € IC, computes a point x at which

f(z)=0.

Moreover, we can not only produce a root x, we can actually compute, for any given n,
an 2~ "-approximations to the corresponding set of roots {z : f(x) = 0} in the sense of the
Hausdorff distance

dy(A, B) 4 hax <sup d(a, B),sup d(b, A)> ,
acA beB

where d(a, B) def binlfg d(a,b).
€

Comment. In other words, there exists an algorithm that, given a typical function f(x) on
a computable compact K that attains a 0 value somewhere on K, computes a root x — and
also computes an 27 "-approximations to the corresponding set of roots.

Proof. To compute the set R def {z : f(x) = 0} with accuracy € > 0, let us take an (¢/2)-net
{z1,...,2,} € K. Such a net exists, since K is a constructive compact set.

For each i, we can compute ¢’ € (¢/2,¢) for which B; e {z : d(z,x;) < €'} is a
computable compact set; see, e.g., [Bis67]. It is possible to algorithmically compute the
maximum of a computable function on a computable compact set; thus, we can compute

the value m; & min{|f(z)| : « € B;}. Since f € T, similarly to the previous proof, we can
prove that there exists an integer N for which, for all f € T and for all ¢, we have either
m; = 0 or m; > 2~N. Thus, by computing each m; with accuracy 2~ (V+2) | we can check
whether m; = 0 or m; > 0.
We claim that dg (R, {z; : m; = 0}) < ¢, i.e., that:
e for every point z; for which m; = 0, there exists an e-close root x, and
e for every root z, there exists an e-close point x; for which m; = 0.

Indeed, if m; = 0, this means that the minimum of a function |f(z)| on the ¢’-ball B; with
a center in xz; is equal to 0. Since the set K is compact, this value 0 is attained, i.e., there
exists a value z € B; for which f(z) = 0. From z € B;, we conclude that d(z,z;) < &’ and,
since ¢’ < e, that d(z,x;) < e. Thus, z; is e-close to the root z.

Vice versa, let x be a root, i.e., let f(z) = 0. Since the points z; form an (g/2)-net,
there exists an index i for which d(x,z;) < €/2. Since £/2 < &', this means that d(z, z;) < &
and thus, © € B;. Therefore, m; = min{|f(x)| : x € B;} = 0. So, the root z is e-close to a
point z; for which m; = 0. ]

9.3. Computing fixed points. In general, it is not possible, given a computable function
from a constructive compact set to itself, to compute its fixed point. This becomes possible
if we restrict ourselves to typical functions:
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Theorem 9.3. Let K be a computable compact, and let X be the set of all computable
functions f : K — K that have a fized point x for which f(x) = x. Then, for every set of
typical elements T C X, there exists an algorithm that, given a function f € KC, computes
a point x at which f(x) = x.

Moreover, we can not only produce such a fixed point, we can actually compute, for any
given n, an 2~ "-approximations to the corresponding set of all fixed points {x : f(x) = z}.

Comment. In other words, there exists an algorithm that, given a typical function f(z)
on a computable compact K that has a fixed point, computes this fixed point — and also
computes an 2~ "-approximations to the corresponding set of all fixed points.

Proof. This problem can be reduced to the root finding problem if we take into consideration
that that f(x) = 2 if and only if g(z) = 0, where g(z) def d(f(z),x). L]

9.4. Locating global maxima. In general, it is not possible, given a computable function,
to find a point where it attains its maximum. This becomes possible if we restrict ourselves
to typical functions:

Theorem 9.4. Let K be a computable compact, and let X be the set of all functions
f: K = IR. Then, for every set of typical elements T C X, there exists an algorithm that,
given a computable function f € K, computes a point x at which f(z) = max f(y).

Yy

Moreover, we can not only produce such a point, we can actually compute, for any
given n, an 2~ "-approximations to the corresponding set of global maximum locations

{o: 10 = max ).

Comment. In other words, there exists an algorithm that, given a typical function f(x) on
a computable compact K, computes a point where this function attains its maximum — and
also computes an 27 "-approximations to the corresponding set of all such points.

Proof. This problem can be reduced to previous one if we take into consideration the fact
that maximum max f(y) of a computable function on a computable compact is computable
Yy

and that that f(x) = max f(y) if and only if g(z) = 0, where g(z) def f(z) =max f(y). [
y y

9.5. Computing minimax strategies. Is it similarly possible to compute the optimal
minimax strategies, i.e., find x such that

min f(x,y) = maxmin f(z,y).
y z oy

Indeed, this problem is equivalent to finding location of the maximum of a computable

function g(z) 4 hin flx,y).
y
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