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Abstract—Biological weapons are difficult and expensive to
detect. Within a limited budget, we can afford a limited number
of bio-weapon detector stations. It is therefore important to find
the optimal locations for such stations. A natural idea is to place
more detectors in the areas with more population – and fewer in
desert areas, with fewer people. However, such a commonsense
analysis does not tell us how many detectors to place where.
To decide on the exact placement of bio-weapon detectors, we
formulate the placement problem in precise terms, and come up
with an (almost) explicit solution to the resulting optimization
problem.

Formulation of the practical problem. Biological weapons
are difficult and expensive to detect. Within a limited budget,
we can afford a limited number of bio-weapon detector
stations. It is therefore important to find the optimal locations
for such stations.

Commonsense analysis of the problem. A natural idea is
to place more detectors in the areas with more population
– and fewer in areas with fewer people, e.g., in the desert
areas. However, such a commonsense analysis does not tell us
how many detectors to place where. To decide on the exact
placement of bio-weapon detectors, we must formulate the
placement problem in precise terms.

Objective function. The above commonsense idea is based
on a (reasonable) assumption that the adversary’s objective is
to kill as many people as possible. Vice versa, our objective
is to minimize the potential effect of a bio-weapon attack.

Comment. In this paper, we mainly concentrate on the above
objective function. This objective function may not always
fully describe the adversary’s objectives. For example, one of
the objectives of political terrorism may be extra publicity for
the cause. From this viewpoint, an adversary may prefer a
scenario with a smaller number of victims if several of these
victims are well-known. It is therefore desirable to formu-
late the objective functions that describe this (and similar)
approaches, and extend our optimization analysis to the case
of such more complex objective functions.

Towards precise formulation of the problem: what is
known. Since the objective is to target as many people as
possible, to analyze this situation, we need to know how many

people live at different locations. In precise terms, we assume
that we know, for every possible location x, the population
density ρ(x) in the vicinity of this location.

We assume that we know the number N of detectors that
we can afford to place in the given territory.

We also assume that we know the efficiency of a bio-
weapons detector station. We will estimate this efficiency by
the distance d0 at which this station can detect an outbreak of
a disease.

For many diseases, d0 = 0 – we can only detect a disease
when the sources of this disease reach the detecting station.

However, it is quite possible that for some diseases, we
have a super-sensitive equipment that is able to detect the
concentration of the bio-weapons agent at a level below the
threshold that makes this agent dangerous to the population.
In this case, we can detect the coming disease before it starts
affecting people in the direct vicinity of the station – i.e., in
effect, we have d0 > 0.

For simplicity, we assume that the disease spreads equally
fast in all directions.

Comment. This is also a somewhat simplifying assumption,
since in reality, a disease spreads

• either with human movements – in which case in the
vicinity of an interstate it spreads faster in the direction
of the interstate,

• or with wind – in which case it spreads faster in the
direction of the prevailing winds.

How we can describe the detector placement. On a large-
scale basis, we need to decide how many detectors to place
in different areas. In other words, we need to find the density
ρd(x) of detector placement – the number of detectors per unit
of area (e.g., a square mile).

Under this description, the number of detectors in an area
of size ∆x is approximately equal to ρd(x)·∆x, so the overall
number of detectors can be obtained by adding these amounts,
as
∫
ρd(x) dx. Thus, the constraint that we have exactly N

detecting stations can be described as∫
ρd(x) dx = N. (1)



Optimal placement of sensors: at the vertices of a hexag-
onal grid. We want to place the sensors in such a way that
the largest distance D to a sensor is as small as possible.
Alternatively, if D is fixed, we want to minimize the number
of sensors for which every point is at a distance ≤ D from
one of the sensors. In geometric terms, this means that every
point on a plane belongs to a circle of radius D centered on
one the sensors – and thus, the whole plane is covered by such
circles. Out of all such coverings, we want to find the covering
with the smallest possible number of sensors.

It is known that the smallest such number is provided by
an equilateral triangle grid, i.e., a grid formed by equilateral
triangles; see, e.g., [1]. Hence, in this paper, we will select
such a grid.

Locations of detector stations are assumed to be known
to the adversary. Bio-weapon detector stations are not easily
concealable. Thus, we assume that the adversary knows the
locations of different stations.

How to estimate the effect of placing bio-weapons at a
location x. Let us assume that we have already decided how
many detectors to place in different regions, i.e., that we have
already selected the density function ρd(x).

Within a small region of area A, we have A·ρd(x) detectors.
Thus, if we, e.g., place these detectors on a grid with distance
h between the two neighboring ones in each direction, we
have:
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For this placement, the set of all the points which are closest
to a given detector forms a hexagonal area:
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This hexagonal area consists of 6 equilateral triangles with
height h/2:
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In each triangle, the height h/2 is related to the size s by
the formula

h

2
= s · cos(60◦) = s ·

√
3

2
, (2)

hence

s =
h√
3
= h ·

√
3

3
. (3)

Thus, the area At of each triangle is equal to

At =
1

2
· s · h

2
=

1

2
·
√
3

3
· 1
2
· h2 =

√
3

12
· h2. (4)

So, the area As of the whole set is equal to 6 times the triangle
area:

As = 6 ·At =

√
3

2
· h2. (5)

Each point from the region is the closest to one of the points
from the detector grid, so the region of area A is thus divided

into A · ρd(x) (practically) disjoint sets of area
√
3

2
· h2. So,

the area of the region is equal to the sum of the areas of these
sets:

A = (A · ρd(x)) ·
√
3

2
· h2. (6)

Dividing both sides of this equality by A, we conclude that

1 = ρd(x) ·
√
3

2
· h2, (7)

and hence, that
h =

c0√
ρd(x)

, (8)

where we denote

c0
def
=

√
2√
3
. (9)

From the viewpoint of the adversary, it is desirable to place
the bio-weapon at a location which is the farthest away from
the detectors – so that it will take the longest time to be
detected. For the grid placement, this location is at one of
the vertices of the hexagonal zone – at which the distance

from each neighboring detector is equal to s = h ·
√
3

3
. By

using formula (8), we can determine s in terms of ρd(x), as

s =
c1√
ρd(x)

, (10)



where we denote

c1 =

√
3

3
· c0 =

4
√
3 ·

√
2

3
. (11)

Once the bio-weapon is placed at this location, it starts
spreading until its spread area reaches the threshold distance d0
from the detector. In other words, it spreads for the distance
s − d0. During this spread, the disease covers the circle of
radius s− d0 and area π · (s− d0)

2.
By using the known population density ρ(x), we can

conclude that the number of affected people n(x) is equal
to

n(x) = π · (s− d0)
2 · ρ(x). (12)

Substituting the expression (10) into this formula, we conclude
that

n(x) = π ·

(
c1√
ρd(x)

− d0

)2

· ρ(x). (13)

Adversary’s choice of the location. According to our assump-
tion about the adversary’s objective function, the adversary
wants to maximize the number of affected people. Thus, the
adversary will select a location x for which this number n(x)
(as described by the expression (13)) is the largest possible.
The resulting damage n is thus equal to the largest of the
values n(x):

n = max
x

π ·

(
c1√
ρd(x)

− d0

)2

· ρ(x)

 . (14)

Our objective. Our objective is to minimize this overall
damage, i.e., to select the detector placement ρd(x) so as to
minimize this value n.

In other words, we want to minimize the worst-possible
(maximal) damage. This minimax formulation is typical for
zero-sum games, in which the interests of the two sides are
exactly opposite; see, e.g., [3].

Thus, we arrive at the following problem:

Resulting formulation of the problem in precise terms.
We are given the population density ρ(x), the value d0, and
the total number of detectors N . We want to find a function
ρd(x) that minimizes the expression (14) under the constraint∫
ρd(x) dx = N .

Analysis of the resulting optimization problem. The damage
is determined by the maximum n of the function n(x). Let
us assume that we have already selected the optimal detector
density function, i.e., the function ρd(x) that minimizes the
desired objective function n.

Let us show that the damage function n(x) corresponding to
this selection is constant. We will prove this by contradiction.
If the function n(x) is not constant, this means that at some
locations x, the values n(x) are smaller than the maximum
n. In this case, we can slightly increase the detector density

at the locations where n(x) = n, at the expense of slightly
decreasing the location density at locations where n(x) < x.

The value of the expected damage n(x) monotonically
decreases with the detector density ρd(x). This mathematical
observation is in perfect accordance with common sense: the
more detectors we place at some location, the earlier we will
be able to detect bio-weapons and thus, the smaller will be
the resulting damage.

Thus, the above re-arrangement of detectors will decrease
the value of n(x) at all locations where n(x) = n – and
slightly increase at all other locations. As a result, after this
detector relocation, the overall maximum n = max

x
n(x) will

decrease. This possibility contradicts to our initial assumption
that the value n is the smallest possible. Thus, the function
n(x) is indeed constant.

Let us denote this constant by n0. Then, from the formula
(13) for n(x), we conclude that

n0 = π ·

(
c1√
ρd(x)

− d0

)2

· ρ(x). (15)

Thus, we conclude that(
c1√
ρd(x)

− d0

)2

=
n0

π · ρ(x)
, (16)

c1√
ρd(x)

− d0 =
c2√
ρ(x)

, (17)

where we denote

c2
def
=

√
n0√
π
. (18)

Thus, we get
c1√
ρd(x)

= d0 +
c2√
ρ(x)

, (19)

√
ρd(x) =

c1

d0 +
c2√
ρ(x)

, (20)

and

ρd(x) =
c21(

d0 +
c2√
ρ(x)

)2 , (21)

From (11), we conclude that

c21 =
2 ·

√
3

9
, (22)

hence

ρd(x) =
2 ·

√
3

9
· 1(

d0 +
c2√
ρ(x)

)2 . (23)

The value c2 must be determined from the equation (1).
Thus, we arrive at the following solution:



Solution: the optimal detector location is characterized by the
detector density

ρd(x) =
2 ·

√
3

9
· 1(

d0 +
c2√
ρ(x)

)2 ,

where the parameter c2 must be determined from the equation∫
2 ·

√
3

9
· 1(

d0 +
c2√
ρ(x)

)2 dx = N. (24)

Case of d0 = 0. As we have mentioned earlier, in some
cases, we have d0 = 0. In this case, the formula (23) takes a
simplified form

ρd(x) = C · ρ(x) (25)

for some constant C. In this case, the detector density is
exactly proportional to the population density.

Substituting the expression (25) into the constraint (1), we
conclude that

N = C ·Np, (26)

where Np =
∫
ρ(x) dx is the total population. Thus, C =

N

Np
and the optimal detector placement (25) takes the form

ρd(x) =
N

Np
· ρ(x). (27)

Towards more relevant objective functions: fuzzy tech-
niques may help. In our computations, we assumed that the
main objective of the adversary is to maximize the number
of people affected by the bio-weapon, i.e., to maximize the
value

∫
A
ρ(x) dx, where A is the region were people become

affected before the bio-weapon is detected.

As we have mentioned, the actual adversary’s objective
function may differ from this simplified objective function.
For example, the adversary may take into account that different
locations have different publicity potential. In this case, instead
of maximizing the total number of affected people, the adver-
sary may want to maximize the weighted value

∫
A
ρ̃(x) dx,

where ρ̃(x)
def
= w(x) ·ρ(x), and the weight w(x) describes the

publicity-related importance of the location x.
From the purely mathematical viewpoint, once we have

fixed the weight functions w(x), we get the exact same
problem as before – with the only difference that we now
have “effective population density” ρ̃(x) instead of the original
density ρ(x). Thus, if we know the exact weight function
w(x), then we find the optimal detector density ρd(x) by
substituting the effective population density ρ̃(x) instead of
ρ(x) into the above formulas.

The problem is we do not know the exact weights, we
only have expert estimates for these weights, estimates that
are formulated in terms of words form natural language. To
formalize these estimates, we can use fuzzy techniques; see,
e.g., [2], [4].

Once we have the fuzzy values of w(x) and, thus, ρ̃(x), the
above formulas lead to fuzzy recommendations for the desired
detector density ρd(x).
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