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Abstract

The continuing miniaturization and parallelization of processing hardware has facilitated the
development of mobile and field-deployable systems that can accommodate terascale processing
within once prohibitively small size and weight constraints. Unfortunately, the added
computational capability of these small systems often comes at the cost of larger power demands,
an already strained resource in these embedded systems. This study explores the power issues in a
specific type of field-deployable system, Mobile Radar. Specifically, we focus on a computationally
intensive phase of Synthetic Aperture Radar, Image Formation (IF), and evaluate performance
tradeoffs in terms of time-to-solution, output image quality, and power consumption for two
different implementations, single- and double-precision, of two different IF algorithms, one
frequency-domain based and the other time-domain based. Preliminary results show that in some
CPU-based instances single-precision IF leads to significant reductions in time-to-solution and, thus,
total energy consumption (over 50%) with negligible but possibly acceptable SAR image output
degradation. In the near future, this ongoing study will reevaluate these results, i.e., SAR IF power
consumption vs. performance tradeoffs with more sophisticated IF workloads and output quality
metrics, finer-grain performance and power measurement methodologies, and more
computationally powerful embedded HEC devices, i.e., GPGPUs.

1. Introduction

For the past decade, power consumption has played a gradually increasing role in the design of
run-time management systems for High-End Computing (HEC) environments. In particular, power
is becoming the limiting factor for large HEC environments, such as computing clusters, and small
HEC environments, such as embedded many-core systems [Amarasinghe, et al. 2009].

In the case of large HEC systems, power constraints arise from the cumulative effect of scaling
to hundreds of thousands of processors, which require massive power and cooling infrastructures,
as well as often prohibitively high utility costs. In the case of small embedded HEC environments,
power constraints arise from scarcity, i.e., they often depend on self-contained power supplies that
must operate within strict size and weight constraints and, thus, limit their capacity. This study
focuses on these smaller embedded HEC environments.

Although embedded systems, in general, have always dealt with power as a rationed resource,
embedded HEC systems have additional power demands because of their larger computational
capacity. For example, the continuing miniaturization of processing elements has enabled terascale
devices, such as GPGPUs, to fit into once prohibitively small enclosures. Although these specialized
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terascale devices are more power efficient than their high-end general purpose counterparts, e.g.,
multi-core processors, their overall power draw can be twice that of a regular CPU, thus, further
increasing the power demands on an already stretched resource.

Nevertheless, for embedded systems where functional capability is constrained by
computational capacity, the advent of these small HEC devices greatly motivates the search for
power management solutions that can circumvent, or at least ameliorate, their added power
demands, thus enabling them to function in realistic power-limited scenarios.

One example where embedded HEC systems can lead to added functional capability is in the
area of Mobile Radar systems. Previously, weight and space constraints greatly limited the amount
of processing hardware and, thus, computational intensity of radar processing software. This often
led to compromises, where less compute-intensive algorithms were used at the expense of radar
imaging quality and flexibility. This has changed in recent years as feasibly small and powerful
processing units now can execute applications based on more compute-intensive algorithms, such
as backprojection-based Synthetic Aperture Radar (SAR) applications, within realistic time-to-
solution requirements. However, Mobile Radar systems are largely self-contained and must run for
long periods of time without any connection to an external power source. Thus, although radar
processing power is no longer constrained by size and weight as in the past, power remains a
limiting factor.

This study represents a first step towards the exploration of adaptive power management in
such systems. It explores the potential effectiveness of application-initiated resource management
techniques that may enable radar-processing software to use power more efficiently by switching
between implementations that are functionally equivalent but that differ in terms of power vs.
performance tradeoffs. Specifically, we define the goal of this study as follows:

Study Goal

Investigate the power consumption vs. performance, ie, watt and energy usage vs. radar
image fidelity and image formation time, of single-precision and double-precision
implementations of two SAR Image Formation techniques, Fourier-based (frequency-domain
based) and backprojection-based (time-domain based) techniques, which differ in
computational intensity and potential radar imaging capability.

The remainder of this report is organized as follows. Section 2 describes Synthetic Aperture
Radar and, in particular, the two main Image Formation (IF) techniques used in most SAR
implementations. Section 3 describes the two SAR workloads, each containing a representative IF
algorithm, which we use in this study along with their respective input datasets. Section 4 describes
power management techniques in general and the specific techniques that are explored in this
study. Section 5 describes our experimental methodology, including descriptions of the
experimental environment, power measuring methodology, and performance evaluation metrics.
Section 6 describes preliminary results, while Section 7 delineates pending investigations for this
study. Finally, Section 8 wraps up the paper by presenting preliminary conclusions.
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2. Synthetic Aperture Radar and Image Formation

Mobile Radar (MR) systems are used when the environment of interest is remote and/or non-
static, e.g., in reconnaissance operations. Thus, an MR system requires an encapsulated radar
system that can travel to the desired location. The required mobility of MR devices limits the size
and weight of the system, including the size of the radar antennas and, thus, limits the antennas’
sensing capability. To circumvent this limitation, MR implementations often use Synthetic Aperture
Radar (SAR), which enables a system with relatively small radar antennas to acquire images
comparable to those produced by prohibitively larger sensing equipment. SAR accomplishes this by
reconstructing a large radar image from sets of sensor data, i.e., one set per antenna, which span the
area of interest.

Although SAR can produce large, high-resolution radar images from manageably small sensors,
a major drawback is that it requires extra processing power to construct the image from the
composite set of sensor data - this is known as Image Formation (IF). Often, this makes IF the most
compute-intensive phase of a SAR workload. For example, the mathematically ideal method for IF is
the Matched Filtering approach, which has O(N4) complexity for a 2D image [Willis & Griffiths
2007]. Since the size and weight constraints of MR devices also limit the size and, thus, the
processing capability of associated computing hardware, the choice of IF algorithm to be used in
MR workloads historically has been limited by this processing capability.

The processing bottleneck of the IF phase of SAR has led to many algorithms that reduce the
complexity of image formation while attempting to maintain image quality. These IF algorithms can
be divided into two main categories: frequency- and time-domain approaches [Rahman 2010].

Frequency-domain IF methods, such as Range Migration, also known as w-K [Milman 1993],
reduce IF complexity by using Fast Fourier Transforms (FFT) to produce a frequency
representation of sensor data that is much easier to process. Although this approach reduces IF
time complexity from O(N4) to a more reasonable O(N? log: N) [Na, et al. 2006], it requires the radar
sensor to capture data along a linear track and, thus, the output quality can be degraded by
nonlinear mobility; this linear-tracking restriction also can pose a problem for ultra-wide-beam
radar systems [Ulander, et al. 2003].

Unlike frequency-domain IF, time-domain IF methods, such as filtered-backprojection [Munson
1983], do not have linear-tracking restrictions on sensor data capture, however, they are more
computationally demanding, i.e., on the order of O(N3) for a 2D image [Na, et al. 2006]. Although
backprojection methods exist that run faster, i.e., on the order of O(N? log, N), the performance
benefit comes at the cost of lower image quality [Basu & Bresler 2000]. In fact, these optimized
backprojection methods can produce lower quality images compared to equally-fast frequency-
domain methods [Hunter, et al. 2003]. (Note that previous work has extended the theoretical
comparisons between frequency- and time-domain IF methods with empirical observations [e.g.,
Hunter, et al. 2003; Na, et al. 2006; Vu, et al. 2008]).
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Thus, if we want to take advantage of the less restrictive sensor data specifications of the
backprojection algorithm while maintaining image quality levels comparable to linear-tracking
frequency-domain IF, it is apparent, in general, that the hardware should be powerful enough to
execute O(N3) algorithms within realistic time-to-solution constraints for realistic problem sizes.
Fortunately, some computational engines can achieve this task relatively well. For example, FPGA-
and ASICS-based MR processors for Unmanned Aerial Vehicles such as the SRC-7 [SRC], output
respectable performance numbers for SAR backprojection benchmarks [Pointer 2008]. However,
such specialized devices require time-consuming and expensive design and/or implementation
effort, and their re-programmability is either non-trivial or not possible. With respect to more
general-purpose hardware, SAR backprojection algorithms are highly parallelizable and, thus, ideal
for small massively parallel commodity terascale devices such General Purpose GPUs, i.e.,, GPGPUs,
which are less expensive and more flexible than FPGA technologies [Neophytou, et al. 2007], but
much more power demanding.

Accordingly, we are in the process of setting up an experimental environment in which to
evaluate SAR backprojection workloads executed on GPGPUs in terms of time-to-solution, output
image quality, and power consumption. In the meantime, this preliminary study, based on CPU,
rather than GPGPU, measurements, evaluates these performance tradeoffs for two different
implementations, single- and double-precision, of two different IF algorithms, one frequency-
domain based and the other time-domain based. Although our future focus is on backprojection
(time-domain based) algorithms, we include a frequency-domain based algorithm for comparison.
The following section describes these SAR workloads and input datasets in detail.

3. Target SAR Workloads and Datasets

The two SAR workloads and associated input data sets are described below. The first is Scalable
Synthetic Compact Application #3, SSCA3, a frequency-domain SAR workload, while the second is
Unoptimized Filtered Backprojection, UFB, a time-domain SAR workload.

3.1 Frequency-domain SAR Workload - SSCA3

The Scalable Synthetic Compact Application #3 (SSCA3) workload [Bader, et al. 2006] belongs
to a suite of benchmarks developed by DARPA’s High Productivity Computing Systems (HPCS)
project. The official release of SSCA3 is a sequential MATLAB implementation that represents a SAR
workload consisting of four phases of execution:

1. Data Generation: Creates a synthetic SAR sensor dataset from the spotlight measurement
of a simulated, uniform, lattice of point reflectors. The problem size of the dataset is
determined by SSCA3’s input parameters.

2. Image Formation: Takes the generated synthetic SAR dataset and performs w-K Image
Formation to construct the SAR image.

3. Target Insertion: Inserts target templates randomly across the constructed SAR image.
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4. Target Detection: Applies a simplified Automatic Target Recognition scheme that
compares the original SAR image with the target-populated version and produces a
disparity map showing only the detected target templates.

Since we are only interested in IF methods for this study, we restrict our analysis to SSCA3’s
second phase of execution, which implements a frequency-domain w-K Image Formation algorithm
with compute complexity O(N2 log: N).

3.2 Time-domain SAR Workload - Unoptimized Filtered Backprojection

Although there are several SAR backprojection implementations in the literature, e.g.,
[Neophytou, et al. 2007; Cordes 2009; Fasih & Hartley 2010; Park & Shires 2010], we chose the
implementation described in [Gorham & Moore 2010] for this preliminary study. Written by
researchers at Air Force Research Laboratory (AFRL), this code implements a simple, unoptimized
filtered backprojection algorithm for SAR Image Formation with time complexity O(N3). In this
study, we refer to this algorithm as the Unoptimized Filtered Backprojection algorithm or UFB for
short.

We chose the UFB implementation for two main reasons: 1) It was readily available at the
beginning of this study, thus, allowing us to get some early preliminary results (Section 7 describes
our plans to analyze more sophisticated and realistic implementations). 2) UFB is a sequential
implementation written in MATLAB. We found the latter preferable as it enabled us to study the
backprojection implementation in the same execution environment as we are studying SSCA3, thus,
giving us some potential space for comparison between the methods, notwithstanding their
different datasets.

UFB can process two different SAR input datasets, both of which are publicly available through
AFRL’s Sensor Data Management System website [SDMS]:

1) “SAR-Based GMTI in Urban Environment Challenge Problem” [Scarborough, et al. 2009]: AFRL
created this dataset to facilitate the development of Ground Moving Target Indicator (GMTI)
systems. It consists of a 2-pass, 71-second portion of X-band SAR sensor measurements taken
over a scene consisting of numerous buildings and civilian vehicles. The radar signals were
transmitted and received horizontally, i.e., the radar performed in an HH polarization
configuration.

2) “GOTCHA 2D/3D Volumetric Imaging Challenge Problem” [Casteel, et al. 2007]: The dataset
consists of an 8-pass set of X-band SAR sensor measurements taken in circular mode over a
parking lot and adjacent grass area. The data were captured in four radar polarization modes
(HH, HV, VH and VV), each partitioned into 360 azimuth angle observations. This study ran the
UFB workload for each polarization mode in this dataset. However, we restricted the data in
each polarization input set to the 260-360 azimuth angle measurements so that the execution
times were long enough for power measurements to stabilize, yet short enough to perform the
experiments in a timely manner.
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Table 1. Summary of target SAR workloads and datasets used in this study

Target SAR Image Formation | Computational Input Dataset Dataset
Workload Method Complexity Size
DARPA-SSCA3 Frequency-domain O(N? logz N) Uniform point reflectors 488MB
(w-K) (synthetically generated)
AFRL-UFB Time-domain AFRL GMTI Challenge 2.95GB
(filtered- (HH polarization)
backprojection) O(N?) AFRL GOTCHA Challenge 146MB
(230-360 azimuth range) (for each
(HH, HV, VH, and VV input set)
polarization input sets)

4. Power Efficiency Techniques

As discussed in Section 1, as weight and size gradually play a smaller role in limiting the
computational power of embedded HEC systems, e.g, MR SAR processing systems, power
consumption is a significant and growing concern. Since compute capacity is expected to outpace
power capacity for the near future, intelligent means of increasing power efficiency will be the main
approach for developing energy-feasible HEC systems [Brown and Reams 2010].

In general, there are two main ways of regulating power consumption and, thus, increasing the
power efficiency of a computing system: 1) management of system resource availability and 2)
management of application resource requirements. We discuss these two approaches in detail
below.

4.1 Management of System Resource Availability

Restricting resource availability places the responsibility of power management on the
shoulders of the computing system. In this scenario, the system enforces resource capacity limits to
meet power consumption constraints. Current computing hardware and system software already
provide many methods of restricting resource availability. These system-initiated power-saving
functionalities can be placed into two categories [Liu and Zhu 2010]:

1) Dynamic Resource Scaling: Reduces active power, i.e., usage-based power consumption, by
slowing/reducing the speed/intensity of a resource. Examples include reducing the
frequency of a processor (known as Dynamic Voltage Scaling), network bandwidth, and/or
antenna signal strength.

2) Dynamic Resource Sleeping: Reduces both active power and passive power, i.e., idle
consumption due to power leakage, by hibernating or turning off a resource. Examples
include turning off processors, processing cores, circuit components (known as Power
Gating), memory banks, and/or disks.

These system-initiated techniques often are implemented as black-box solutions, where the
system is largely unaware of the running application’s resource characteristics and, thus, manages
resource availability based largely on runtime monitoring and adaptation heuristics.
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4.2 Management of Application Resource Requirements

Unlike the previous system-initiated approach, managing an application’s resource
requirements places the responsibility of power management on the shoulders of the running
process. This approach to power management has received less attention, compared to the system-
initiated approach; most adaptive application-initiated resource management techniques largely
target execution time and output quality rather than power efficiency. Additionally, often these
application-initiated approaches are case-by-case solutions that require significant effort on the
part of the application developer and are not very generalizable to other applications. However, in
the case of floating-point intensive workloads, there are two general ways of reducing power
consumption that require relatively less in-depth knowledge of the target workload:

1) Reduction of Floating-point Precision: Currently, most general-purpose processor
Floating-Point Units (FPUs) support both single-precision (32-bit) and double-precision
(64-bit) floating-point operations in hardware. This gives us the option of selecting which
precision to use in our workloads. Choosing to run in single-precision mode over double-
precision is potentially beneficial, from a power-consumption perspective, in three ways:

i. Since single-precision instructions do not use all the FPU hardware required for
double-precision instructions [Preiss, et al. 2009], this means that, theoretically, they
require less active power to execute and, thus, reduce overall power consumption as
compared to double-precision operations.

ii. If the hardware supports Power Gating technology, as mentioned in 4.1, single-
precision execution allows the system to turn off the unused portions of the FPU, thus,
reducing not only active power but passive power as well.

iii. Single-precision instructions run faster than double-precision instructions, thus, even
if for some reason active or passive power is not reduced, the overall energy
consumption, which is the product of power and execution time, can decrease. Low
energy consumption is ultimately what we strive for in a power-constrained
environment.

2) Removal of Floating-point Operations: Most mainstream processors have different
functional units that compute integer/logical operations (ALUs) and floating-point
operations (FPUs) separately. In general, FPUs have a larger and denser transistor footprint
than ALUs, making floating-point operations more power expensive than integer
operations. Given this fact, special-purpose low-power processors often have been designed
without FPUs, thus, requiring floating-point operations to be simulated in software using
equivalent, but slower, integer operations, i.e. fixed-point arithmetic. We can take
advantage of the large body of work on systematic floating-point-to-fixed-point code
translation [Han 2006] to create fixed-point, low-power equivalents of floating-point
algorithms enabling us to decide statically, or at runtime, which version to run given power
and time-to-solution constraints.

In summary, power-efficiency techniques can be 1) system-initiated, where resource
availability is restricted, or 2) application-initiated, where resource requirements are constrained.
This study focuses on the latter approach by analyzing functionally equivalent single-precision,
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double-precision, and, in the near future, fixed-point implementations of IF algorithms to explore
their power vs. performance (including image quality) tradeoffs. The ultimate goal of this work is to
implement an adaptive power management system that can switch between functionally equivalent
IF implementations at runtime to maintain power consumption constraints in an MR environment.
Although we concentrate on application-initiated power management in this study, we will also
explore system-initiated techniques in the near future.

5. Experimental Setup

As mentioned earlier, this study is preliminary, focusing on CPU-, rather than GPU-, based
measurements. Also, the experimental environment is very rudimentary, especially in comparison
to the more powerful, massively parallel, computational environments associated with embedded
HEC systems. Nonetheless, it has permitted us to gain experience with target (SAR IF) workloads
and datasets, and as described below, it has allowed us to study functionally equivalent single- and
double-precision, and, in the near future, fixed-point, implementations of frequency- and time-
domain IF algorithms in terms of power vs. performance (including image quality). Shortly after the
publication of this report, a more sophisticated experimental environment will be available to us: it
will include sophisticated power measurement and capture equipment, as well as a GPGPU with
floating-point capability (an NVIDIA Fermi-based GPU). Please refer to Sections 7.2-7.4 for more
details.

5.1 Execution Environment

For this study, we ran the target SAR IF workloads and datasets in a mainstream Macbook Pro
laptop environment. This system consists of a dual-core Intel Core Duo 2.53GHz processor with 30
watts of maximum power consumption, based on its Thermal Design Power (TDP) specification,
and has 4GB of main memory.

5.2 Power and Energy Measurement

To measure execution power consumption, as shown in Figure 1, we plugged the laptop power
adapter into a simple Kill-a-Watt power meter. This power meter displays watt usage at one-second
intervals and has a measurement error margin of 0.2%. Since this simple power meter does not log
power usage measurements across time, we recorded the power and workload output on video and
later analyzed the recording to estimate average power consumption during the execution of the
Image Formation IF) phase. Since this is a rather coarse-grain method of computing power
consumption, we selected IF problem sizes that ran sufficiently long, e.g., on the order of hours, so
that potential observation inaccuracies, within a margin of seconds or minutes, were amortized. As
mentioned above, we are in the process of acquiring more sophisticated measuring equipment for
the next phase of this study.

To reduce system perturbation of power measurements, we ran all experiments in Mac Safe
Mode, which runs only essential kernel modules and disables all startup programs. Additionally, we
manually disabled all non-essential third-party processes that were not automatically turned off by
the Safe Mode boot routine.
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Kill-a-Watt Power Meter
(measures power usage)

Laptop
3rd party processes disabled
(runs SAR workloads)

Video Camera
(captures average wattage)

Figure 1. Preliminary experimental environment

Based on our observations, this simplified runtime configuration consumed around nine watts
of power when idle. Thus, the average idle power, i.e., nine watts, was subtracted from all power
usage measurements to compute power consumption attributed to the workload itself.

5.2 SAR Image Quality Evaluation

Since the goal of this study is to determine whether power reduction techniques can be applied
to SAR IF phases without significant degradation of image quality, we investigated several different
methods to evaluate SAR image output. In practice, SAR output images are handled by human
observers or by image processing algorithms. In the former case, the perceptual quality of the
image is important since it is processed by the Human Vision System (HVS). In the latter case,
objective image quality measures may take precedence as the processing algorithms need not
follow an HVS-based framework. Fortunately, the image processing community has developed a
wide range of perceptual and objective image comparison metrics to choose from and we use both
types of metrics in this study to determine SAR image quality.

5.2.1 Perceptual Image Comparison Metrics

There is a wide array of metrics in the image processing literature that compute image fidelity
based on how the human brain perceives the quality of an image. For this study, we chose the Visual
Signal to Noise Ratio (VNSR) metric [Chandler & Hermami 2007] because it was one the best
performing in a large and comprehensive analysis of HVS-based metrics [Eerola 2010]. VSNR
computes the perceptual similarity of two images and maps this value to a Signal-to-Noise Ratio
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(SNR) scale. Since this metric outputs an SNR-type value, a high VSNR number signifies a high
perceptual similarity between two images.

5.2.2 Objective Image Comparison Metrics

Compared to perceptual quality measures, there is a wider, and much more diverse, array of
objective metrics for image comparison. Because of the diversity of these metrics, we decided to use
several of them in our evaluation of SAR images. Specifically, we focused on the metrics produced
by a publicly available MATLAB program called “Image/Picture Quality Measures” [Athinarayanan
2009] that uses MATLAB’s Image Processing Toolbox to compute several common objective
comparison metrics:

* Mean Square Error (MSE): The cumulative squared pixel error between a distorted image
and the original image (low value is good)

* Peak Signal to Noise Ratio (PSNR): The peak fidelity between a distorted image and the
original image (high value is good)

* Normalized Cross-Correlation (NCC): Normalized intensity, i.e., brightness, similarity
between the distorted and source image (high value is good)

* Average Difference (AD): Average same-coordinate pixel-per-pixel difference (value
closer to zero is good)

* Structural Content (SC): Object boundaries and/or regions of high entropy that are similar
between the distorted and source image (high value is good)

* Maximum Difference (MD): Maximum same-coordinate pixel-per-pixel difference
between the distorted and source image (low value is good)

* Normalized Absolute Error (NAE): Normalized sum of same-coordinate pixel-per-pixel
absolute differences between the distorted and source image (low value is good)

6. Results

Given the target SAR workloads and datasets, which are summarized in Table 1, we developed
fully single-precision and double-precision versions and ran them in the experimental environment
described in Section 5. The following subsections discuss the results from these experiments, i.e.,
the observed power vs. performance tradeoffs of the IF phase of each workload, where
performance refers to both IF image quality and execution time, and power refers to average power
usage and total energy consumption.

6.1 SAR IF Image Quality

SAR IF image quality was measured in two ways: in terms of visual comparisons (Section 6.1.1)
and in terms of automatic metric-based comparisons (Section 6.1.2).

6.1.1 Visual Comparisons

Among the three experimental runs (see Table 1, presented again below for convenience), the
SAR image output from the single- and double-precision versions of SSCA3 were the most similar
from a visual perspective. Figure 2 displays a side-by-side view of the resulting image formations
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given the synthetic input data for a uniform lattice of point reflectors. As can be seen by the
zoomed-in portions of the SAR images, they are virtually the same.

Among the UFB experiments, the output from the AFRL GMTI dataset performed the best. As
can be seen in Figure 3, the single-precision output is slightly blurrier than the double-precision
output, but image objects and patterns are still clearly discernable.

Figure 4 shows the worst performing single-precision run, i.e., UFB with the AFRL GOTCHA VV
polarization dataset. The zoomed-in portions of the single- and double-precision outputs show that
some content is completely blurred when single-precision is used.

In summary, Figures 2, 3, and 4 show that, from a visual standpoint, single-precision is good
enough in some cases, i.e, SSCA3, and may not be sufficient for others, i.e, UFB GOTCHA VV.
However, visually comparing images to decide the acceptability of single-precision computation
requires human participation and, thus, cannot be part of any automated decision system geared
towards satisfying power consumption and output quality constraints. Accordingly, the following
subsection evaluates these images based on the comparison metrics that were discussed in Section
5.2, which would enable a resource management system to evaluate image quality constraint
satisfaction automatically and, thus, facilitate autonomous power versus image-fidelity
management in a Mobile Radar environment.

Table 1. Summary of target SAR workloads and datasets used in this study

Target SAR Image Formation | Computational Input Dataset Dataset
Workload Method Complexity Size
DARPA-SSCA3 Frequency-domain O(N? logz N) Uniform point reflectors 488MB
(w-K) (synthetically generated)
AFRL-UFB Time-domain AFRL GMTI Challenge 2.95GB
(filtered- (HH polarization)
backprojection) O(N?) AFRL GOTCHA Challenge 146MB
(230-360 azimuth range) (for each
(HH, HV, VH, and VV input set)
polarization input sets)

6.1.2 Automatic Metrics-based Comparisons

Table 2 shows the image comparison values for each workload/dataset precision pair in this
study. Each column contains the computed image similarity between the single-precision and
double-precision outputs of a workload/dataset for a particular metric. Since each metric computes
image-similarity differently, i.e., sometimes a high value means high similarity, sometimes the
opposite is true, please refer to section 5.2.2 for the significance of each value. However, for
convenience, each column contains a bolded black value and a bolded red value each representing
the most similar and dissimilar comparisons, respectively, for that metric. As Table 2 demonstrates,
the single- and double-precision images for SSCA3 were judged the most similar for most of the
metrics. While, UFB GOTCHA VV single- and double-precision outputs were judged the least similar
for most of the metrics. The consensus of these automatic evaluations coincides with the visual
observations presented in Section 6.1.1 and, thus, lends some credence to the feasibility of a
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decision system that can judge whether a lower-power single-precision execution can satisfy image
quality constraints.

Single Precision Double Precision
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Figure 2. SAR image output of single- (left) and double-precision (right) versions of SSCA3 with
zoomed-in portions for detail - images are visually the same
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Figure 3. SAR image output for single- (left) and double-precision (right) versions of UFB with the
AFRL GMTI input dataset with zoomed-in portions for detail - double-precision output is slightly
clearer
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Figure 4. SAR image output for single- (left) and double-precision (right) versions of UFB with the
AFRL GOTCHA VV polarization input dataset with zoomed-in portions for detail - double-precision is
much clearer

6.2 Image-Formation Power, Energy, and Execution-time Results

As described in Section 5.2, we computed average power usage for the Image Formation (IF)
phase of each workload/dataset/precision run using a simple power meter. We also recorded IF
execution time by instrumenting the workload MATLAB codes with timing functions. Given the
average power and execution-time values of each run, we acquired the total energy consumption of

the respective IF phase by computing the product of the two values, i.e., average power * execution
time.

Interestingly, as Table 3 shows, the average power consumption of the single- and double-
precision runs were the same, disagreeing with the assumption that single-precision would be less
power demanding. In fact, for the single case of SSCA3, single-precision actually used more power
on average compared to the double-precision run. It may be that there were other runtime factors
that masked the power benefits of single-precision during the execution of these workloads.

Table 3 also shows that SSCA3 experienced the largest execution-time speedup, almost 2x,
when single-precision was used. Since frequency-domain solutions such as SSCA3 have relatively
large memory requirements [Ulander, et al. 2003], this suggests that SSCA3 was memory-bound for
the observed input/machine pair making it more susceptible to precision changes since single-
precision not only affects what processor logic is used but also cuts the floating-point memory
footprint in half compared to double-precision. This phenomenon, along with the power similarity
between single- and double-precision, will be analyzed further in the next steps of our study.
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Even though there were no observed power reductions for single-precision, all the single-precision
runs completed quicker than their double-precision counterparts, thus, ultimately leading to less
energy consumption. As can be seen in Figure 5, all single-precision executions produced significant
energy reductions, i.e.,, between 14 and 51 percent. When we consider the image quality results in
Table 2 and the energy reduction results in Figure 5, we see that, as was the case for UFB/GMTI and
SSCA3, using single-precision in lieu of double-precision computations can result in significant energy
reductions with little or no image degradation.

Table 2. Summary of single- vs. double-precision image similarity results: bolded values signify most
similar for that metric, while red values signify least similar for that metric

Visual Peak

Signal to Mean Signal to Normalized Normalized

SAR Workload and Noise Square Noise Cross- Average Structural Maximum Absolute
Input Set Ratio Error Ratio Correlation Difference Content Difference Error

SSCA #3 22 2.5341 44.0926 1 -0.0004 1 239 0.0002
Backprojection
(GMTI Dataset) 21.6367 51.5091 31.012 1.0004 -0.6709 0.9977 85 0.0199
Backprojection
- GOTCHA Dataset
- HH polarization 18.7583 62.6727 30.16 1.0004 -0.6354 0.9973 89 0.0225

Backprojection

- GOTCHA Dataset

- HV polarization 16.1703 55.3237  30.7017 1.0006 -0.4797 0.9974 101 0.0179
Backprojection

- GOTCHA Dataset

- VH polarization 16.1544 54.9834  30.7285 1.0003 -0.3903 0.9979 101 0.0178
Backprojection

- GOTCHA Dataset

- VV polarization 16.8281 379.7102 22.3363 0.9879 2.6844 1.0133 161 0.0654

Table 3. Summary of power, execution-time, and energy results: bolded values signify largest energy
difference, percentage-wise, between single- and double-precision runs

Average Watts (above idle) Execution Time (Seconds) Energy Consumption (Joules)
SAR Workload and Single Double Single Double Single Double
Input Set Precision Precision Precision Precision Precision Precision
13 11.5 246 566 3198 6509
SSCA #3
Backprojection 11.5 11.5 4262 6036 49013 69414
(GMTI Dataset)
Backprojection 11.5 11.5 2702 3151 31073 36236.5

- GOTCHA Dataset
- HH polarization
Backprojection 11.5 11.5 2706 3174 31119 36501
- GOTCHA Dataset
- HV polarization

Backprojection 11.5 11.5 2711 3199 31176.5 36788.5
- GOTCHA Dataset
- VH polarization
Backprojection 11.5 11.5 2708 3227 31142 37110.5
- GOTCHA Dataset
- VV polarization
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Energy decrease when single-precision is chosen over double-precision

Backprojection (GMTI)
Backprojection (GOTCHA, HH)
Backprojection (GOTCHA, HV)
Backprojection (GOTCHA, VH)
Backprojection (GOTCHA, VV)
Fourier-based (SSCA #3)

0 10 20 30 40 50 60
Percent

Figure 5. Reduction in total IF energy consumption when single-precision is used instead of double-
precision - SSCA3 benefits the most from using single-precision (energy-wise).

7. Next Steps

As this was only the first phase of a more comprehensive study, there are many pending
research tasks that we plan to accomplish in the near future - these are described below. Note that
these tasks do not include further investigation of frequency-domain based approaches to image
formation.

7.1 Evaluate more sophisticated SAR algorithms

A relatively simple backprojection SAR Image Formation (IF) code was used in this preliminary
study. The backprojection-based Ultra-wideband (UWB) Synchronous Impulse Reconstruction
(SIRE) radar code from the Army Research Lab (ARL) uses a more sophisticated backprojection
algorithm that implements Recursive Sidelobe Minimization (RSM) [Nguyen 2009], an IF
optimization that improves image quality and facilitates target detection during SAR post-
processing. We are working with our ARL collaborators to evaluate their implementation of
SIRE/RSM - we plan to use this as our target workload for the next phase of our power vs.
performance study. Since this study only explored 2D SAR, we also will evaluate SAR image
formation in 3D space with this SIRE/RSM workload.

7.2 Employ finer grain power measurement methods

This study used a very simple and coarse-grain method to capture the power consumption of
SAR image formation phases of execution. We will extend this study with data from experiments
that will use finer-grain power-measurement equipment, i.e., voltage and current probes hooked up
to a Data Acquisition (DAQ) device, that can capture and store time-stamped power consumption of
the whole system as well as of individual hardware components. Additionally, these tools will allow
us to capture power consumption at finer timescales, thus, enabling us to potentially map power
consumption to individual computation phases of SIRE/RSM.
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7.3 Evaluate GPU implementations of SAR

One of the advantages of the backprojection algorithm is that it is embarrassingly parallel
[Cordes 2009] and, thus, it is ideal for many-core devices such as GPGPUs. We're in the process of
acquiring an NVIDIA Fermi-based GPU that implements fast double-precision floating-point
arithmetic. We plan to use this testbed, along with the CPU/GPU hybrid version of SIRE/RSM from
ARL [Park and Shires 2010], to evaluate fixed-point vs. single-precision vs. double-precision
performance/power tradeoffs in a many-core environment.

7.4 Evaluate realistic SAR executables

This preliminary study focused on MATLAB implementations of SAR. The next phase of our
study will analyze power vs. performance tradeoffs for non-interpreted, i.e., compiled instead of
MATLAB, executions of SAR. The evaluation of SAR binaries may expose single-precision power
benefits that were not visible under MATLAB runs, i.e, where MATLAB run-time instruction
translation may have been the main energy consumer. We will start this study with the parallel C
version of SIRE/RSM written by our collaborators at ARL [Park and Shires 2010].

7.5 Analyze mixed-mode precision implementations of SAR

This preliminary study focused only on workloads that were purely single- or double-precision
implementations. In the next phase of this study, we will analyze smart mixed-mode precision
implementations, i.e., that selectively use single- and double-precision computation within
SIRE/RSM - this may reduce power consumption and execution time, with little or no loss in image
quality.

7.6 Develop and evaluate fixed-point implementations of SAR

As discussed in Section 4.2, a processor’s Floating-Point Unit (FPU) is larger and more complex
than its Arithmetic-Logic Unit (ALU), thus, making floating-point arithmetic potentially more power
intensive than fixed-point, i.e. integer-based, equivalents. Thus, we will translate the existing
SIRE/RSM floating-point code to an equivalent fixed-point version. A tool that may help in this
endeavor is the MATLAB Floating-Point to Fixed-Point Transformation Toolbox [Han, et al. 2005],
which can facilitate the translation of floating-point DSP code to fixed-point equivalents. Then, as
mentioned above, we will quantify the respective power benefits.

7.7 Employ more radar-centric output quality metrics

Although we employed a wide array of image quality metrics in this study, there are additional
quality metrics that are geared more towards radar systems. These include Impulse Response
(IPR), Peak to Sidelobe Ratio (PSLR), Integrated Sidelobe Ratio (ISLR), Multiplicative Noise Ratio
(MNR), and Additive Noise Levels (ANL). We will be collaborating with radar specialists from the
Army’s Communications-Electronics Research, Development, and Engineering Center (CERDEC)
who have expertise in these metrics, which will allow us to evaluate radar output quality within this
more restricted problem domain.
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7.8 Explore and implement dynamic power management of SAR image formation

Once we quantify SIRE/RSM’s power vs. performance tradeoffs between fixed-point vs. single-
precision vs. double-precision computation on CPUs and GPGPUs, as part of a doctoral dissertation,
we will investigate dynamic adaptation mechanisms that will switch between these computational
modes based on runtime measurements of power consumption and performance constraints, e.g.,
execution time and image quality, as well as adaptation overhead.

8. Conclusions

The first phase of this study focused on single- and double-precision implementations of two
popular SAR Image Formation (IF) methods, i.e., frequency- and time-domain based approaches
executed on a CPU. Using simple experimental and power measurement environments, and a set of
image quality metrics, we made the following observations:

* For the observed workload/dataset pairs and quality metrics, single-precision IF image
quality was often comparable to double-precision IF image quality.

* SARimage quality can be judged automatically using established image comparison metrics,
thus, facilitating the implementation of a power manager that takes image quality
constraints into account.

* For this experimental environment, single-precision did not offer any power benefits over
double-precision. We are investigating this phenomena further.

* Single-precision consistently reduced IF execution time, thus, leading to significant
reductions in total IF energy consumption, i.e.,, between 14 and 51 percent compared to
double precision.

* The SSCA3 and UFB/GMTI experimental runs were good examples of cases where single-
precision can offer significant energy benefits at little or no cost to IF image output quality.
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