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Abstract—In many application areas, we need to fuse contin-
uous and discrete models of the same phenomena. For example,
in geophysics, we have two main models for describing how
the sound velocity changes with location and depth: a discrete
gravity-based model, in which we have several layers with abrupt
transition between layers, and a seismic model, in which the
velocity continuously changes with the change in location and
depth – and a transition is represented by a steeper change. Due
to inevitable uncertainty, in two fused models, the same actual
transition is placed at slightly different depths.

If we simply fuse these models, the fused model will inherit
both nearby transitions and therefore, will, misleadingly, corre-
spond to two nearby transitions instead of one. It is therefore
necessary, before fusing, to first get a fused (more accurate)
location of the transition surface.

In this paper, we show how to find such a location.

I. FORMULATION OF THE PROBLEM

Need for model fusion. In many applications area, there are
several different sources of data.

For example, in geophysics, one of the main problems is
determining the density ρ at different locations and different
depths. It is known that for most minerals, density is uniquely
related to the speed of sound, so determining density ρ at
different locations and depths is equivalent to determining the
sound velocity v at different locations and depths.

In geophysics, the two main sources of data for determining
the density ρ (or, equivalently, the sound velocity v):

• the seismic data, i.e., the arrival times of signal from
earthquake (passive seismic data) and from the experi-
mental explosions (active seismic data); and

• the gravity data, i.e., the values of the gravitational force
at different locations.

Both data provide complementary information about the den-
sity:

• seismic data provides information about a narrow zone
around a path from the source to the sensor, enabling us
to determine density around this path with a high spatial
resolution; on the other hand, seismic data only covers a
direct vicinity of the paths, so it leaves many area barely
covered

• on the other hand, the gravity value at a given location
is affected by the densities in the wide area around this
location; thus, the gravity data provides information about
the larger area – but with much smaller spatial resolution.

It is therefore desirable to use both types of data when
estimating the values of density at different locations and
lengths – what geophysicists call a density model; see, e.g.,
[1], [2], [3], [5], [6].

At present, there are no efficient algorithms for processing
both types of data. So, to use both types of models, we
must fuse the results of processing these two types of data: a
seismic model that is obtained by processing seismic data, and
a gravity model that is obtained by processing gravity data;
algorithms for model fusions are described in [8], [9].

Computational problem: need to fuse discrete and contin-
uous models. Traditionally, seismic models are continuous in
the sense that in these models, the velocity smoothly changes
as we change the location and/or depth. In contrast, the gravity
models are discrete: in these models, we have layers, in each
of which the velocity is constant, with an abrupt transition
between layers.

The abrupt transition corresponds to a steep change in the
continuous model. The problem is that both models describe
the location of the transition only approximately, the corre-
sponding transitions are located at slightly different depths.
So, if we simply combine the corresponding values value-by-
value, e.g., by taking a weighted average of values correspond-
ing to different locations and depths, then the resulting fused
model will have two different abrupt transitions instead of one:

• one transition where the continuous model has it, and
• another transition nearby where the discrete model has it.

What we plan to do. To avoid the misleading double-
transition models, it is desirable, before fusing the models, to
first fuse the corresponding transition locations. In this paper,
we provide an algorithm for such location fusion.

Specifically,
• we formulate the problem both in probabilistic terms (see,

e.g., [11]) and in fuzzy terms (see, e.g., [4], [7]), and



• we show that both approaches result in the exact same
transition location.

The fact that two different approaches lead to the same location
reassures us that this location is reasonable.

II. AVAILABLE DATA: WHAT IS KNOWN AND WHAT
NEEDS TO BE DETERMINED

For each location, in the discrete model, we have the exact
depth zd at which we have a transition between the two layers.
In contrast, for the continuous model, we do not have the
abrupt transition; instead, we have velocity values v(z) at
different depths. We must therefore extract the corresponding
transition value zc from the velocity values.

To be more precise, we have values v1, v2, . . . , vi, . . . , vn
corresponding to different depths. We need to find i for which
the transition occurs between the depths i and i+ 1.

III. PROBABILISTIC APPROACH

Description of the model. It is reasonable to assume that,
with the exception of the transition point, for all other values
j, the difference ∆vj

def
= vj −vj+1 is small. This difference is

caused by many different factors, so it is reasonable to invoke
the Central Limit Theorem and assume that this difference is
normally distributed with 0 mean and some standard deviation
σ; see, e.g., [11]. The corresponding probability density is
equal to

pj
def
=

1√
2 · π · σ

· exp
(
− 1

2 · σ2
· (∆vj)2

)
.

We assume that differences corresponding to different depths
j are independent.

The value ∆vi at the transition depth i is not described by
the normal distribution, it has to be given separately.

The resulting model is described by three parameters:
• the standard deviation σ,
• the transition depth i, and
• the transition values ∆vi.

Due to independence of different depth, the overall likelihood
Li of the model with given values of these parameters is
determined by the formula

Li =
∏
j ̸=i

pj =
∏
j ̸=i

1√
2 · π · σ

· exp
(
− 1

2 · σ2
· (∆vj)2

)
.

How to find the location: the general idea of the Max-
imum Likelihood Approach. In the probabilistic approach,
we usually select the parameters for which the likelihood of
the observed data is the largest; see, e.g., [11]. In other words,
in this Maximum Likelihood Approach, we select the values
of the parameters for which the likelihood L attains the largest
possible value.

How to find the optimal location i0: analysis of the
corresponding optimization problem. Due to the fact that

exp(a) · exp(b) = exp(a + b), the expression Li can be
represented as

Li =
1

(
√
2 · π · σ)n−2

· exp

− 1

2 · σ2
·
∑
j ̸=i

(∆vj)
2

 .

The factor in front of the exponent does not depend on the
location i at all, so Li is the largest if and only if the
exponential term is the largest:

exp

− 1

2 · σ2
·
∑
j ̸=i

(∆vj)
2

 → max
i
.

The function exp(−z) is strictly decreasing, so it attains its
largest possible values when z is the smallest. Thus, to find
the optimal location i, we must find the value i for which the
following expression is the smallest:

1

2 · σ2
·
∑
j ̸=i

(∆vj)
2 → min

i
.

Again, the factor in front of the sum does not depend on i, so
this expression is the smallest if and only the sum attains its
smallest value: ∑

j ̸=i

(∆vj)
2 → min

i
.

This sum can be represented as∑
j ̸=i

(∆vj)
2 =

n−1∑
j=1

(∆vj)
2 − (∆vi)

2.

The first term in this expression does not depend on i at all.
Thus, the above difference is the smallest if and only if the
value (∆vi)

2 is the largest. This, in turn, is equivalent to |∆vi|
being the largest.

Thus, we arrive at the following conclusion.

Resulting location. As the most probable location of the
transition point, we select the depth i0 for which the absolute
value |∆vi| of the difference ∆vi = vi+1 − vi is the largest
possible.

Comment. This conclusion seems to be very reasonable: the
most probable location of the actual abrupt transition between
the layers is the depth at which the measured difference is the
largest.

IV. FUZZY APPROACH

Formulation of the model. Intuitively, for each depth i, our
confidence that this is a transition point depends on the actual
value of the corresponding difference |∆vi|:

• the smaller the difference, the less confident we are that
this is the actual transition depth, and

• the larger the difference, the more confident we are that
this is the actual transition depth.

In general, we can therefore assume that the degree of confi-
dence di that the transition occurs at the depth i is equal to
f(|∆vi|), for some monotonically increasing function f(z).



How to find the location: the general idea. In fuzzy
techniques, if we need to select a single location i0, it is
reasonable to select a value for which our degree of confidence
is the largest

di = f(|∆vi|) → max .

How to find the optimal location i: analysis of the corre-
sponding optimization problem. Since the function f(z) is
strictly increasing, it attains its largest possible values when z
is the largest.

Thus, to find the optimal location i0, we must find the value
i for which the expression |∆vi| is the largest possible.

Resulting location is the same as in the probabilistic
approach. It is worth mentioning that both probabilistic and
fuzzy approaches lead to the same location.

Since fuzzy logic describes commonsense reasoning, the
fact that fuzzy approach leads to the same location as the
probabilistic approach means that the original probabilistic
model is in good accordance with common sense – and this
increase our confidence in this result.

V. HOW ACCURATE IS THIS LOCATION ESTIMATE?

Formulation of the problem. The location i that we obtained
is approximate. How accurate is this location estimate?

Which approach should we use to solve this problem?
We know that – at least for location – both models leads to
the same result. It is therefore reasonable to select one of the
models.

Since probability theory have been developed for centuries,
so more methods and techniques have been developed – we
will use the probabilistic approach.

Auxiliary result: estimating σ. In the probabilistic model, in
addition to the location i, we also need to select the standard
deviation σ.

We have already shown that the value i can be determined
by the Maximum Likelihood method. A similar Maximum
Likelihood approach can be used to determine σ. Specifically,
we can find σ for which the expression

Li =
1

(
√
2 · π · σ)n−2

· exp

− 1

2 · σ2
·
∑
j ̸=i

(∆vj)
2


takes the largest possible value over all possible i and σ. We
already know that with respect to i, the largest value is attained
when i is equal to the above estimate i0, so we can simply
plus in i0 into the above expression:

Li0 =
1

(
√
2 · π · σ)n−2

· exp

− 1

2 · σ2
·
∑
j ̸=i0

(∆vj)
2


and maximize the result over σ.

Since the function − ln(z) is strictly increasing, this is
equivalent to finding σ for which the value ψ def

= − ln(Li0) is
the smallest possible. This value has the form

ψ = (n− 2) · ln(2 · π) + (n− 2) · ln(σ)+

1

2 · σ2
·
∑
j ̸=i0

(∆vj)
2.

Differentiating this expression by σ and equating the derivative
to 0, we conclude that

(n− 2) · 1
σ
− 1

σ3
·
∑
j ̸=i0

(∆vj)
2 = 0.

Multiplying both sides by σ3, dividing both sides by n − 2,
and moving the term σ2 to the other side, we conclude that

σ2 =
1

n− 2
·
∑
j ̸=i0

(∆vj)
2.

Resulting probability distribution. Now, that we know the
values of all the parameters, the probability distribution is
uniquely determined: the probability Pi that the actual transi-
tion is at location i is proportional to

Li ∼ exp

− 1

2 · σ2
·
∑
j ̸=i

(∆vj)
2

 .

By using the above formula

∑
j ̸=i

(∆vj)
2 =

n−1∑
j=1

(∆vj)
2 − (∆vi)

2

and the fact that exp(a − b) = exp(a) · exp(b), we conclude
that

exp

− 1

2 · σ2
·
∑
j ̸=i

(∆vj)
2

 = A · Si,

where we denoted

A
def
= exp

− 1

2 · σ2
·
n−1∑
j=1

(∆vj)
2

 ,

and

Si
def
= exp

(
(∆vi)

2

2 · σ2

)
.

Thus, Pi ∼ Si, i.e.,
Pi = c · Si

for some constant c. This constant c can be determined from

the fact that the transition has to be somewhere, so
n−1∑
j=1

Pj = 1.

Thus,

1 =

n−1∑
j=1

Pj = c ·
n−1∑
j=1

Sj = 1,



hence
c =

1
n−1∑
j=1

Sj

,

and, finally, the probability Pi = c · Si takes the form

Pi =
Si

n−1∑
j=1

Sj

=

exp

(
(∆vi)

2

2 · σ2

)
n−1∑
j=1

exp

(
(∆vj)

2

2 · σ2

) .

How to estimate accuracy: the idea. The mean square
deviation σ2

0 of the actual (unknown) transition depth from
our estimate i0 is, by definition, equal to

σ2
0 =

n−1∑
i=1

(i− i0)
2 · Pi.

Substituting the above expression for Pi into this formula, we
conclude that

σ2
0 =

n−1∑
i=1

(i− i0)
2 · exp

(
(∆vi)

2

2 · σ2

)
n−1∑
j=1

exp

(
(∆vj)

2

2 · σ2

) .

Resulting algorithm. First, we compute

σ2 =
1

n2
·
∑
j ̸=i0

(∆vj)
2,

and then estimate σ0 by using the above formula.

This algorithm leads to a reasonable result. We applied this
algorithm to the seismic model of El Paso area derived in [1]
(see also [10]); for this map, we got σ0 ≈ 1.5 km, which fits
well with the model.

VI. HOW TO FUSE THE ESTIMATES OF THE TRANSITION
DEPTH AND HOW TO FUSE THE CORRESPONDING MODELS

Available estimates for the transition depth. Now, we have
two estimates for the transition depth:

• the estimate id from the discrete (gravity) model, and
• the estimate i0 from the continuous (seismic) model.

Accuracy of the available estimates for the transition
depth. The estimate id corresponding to the discrete model
comes from a standard statistical analysis – as one of the
parameters of the model. So, we can use the usual statisti-
cal techniques to estimate the standard deviation σd of this
estimate.

For the continuous estimate i0, we already know how to
compute its standard deviation σ0.

How to fuse estimates of the transition depth: analysis of
the problem. We would like to use the Maximum Likelihood
Method to find the best fused estimate if for the actual
(unknown) transition depth i.

It is reasonable to assume that both differences id − i and
i0−i are normally distributed and independent. The probability
densities corresponding to id − i and to i0 − i are therefore
proportional to

exp

(
− (id − i)2

2 · σ2
d

)
and exp

(
− (i0 − i)2

2 · σ2
0

)
.

Since these uncertainties are independent, the likelihood of i
being the actual transition depth is proportional to the product

exp

(
− (id − if )

2

2 · σ2
d

)
· exp

(
− (i0 − if )

2

2 · σ2
0

)
=

exp

(
−
(
(id − i)2

2 · σ2
d

+
(i0 − i)2

2 · σ2
0

))
.

Maximizing this likelihood expression is equivalent to mini-
mizing the argument of the decreasing function exp(−z), i.e.,
minimizing the expression

(id − i)2

2 · σ2
d

+
(i0 − i)2

2 · σ2
0

.

Differentiating this expression by i and equating the derivative
to 0, we get the following result.

How to fuse estimates of the transition depth: resulting
formula. Based on the estimates id and i0 for the transition
depth, as the optimal estimate if for the actual transition depth,
we take the following value:

if =
id · σ−2

d + i0 · σ−2
0

σ−2
d + σ−2

0

.

Towards fusing actual maps. The fused value if is our best
estimate for the transition depth, i.e., for the border between
the lower and upper zones.

In the discrete model:
• values corresponding to i < id correspond to the upper

zone, while
• values corresponding to the depths i > id correspond to

the lower zone.
Similarly, in the continuous model:

• values corresponding to i < i0 correspond to the upper
zone, while

• values corresponding to the depths i > i0 correspond to
the lower zone.

So, for depths i ≤ min(i0, id) and i ≥ max(i0, id), both
models correctly describe the zone, and we can simply fuse
the values from both models – e.g., similarly to how we fused
the estimates for the transition depth.

For intermediate depths, we need to adjust the models, by
replacing the values corresponding to the wrong zone by the
nearest value from the correct zone. As a result, we get the
following procedure.

How to fuse the actual maps: general idea.
• First, we adjust both models so that they both have a

transition at depth if .



• Second, for each depth i, we merge the values v′i and v′′i
corresponding to the adjusted models.

Let us describe this fusion in more detail.

Adjusting the discrete model. Adjusting the discrete model
is (relatively) easy: we just replace the original depth id with
the new (more accurate) fused value if .

Adjusting the continuous model. When the more accurate
transition depth if is smaller than the transition depth i0
corresponding to the continuous model (if < i0), this means
that the values at depths i between if and i0 are erroneously
assigned to the the upper zone. In this case, the values vi for
this i must be replaced by the the value of the nearest point
at the lower zone, i.e., by the value vi0+1.

When the more accurate transition depth if is larger than
the transition depth i0 corresponding to the continuous model
(if > i0), this means that the values at depths i between i0
and if are erroneously assigned to the the lower zone. In this
case, the values vi for this i must be replaced by the the value
of the nearest point at the upper zone, i.e., by the value vi0 .

How to merge the adjusted models. For each depth i, we
now have two adjusted values v′i and v′′i corresponding to two
adjusted models. Let σ′ and σ′′ be the corresponding standard
deviations. Then, similarly to what we have described earlier,
we can compute the fused value ṽi as follows:

ṽi =
v′i · (σ′)−2 + v′′i · (σ′′)−2

(σ′)−2 + (σ′′)−2
.
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