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Abstract—In many practical situations, we know the values of
some quantities =1, ..., x,, we know the relations between these
quantities, the desired quantity y, and maybe some auxiliary
quantities, and we want to estimate y. There exist automatic
tools for such estimations — called program synthesis tools.

A program synthesis tool usually generates a program for
computing y. In many cases, however, several such program are
possible, and it is desirable to generate the optimal (e.g., the
fastest) program. In this paper, we describe algorithms aimed at
such optimal program synthesis.

The problem can be interpreted in logical terms, as assigning
fuzzy-style degrees to rules describing relations between vari-
ables.

I. NEED FOR DATA PROCESSING: A BRIEF REMINDER

One of the main objectives of science: an informal descrip-
tion. One of the main objectives of science is to describe the
world.

One of the main objectives of science: formulation in
precise terms. In precise terms, the above objective means
that we would like to know the values of the numerical
characteristics that characterize different objects.

Sometimes, this task is easy. Some of these values, we can
simply measure.

In other cases, the task is more complex. There are many
physical characteristics which are difficult or even impossible
to measure directly, for example,

« the distance to a faraway star, or
o the amount of oil in a well.

Since we cannot measure these difficult-to-measure values
y directly, we thus measure them indirectly: namely, we
measure the values of related easier-to-measure characteristics
Z1,...,ZTn, and we find (and list) all possible relations be-
tween these characteristics x; and the desired quantity ¥ (and
maybe some auxiliary difficult-to-measure characteristics).

Based on these relations, we design an algorithm
f(x1,...,x,) that, given the values xz1,...,x, returns the
(estimate for) the desired quantity y = f(x1,...,Z,).

First example: computations are straightforward. To find
the distance to a star, we can use the parallax method:. we
observe the position of this star on the celestial sphere in

different seasons, when the Earth is at different sides of
the Sun, and then use trigonometry to determine the desired
distance.

In this example, the algorithm f(z1,...,2,) can be de-
scribed by explicit formulas — and indeed, these computations
were successfully done “by hand” already many centuries ago,
when no computers were available.

Second example: computations are complex. To estimate
the amount of oil in a well, we perform a large number of
seismic experiments, by

« making small explosions at different locations on the

Earth surface and
o measuring the time that the corresponding seismic waves
took to travel to the sensors placed at different other
surface locations.
Based on these times, we:

o solve the partial differential equation describing how

seismic waves propagate, and

« thus find the velocity of sound at different locations and

at different depths.
We then estimate the amount of oil by computing the volume
at which the velocity of sound is consistent with oil.

This is a very simplified version of the actual estimates,
but even after this simplification, one san see that the cor-
responding algorithm f(z1,...,,) (which includes solving
partial differential equations as an intermediate step) is very
complex. In this case, we need a large number of computations
which are very difficult (and often impossible) to do by hand.
Thus, we need data processing.

This is one of the main reasons why computers were
invented in the first place — to perform data processing and
thus, to determine the values of difficult-to-measure quantities.

Prediction: another problem for which data processing is
needed. Another important goal of science is to predict the
future state of the world, i.e., in more precise terms, to predict
the future values of the desired physical quantities. We want
to predict the trajectory of an asteroid approaching Earth, we
want to predict the path of a hurricane, etc.

In some cases, we have explicit formulas y = f(x1,...,2,)
that describe the desired future values in terms of the current



values x; of different quantities. However, in many other
cases, we only know some relations between y, x;, and some
additional auxiliary characteristics — such as the future values
of other physical characteristics. Our objective is then to use
these relations to design an algorithm that transforms the
known values z1,...,x, into the desired prediction.

Engineering design problems. In engineering, we want to
design an object with given characteristics. For example,

« while in science, a typical problem would be to predict a
trajectory — e.g., to decide whether a given asteroid will
hit the Moon,

« in engineering, a typical problem is to find the starting
velocity and the starting direction for which the spaceship
reaches the Moon.

Sometimes, there are ready algorithms for such design. In
many other cases, however, we only know

¢ the relations between different characteristics, and

o the desired values of some of these characteristics.

We need to find the values of the set characteristics for which
we will achieve the desired goals.

II. PROGRAM SYNTHESIS: SUCCESSES AND OPEN
PROBLEMS

A general problem. In all the above situations:

e we know the values of some of these quantities
T1,...,%pn, and
o« we know the relations between these quantities, the
desired quantity y, and maybe some auxiliary quantities.
Our objective is to use the known values and the known
relations to find the values of the desired quantities.

How this problem is traditionally solved. Traditionally, in
science and engineering, researchers and practitioners use their
own creativity to come up with an algorithm f(x1,...,2,)
that

« inputs the values of the known quantities, and
« outcomes an estimate for the desired quantity y.

Designing such an algorithm is a very difficult task.

The main idea of program synthesis. It turns out that in many
cases, we can have a system that automatically analyzes the
relation and synthesizes the desired program. Such automatic
systems are called systems for program synthesis; see, e.g.
[12].

Toy example. Let us use a simple example of a triangle to
illustrate how program synthesis works.
A triangle is described by its angles A, B,C and side
lengths a, b, c. We know the following relations between them:
e A+ B+ C = 7 (the sum of the angles is 180°, or 7
radians),
e a?+b%>—2-a-b-cos(C) = c? and similar expressions

for a and b (cosine theorem), and
a

c
sin(A)  sin(B)  sin(0O)
Now we can ask all kinds of questions:

(sine theorem).

o If we know a, b and ¢, can we determine A? and if yes,
how?

o If we know a,b and A, how to compute b? and if yes,
how?

Preparing for the program synthesis. First, we analyze
which quantities are directly computable from which.

Suppose that we have a relation F'(A, B,C) = 0. If we
know all of these values but one (for example, A and B), then
we have an equation with one unknown, from which in general
we can compute C. So, if we already know A and B, then
we are able to compute C. We will describe this implications,
for short, as A, B — C.

Similarly, if we know A and C, then we can compute B,
and from B and C' we can compute A.

So each equation leads to as many computability relations
as there are unknowns in it. In our case we get three com-
putability relations: A,B — C; A,C — B; and B,C — A.

Example. In the triangle case, the relations turn into the
following formulas:
e AB — C; B,C — A; A,C — B; (these three come
from the equation A+ B+ C =)
e Aya,b— B; A,a, B — B; ...(from sine theorem), and
e a,b,C — ¢, a,b,c — C; a,¢,C — b, b,c,C — a;
...(from cosine theorem).

Wave algorithm for program synthesis. Let us describe a
natural algorithm for deciding whether the desired quantity y
can be computed based on the known quantities x;.

According to this algorithm,

o We first mark the variables that we know.

e Then, when we look at all the rules, find those, for which
all the conditions are marked and the conclusion is not,
and mark the conclusion.

o Then we repeat the same procedure again and again.

After each iteration,

o either we did not add anything — which means that we
are done (nothing else can be computed),

o or we add at least one marked variable.

Since there are finitely many variables, this process will
eventually stop:

o If the desired y is marked, then we can compute it,

« clse we cannot compute y.

Once we have a sequence of rules that lead to computing v,
we can combine the corresponding algorithms and come up
with a program for computing y based on z;.

Example. Suppose that in the triangle, we know A and B,
and we want to compute C' and a.

Then, according to the algorithm, we first mark A and B.

There is only one rule whose conditions are marked: the
rule A, B — C. So, we mark C.

On the second iteration, we find three rules whose condi-
tions are marked: A, B — C; B,C — A; and B,C — A, but
their conclusion have already been marked. So, we stop.



As aresult, C' is marked, which means that we can compute
C. Moreover, we know how to compute C: C' was obtained
from a rule A, B — C that stems from A+ B+ C = 7, so
we must solve an equation A + B + C' = 7, in which A and
B are known, and C' is the only unknown.

As for a, it is not marked, and therefore, cannot be com-
puted.

Comment. It should be mentioned that while the above de-
scription captures the main idea of program synthesis, the
actual program synthesis algorithms implemented, e.g., [12],
are more complex.

Boolean logic interpretation of the wave algorithm. The
program synthesis problem can be reformulated in logical
terms. Namely, we can interpret each rule A, B — C that stem
from the relations as a propositional formula A&B — C with
variables A, B, ... that can take the values “true” or “false”:

e “true” means that we can compute the corresponding
variable, and
o “false” means that we cannot.

So our knowledge can be represented as a set of propositional
formulas that include all the rules and all the atoms A that
represent the known variables z;.

We want to know whether the value y is computable, or, in
the propositional terms, whether the variable that corresponds
to y is true. So, in logical terms, we want to know whether
these variables are deducible from the knowledge base.

We can therefore use logical deduction tools to check
whether y is deducible from z;; see, e.g., [6], [7], [8], [9],
[10], [11], [12], [13].

Triangle example. In the triangle example, we have a knowl-
edge base A&B — C; B&A — C; ...; A; B, and we want
to know whether C' and a follow from these formulas.

An example of a practical application. The logical deduction
tools have been used to automate program synthesis in space
missions such as the NASA Cassini mission to Saturn; see,
e.g., [6], [7], [8], [9], [10], [11], [13].

Limitations of the Boolean logic approach. There exist cases
in which this logical approach does not work. Let us consider
the case when we want to know the values of two unknowns 1
and y-, and we know two relations between them: y; +ys—1 =
0 and y; — y2 — 2 = 0. In this case, we can determine both
y1 and ys, because we have a system of two linear equations
with two unknowns.

However, in this example, the above logical approach will
not work; indeed:

o The first equation will translate into two rules Y; — Y5,
Y> — Y3, where propositional variables Y; correspond
to Yi.

o The second equation will lead to these same rules.
From these two formulas we cannot logically conclude that Y;
is true (because if Y; are both false, still both rules are true),
and therefore, we cannot conclude that y; are computable.

Possibility to use fuzzy-type logic. In [1], it was shown
that such examples can be handled if we replace the original
Boolean logic with a more complex fuzzy-type logic.

Remaining problem. The existing program synthesis algo-
rithms produce a program for computing y. In many cases,
there are several possible ways of computing y.
In the triangle example, if we know A, B, a, b, and ¢, and
we want to compute C, then we have several alternatives:
o we can use the rule A, B — C corresponding to the
relation A+ B+ C =, and find C as # — A — B;
o alternatively, we can use the sine rule A,a,c c —» C

a
corresponding to the relation = , and
P & sin(A) sin(C)
. c-sin(A
compute C' as C' = arcsin <() ;
a
e we can use even more complex formulas related to the

cosine rule.

In such situations, it is desirable to come up with the fastest
program — or, more generally, a program that spends the
smallest amount of resources.

This may include the resources needed to measure the input
characteristics x;.

In other words, instead of program synthesis, we need
optimal program synthesis.

What we do in this paper. In this paper, we interpret the
problem in logical terms, as assigning fuzzy-style degrees to
rules describing relations between variables. As a result, we
develop algorithms aimed at optimal program synthesis.

III. TOWARDS ALGORITHMS FOR OPTIMAL PROGRAM
SYNTHESIS

Formulation of the problem. Let us assume that for each
known variables a and for each rule r of the type a,b — c,
we know the corresponding weight w(a) or w(r) — describing
the amount of resources that are needed

o to measure the value a or

o to compute ¢ based on the known values a and b.
To estimate the amount of resources needed to perform a
sequence of measurements and computations, we simply add
the corresponding weights.

Our objective is to select, among all paths that lead to the
desired quantity y, the path with the shortest overall weight.

We can simplify the description by only assigning weights
to edges. In the standard program synthesis, a variable that
can be measured is assumed to be known.

Actually, in practice, we can only measure those variables
that we need for deriving y, and we do not have to measure the
values of all other variables. However, in the standard program
synthesis, we do not take into account the resources that go
into measurements, so we do not have to distinguish between
measurements that we actually do and measurements that we
an potentially perform.

However, in our (more realistic) formulation, we do take
measurement efforts into account. To properly describe these
efforts, we:



o denote by O the starting point, where no resources have
been spent and thus, no measurements have been made,
and

« describe each potentially measurable variable a by a rule
0 — a with the weight w(a) (describing how many
resources we need to spend to measure its value).

In this new description, weights are only assigned to rules.

Logical interpretation of weights. We can interpret these
weights as degrees in the style of fuzzy logic (see, e.g., [4],
[5]): if the derivation takes a long time, this means that we
should not be using this implication unless it is absolutely
necessary.

So, we can interpret 1 — d as the “degree of confidence” in
using this rule.

A possible solution: exhaustive search. In the toy example
of a triangle, we can simply enumerate all possible paths and
select the one with the smallest weight.

However, the number of possible paths grows exponentially
with the number of variables. In the practical applications
(like the space navigation problem mentioned earlier), we have
dozens and hundreds of variables, so exhaustive search will
take too long. For example, for n ~ 300, 2" computations
require longer time that the lifetime of the Universe :-(

Simplest case: rules of the type a — b. To look for faster
algorithms, let us start with the simplest case when all the
rules have the form a — b, i.e., when all the rules only have
one input. This simplest case can be described by a directed
graph in which nodes are variables, and variables a and b are
connected by an edge if there is a rule a — b. Non-negative
weights are now assigned to edges.

In this case, estimating y simply means that we have a
sequence of rules 0 — a — ... — b — y, i.e., that we
have a path from the starting node O to the desired node y.
The optimal program corresponds to the shortest path from O
to y.

Efficient algorithms for the simplest case. Efficient algo-
rithms are known for computing shortest path in a graph; see,
e.g., [2]. Thus, we can use these algorithms to solve the above
simplest case of the optimal program synthesis problem.

Our objective is to generalize these algorithm to the more
general case. In view of this objective, let us describe these
algorithms in some detail.

Most of the efficient shortest path algorithms are based on
the following dynamic programming idea. We want to find the
length of the shortest path from the fixed node O to different
nodes y. The shortest path cannot visit a node twice: otherwise,
we can shorten it by cutting out the part between the two visits.
Thus, on a graph with n nodes, we only need to consider paths
with < n — 1 edges. For each node x, let di(x) denote the
shortest of the paths from O to z that have < k edges (co in
no such path exists).

Then, for k¥ = 0, we have dp(0) = 0 and do(x) = oo for
all x # 0.

For k > 0, the shortest path of length < k :

o cither has the length < k — 1, in which case its length is
equal to di_1(z);

o or has length exactly k, in which case it spends k — 1
edges to get to some node y and then the last edge to get
from y to x; in this case, its length is

di—1(y) + w(y — ).

Thus, the length dj(z) of the shortest path with < k edges is
equal to the smallest of these values:

d(z) = min (dkl(x)7 myin(dk,l(y) +w(y — w))) .

For each k and for each x, we need a linear time to compute
this expression (by counting all ys). For each k, we need to
repeat this computation for each of n nodes x — which requires
n-n = 0(n?) time.

Finally, as we have mentioned, the shortest path is equal
to d,—1(z), we need to repeat all computations for all k =
1,...,n—1 - so the overall time is (n —1)-O(n?) = O(n?).
This is thus indeed a polynomial-time algorithm.

Comment. Once we computed the values d,,_1(x), we can also
find the shortest paths: if the minimum of dj(x) is attained
for dr_1(y) + w(y — =), this means that the previous step
before last should be the rule y — x. Similarly, we can find
the best rule leading to y, etc.

A seemingly natural extension of this idea to a more
general case. Since the above dynamic programming idea
works for the simplest case, it seems reasonable to try it for
the general case as well. Specifically, for each variable x, let
di(x) be the smallest amount of resources that we need to
compute = by using < k rules.

Similarly to the above, for k£ = 0, we have dy(0) = 0 and
do(x) = oo for all x # 0. For k > 0, we have

di(2) = min (dg—1 (), dj,(2)) ,
where
di, <

m})g (di—1(a) + ...+ dp—1(b) +w(a,...,b = x)),
and the minimum is taken over all rules that result in x.

The above seemingly natural approach does not always
lead to an optimal program synthesis. Let us show that this
approach does not always work. Let us assume that we have
rules 0 — a, a —> b, a — ¢, and b,c — d, all with weight 1.
Then,

e for k =0, we have
do(0) =0, do(a) = do(b) = do(c) = oo;
o for k =1, we have
d1(0) =0, di(a) =1, di(b) =di(c) = di(d) = oo;
o for k = 2, we have

dl(O) = 0, dl(a) = 1, dl(b) = dl(C) = 2, dl(d) = OQ;



o for kK = 3, we have
di(0) =0, di(a) =1, di(b) =di(c) =2, di(d)=5;

« after that, the values dy(z) do not change.
We are thus tended to conclude that the length of the shortest
path to d is 5. However, we can compute d by using only 4
resource units:

« first, we spend one unit to measure a, i.e., to use the rule

0— a;
« then, we spend two units to apply the rules
a—band a — ¢
« finally, we spend the last (fourth) unit to apply the rule

b,c —d.

Analysis of the situation. The reason why the above algorithm
over-estimated is that when had inputs b and ¢, we added their
costs — without taking into account that computing b and ¢ has
a common part — the part of measuring a. As a result, in our
computations, we counted the resources needed to measure a
twice:
« once as part of estimating resources needed to compute
b, and
o second time as part of estimating resources needed to
compute c.

Solution to the problem: a more efficient algorithm. Let us
first consider the case when all the rules use either a single
symbol or a pair in the left-hand side — i.e., when all the rules
have either a form a — b or a form a,b — c.

In this case, instead of only iteratively estimating the cost of
computing each individual guantity a (as in the shortest path
algorithm), we also iteratively estimate the cost of computing
all possible pairs. In other words, for each k, in addition to
the values wg(a), we also estimate the smallest cost dy(a, b)
of computing both a and b in k rules. In general, we are
computing values dj(A), where A is either a single variable
or a pair of variables.

To be able to perform computations, we need to expand the
original set of rules covering variables to rules covering pairs.
Specifically: we generate a new rule A — z if

o cither z is already an element of C (in this case, the

weight is 0),

e or there is an original rule r of the type C' — x with
C C AU...UB (i.e., in which available inputs A, ...,
B include inputs needed for this rule); the new rule gets
the weight w(r).

Similarly, we generate a new rule A, ..., B — X if every
element z € X is:

o cither already in the inputs z € AU...U B,

e or is covered by a rule r, of the type C,, — z with

C; CAU...UB.
The weight of the new rule is then defined as the sum of the
weights of these original rules.

Then, we apply the same algorithm to the new nodes A.

Comment. While we increase the number of rules, this increase
is still polynomial, so we still get a polynomial-time algorithm.

Example. Let us show that in the above example, the new
algorithm lead to the correct estimate d(d) = 3. Indeed, with
pairs, we now have rules

e 0 — a (of weight 1),

e a— {b,c} (of weight 2), and

o {b,c} — d (of weight 1).
Applying these rules one after another we get the desired
shortest path 3.

General case. In general, we may have rule that have three
inputs like a,b,c — d, or even k£ > 3 inputs. In this case, we
have to consider sets A consisting of 3 (or, correspondingly,
k) variables.

Comment. For each k, the resulting algorithm is still polyno-
mial. Since the size is usually limited, we thus have still a
polynomial algorithm.

However, it is worth mentioning that the computation time

grows as n* — i.e., exponentially with k. This exponential

growth is inevitable, since we are facing a general problem of
finding a shortest path in a hyper-graph (= graph with “edges”
of the type a,...,b — ¢), and this problem is known to be
NP-hard [3].
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