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Abstract

In many real-life situations, we need to bargain. What is the best
bargaining strategy? If you are already in a negotiating process, your
previous offer was a, the seller’s last offer was a > a, what next offer a
should you make? A usual commonsense recommendation is to “split the
difference”, i.e., to offer a = (a+a)/2, or, more generally, to offer a linear
combination a = k · a+ (1− k) · a (for some parameter k ∈ (0, 1)).

The bargaining problem falls under the scope of the theory of coop-
erative games. In cooperative games, there are many reasonable solution
concepts. Some of these solution concepts – like Nash’s bargaining solu-
tion that recommends maximizing the product of utility gains – lead to
offers that linearly depend on a and a; other concepts lead to non-linear
dependence. From the practical viewpoint, it is desirable to come up with
a recommendation that would not depend on a specific selection of the
solution concept – and on specific difficult-to-verify assumptions about
the utility function etc.

In this paper, we deliver such a recommendation: specifically, we show
that under reasonable assumption, we should always select an offer that
linearly depends on a and a.
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1 Introduction

Formulation of the practical problem. In many real-life situations, we
need to negotiate. For example, if you want to buy a house, then:

• If you want to buy a house with a list price a, what offer a should you
make?

• If you are already in a negotiating process, your previous offer was a, the
seller’s last offer was a > a, what next offer a should you make?

From the viewpoint of a seller, there are similar problems:

• If you want to sell a house, and a potential buyer made an offer a, what
counter-offer a should you make?

• If you are already in a negotiating process, your previous offer was a,
the buyer’s related counter-offer was a < a, what next offer a should you
make?

A similar problem occurs if instead of negotiating a purchase, a person or a
company in bad financial shape (e.g., in bankruptcy) is negotiating a deal on
its debts. If the original debt was a, what offer should we make? If you agreed
that it pays a, and the company’s counter-offer is to pay a < a, what is your
reasonable next step?

Another similar negotiation cases are negotiating for a salary with a new
hire, or negotiating between an employer and an insurance company for the
best way to provide insurance to the company’s employers.

A similar problem occurs in an auction: when the previous bid was a, what
next bid should you make?

Commonsense solutions. A usual advise for the first offer is to offer a cer-
tain portion of the asking price, i.e., to offer a = k · a for some coefficient
k ∈ (0, 1). The exact value of the coefficient k depends on the situation: when
buying a house in the US, 70-80% is usually appropriate, while in some places,
when bargaining for a tourist souvenir in an oriental bazaar, it is recommended
to offer 1/3 or even 1/4 of the asking price.

A usual advise to use in the middle of negotiations is, e.g., to split the
difference, i.e., to select a = (a+ a)/2.

In most cases, the recommended offer a is a linear function of the bounds a
and a.

The usual game theory approach to bargaining and negotiations: suc-
cesses and limitations. In general, economic situations like this, with con-
flict of interest, are handled by game theory. Some game theory concepts (see,
e.g., [6]) simply select the range of reasonable outcomes and to state that the
exact choice of an outcome from this range is up to the participants’ bargaining
skills.
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The first game-theoretic approach to bargaining was proposed by the No-
belist John Nash in [7, 8]; his bargaining solution is to select an alternative for
which the product of utility gains is the largest possible. As shown in [4, 5],
under reasonable assumptions about the utility function, this idea leads to the
negotiation result which is a linear function of the bounds a and a.

Nash’s bargaining solution, by itself, does not explain how exactly we should
bargain, but a more sophisticated game-theoretic analysis of the bargaining
game does lead to recommendations, and under reasonable conditions, the rec-
ommended offer a is a linear function of the bounds a and a; see [4, 5, 11].

However, it is well known that in cooperative game theory, there are many
different solution concepts; see, e.g., [6]. As shown in [4, 5], the linearity conclu-
sion strongly depend on the game solution concept and on assumptions about
the utility function; under some other concepts and/or assumptions, the optimal
offer non-linearly depends on a and a.

From the practical viewpoint, it is therefore desirable to come up with a
recommendations which would not depend on the specific (and somewhat ar-
bitrary) choice of a solution concept and/or on difficult-to-verify assumptions
about utility functions. In other words, it is desirable to come up with rec-
ommendations which would follow from general fundamental ideas behind the
bargaining process.

Such recommendations are given in this paper.

What we do in this paper. We provide a new theoretical analysis of the ne-
gotiations situations. Specifically, we show that under reasonable assumptions,
the recommended next offer/counter-offer a should indeed linearly depend on
the given data.

2 Definitions and the Main Results

First offer problem: discussion. Both for the buyer and for the seller, in
the first offer problem, our objective is to come up with an offer a′ ≥ 0 based on
the asking price a ≥ 0. In other words, our objective is to produce a function
that, given a, generates a value a′. We will denote this function by f(a).

What are the reasonable properties of this function f(a)? Suppose that we
want to buy (or sell) two houses at the same time, with asking prices a and
b, and suppose that these two houses are sold by the same seller (or buyer)
company. If we treat these houses as separate purchases, then, according to the
recommendation function f , we should offer f(a) for the first house and f(b)
for the second house. Thus, the total amount of the offer is f(a) + f(b).

On the other hand, if we view the two houses as a single purchase, this is
equivalent to a seller offering an initial price t = a+ b for both houses. In this
case, a reasonable thing is to offer the amount f(t) = f(a+ b).

It makes sense to require that the total amount offered for both houses
should not depend on whether we treat these two houses separately or as a
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single purchase. In other words, we require that f(a+ b) = f(a) + f(b), i.e., in
mathematical terms, that the function f(a) is additive.

Definition 1. By a unary recommendation function, we mean a function

f : IR → IR

that maps every non-negative number a into a non-negative value f(a) for which
f(a+ b) = f(a) + f(b).

Proposition 1. Every unary recommendation function has the form f(a) =
k · a for some real number k ≥ 0.

Comments.

• The proofs of all the results are given in the Proofs section.

• The choice of k depends on whether we consider a buyer or a seller prob-
lem.

– When a buyer decides on a counter-offer f(a) to the original seller’s
price a, this counteroffer should not exceed the seller’s asking price,
so we should have f(a) ≤ a. For the linear function f(a) = k · a, this
requirement is equivalent to k ≤ 1.

– When a seller decides on a counter-offer f(a) to the original buyer’s
proposed price a, this counteroffer should not be smaller than the
buyer’s asking price, so we should have f(a) ≥ a. For the linear
function f(a) = k · a, this requirement is equivalent to k ≥ 1.

Application to auctions. In an auction, wee need to come up with a next
bid a′ ≥ 0 based on the previous bid a ≥ 0, i.e., to produce a function f(a)
that, given a, generates a value a′ = f(a).

Suppose that we participate in two auctions at the same time, with current
bids a and b. If we treat these auctions as separate events, then, according to
the recommendation function f , we should bid f(a) in the first auction and f(b)
in the second auction. Thus, the total amount of our next bid is f(a) + f(b).

On the other hand, if we view the two auctions as a single event, this is
equivalent to a previous bid t = a+ b for both auctioned objects. In this case,
a reasonable thing is to bid the amount f(t) = f(a+ b).

It makes sense to require that the total bid should not depend on whether
we treat these two auctions separately or as a single event. In other words, we
require that f(a+b) = f(a)+f(b), i.e., in mathematical terms, that the function
f(a) is additive. Due to Proposition 1, we now conclude that f(a) = k · a for
some k ≥ 1.

The next bid cannot be smaller than the previous bid, so we have k ≥ 1.
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Selecting an offer in the middle of a bargaining process: discussion.
In this problem, we need to come with an offer a based on the current offers
a < a. In other words, we need to produce a function that, given the two
non-negative numbers a and a for which a ≤ a, generates a value a ∈ [a, a].

What are the reasonable properties of this function f(a, a)? Suppose that
we want to buy (or sell) two houses at the same time, with correspondingly,

• offers a and a for the first house, and

• offers b and b for the second house.

Suppose also that these two houses are sold by the same seller (or buyer) com-
pany. If we treat these houses as separate purchases, then, according to the rec-
ommendation function f , we should offer f(a, a) for the first house and f(b, b)
for the second house. Thus, the total amount of the offer is f(a, a) + f(b, b).

On the other hand, if we view the two houses as a single purchase, this is
equivalent, e.g., to the seller offering a price t = a + b for both houses and the
buyer to buy both houses for the amount t = a + b. In this case, a reasonable
thing is to offer the amount f(t, t) = f(a+ b, a+ b).

It makes sense to require that the total amount offered for both houses
should not depend on whether we treat these two houses separately or as a single
purchase. In other words, we require that f(a+ b, a+ b) = f(a, a)+ f(b, b), i.e.,
that the function f(a, a) is additive.

Definition 2. By a binary recommendation function, we mean a function
f : IR × IR → IR that maps every pair (a, a) of non-negative numbers with
a ≤ a into a non-negative value f(a, a) ∈ [a, a] and for which f(a+ b, a+ b) =
f(a, a) + f(b, b).

Comment. The pair (a, a) of non-negative numbers with a ≤ a represents an
interval a = [a, a]. We can say that an interval a = [a, a] is non-negative if
a ≥ 0. Thus, f can be viewed as a function f(a) from non-negative intervals to
non-negative real numbers for which f(a) ∈ a for all intervals a.

For intervals, addition can be defined in a usual way (see, e.g., [3]), as the
range of the sum a+ b when a is in a and b is in b:

a+ b
def
= {a+ b : a ∈ a, b ∈ b}.

Since addition is an increasing function of both variables, its largest value is
attained when both a and b attain their largest values a and b, and its smallest
value is attained when both a and b attain their smallest values a and b. Thus,
the sum of the two interval takes the form

[a, a] + [b, b] = [a+ b, a+ b].

Thus, in interval terms, the additivity requirement takes the form f(a + b) =
f(a) + f(b).
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Proposition 2. Every binary recommendation function has the form f(a, a) =
k · a+ (1− k) · a for some real number k ∈ [0, 1].

Comment. This mathematical result is also applicable to a different practical
problem: of decision making under uncertainty. Suppose that we have an object
whose exact price is unknown, we only know that this price is between a and
a. What is a reasonable price to pay for this object? This reasonable price a
should be a function of the two bounds a and a; let us denote this function by
f(a, a).

Since we know that the object is worth at least a, the fair price must be
at least a: a ≤ f(a, a). Similarly, since we know that the object is worth at
most a, the fair price must be at most a: f(a, a) ≤ a. Thus, we must have
f(a, a) ∈ [a, a].

If we buy two objects at the same time, then the fair price should not depend
on whether we consider these objects separately or together. Now the argument
similar to the one above leads to additivity f(a+ b) = f(a) + f(b).

Thus, Proposition 2 is applicable, and according to this proposition, the fair
price is f(a, a) = k ·a+(1−k) ·a. This formula is well known in decision making
under uncertainty – it is the optimism-pessimism criterion proposed by another
Nobelist L. Hurwicz [2, 6].

According to Hurwicz, the case k = 1, when the fair price is equal to a, is
the most optimistic case, when we assume that the actual value of the object is
described by the largest possible value a. Similarly, the case k = 0, when the
fair price is equal to a, is the most pessimistic case, when we assume that the
actual value of the object is described by the smallest possible value a.

3 Should the Recommendation Depend on Pre-
History?

In the previous section, we assumed that the recommended offer a depends only
on the bounds a from the previous iteration. A (seemingly) reasonable idea is
to take into account the entire history of negotiations, not just the last step.

Let us describe this idea in precise mathematical terms.

• Let a0 = [a0, a0] be the interval formed by the initial situation.

• Let the interval a1 = [a1, a1] describes the offer and counter-offer on the
1st iteration.

• . . .

• Let the interval at = [at, at] describes the offer and counter-offer on the
t-th iteration.

• . . .
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• Let the interval aT = [aT , aT ] describes the offer and counter-offer on the
last (T -th) iteration.

At each iteration, the interval becomes narrower, i.e., at+1 ⊆ at for all t.
Based on these T + 1 intervals at, we want to generate a recommendation

f(a0, . . . ,aT ) ∈ aT . As usual, the idea that we should generate the same rec-
ommendation whether we consider the two purchases separately or as a single
purchase leads to the additivity requirement. Thus, we arrive at the following
problem.

Definition 3. Let T be a positive integer. By a T -ary recommendation func-
tion, we mean a function f that maps every tuple (a0, . . . ,aT ) of T + 1 non-
negative intervals satisfying the condition at+1 ⊆ at into a non-negative value

f(a0, . . . ,aT ) ∈ aT

for which

f(a0 + b0, . . . ,aT + bT ) = f(a0, . . . ,aT ) + f(b0, . . . ,bT ).

Proposition 3. For every T , every T -ary recommendation function depends
only on aT : f(a0, . . . ,aT ) = f(aT ).

Due to Proposition 2, we thus have f(a0, . . . ,aT ) = k · aT + (1 − k) · aT for
some real number k ∈ [0, 1].

Comment. Somewhat surprisingly, it turns out that the the resulting recom-
mendation depends only on the latest offer aT . In other words, the correspond-
ing negotiations are similar to Markov processes in statistics – process in which
the next state depends only on the previous state but not on the pre-history.

Mathematical comment. From the mathematical viewpoint, Proposition 2
is easy to explain. Crudely speaking, due to additivity, the function f(a0, . . . ,aT )
linearly depends on all its variables, so

f(a0, . . . ,aT ) =
T∑

t=0

ℓt · at +
T∑

t=0

ut · at

for some coefficients ℓt and ut. For the case when aT is a degenerate interval
aT = [aT , aT ], due to f(a0, . . . ,aT ) ∈ aT , we should have f(a0, . . . ,aT ) = aT .
Thus, the coefficients ℓt and ut corresponding to t < T should be equal to 0.
This is not a proof – a proof is given below – but it is a plausible explanation
of the result.
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Comment. In [10] (see also [9]), the Hurwicz formula is justified based on a
different assumption: that the recommended value f(a, a) be shift- and scale-
invariant. Shift-invariance means that if we add a thing of a fixed cost c to the
object, the recommended price should increase by this price c: f(a+ c, a+ c) =
f(a, a) + c; this is, in effect, a particular case of additivity.

Scale-invariance means that if we use different monetary units, e.g., units
which are λ times smaller than the original ones, recommendations should stay
the same. The original offer a in the new unit takes the form λ · a, similarly for
a and for the resulting recommendation a, so scale-invariance means that

f(λ · a, λ · a) = λ · f(a, a).

These two requirements justify the Hurwicz formula and, thus, a similar formula
for the binary recommendation. However, they are not sufficient to analyze the
dependence on pre-history.

For example, for T = 1, the recommendation

f([a0, a0], [a1, a1]) = max

(
a1,min

(
a1,

a0 + a0 + a1 + a1
4

))
is shift- and scale-invariant, but this recommendation depends on a0 as well.
For example,

f([0, 3], [1, 2]) = 1.5 ̸= f([0, 4], [1, 2]) = 1.75.

Application to auctions. In the auction case, we can similarly consider the
possible dependence of the next bid on the sequence of previous bids a0 ≤ a1 ≤
a2 ≤ . . . ≤ aT . Here, the result is different.

Definition 4. Let T be a positive integer. By a T -ary auction recommendation
function, we mean a function f that maps every tuple (a0, . . . , aT ) of T +1 non-
negative numbers satisfying the condition at ≤ at+1 into a non-negative value
f(a0, . . . , aT ) ≥ aT for which

f(a0 + b0, . . . , aT + bT ) = f(a0, . . . , aT ) + f(b0, . . . , bT ).

Proposition 4. For every T , every T -ary recommendation function has the
form

f(a0, . . . , aT ) = c0 · a0 +
T∑

t=1

ct · (at − at−1)

for some values c0 ≥ 1, c1 ≥ 1, . . . , cT ≥ 1.
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4 How to Find the Equilibrium

Need to compute the equilibrium. As a result of the negotiations process,
we get converging offers and counter-offers and, in the limit, we reach an “equi-
librium” – the price to which both the buyer and the seller agree. What is this
final price for the above linear recommendation function?

We consider the cases that start with the seller’s offer. Without losing
generality, let us consider the case when the negotiation process starts with the
seller’s offer a0; the case when it starts with the buyer’s offer can be treated
similarly. In this case, we start with an interval [a(0), a(0)] = [0, a0].

Analysis of each iteration. Let at and at denote the values corresponding
to the t-th iteration. On the previous iteration, we have an interval [at−1, at−1].
Each iteration starts with the buyer’s new offer. According to Propositions 2
and 3, this offer has the form

at = kb · at−1 + (1− kb) · at−1, (1)

where kb is a coefficient corresponding to the buyer’s strategy.
Now, the seller has an interval [at, at−1]. On this interval, according to

Propositions 2 and 3, the seller selects the value

at = ks · at−1 + (1− ks) · at, (2)

where ks is a coefficient corresponding to the seller’s strategy. Substituting the
expression (1) for at into this formula, we get an expression for at in terms of
the bounds at−1 and at−1 obtained on the previous iteration:

at = k · at−1 + (1− k) · at−1, (3)

where
k

def
= ks + (1− ks) · kb = ks + kb − ks · kb. (4)

Proof of convergence. Due to (1) and (3), the width at − at of the new
interval [at, at] is equal to

at − at = (k − kb) · (at−1 − at−1), (5)

where k − kb = (ks + kb − ks · kb) − kb = ks · (1 − kb). Thus, the width of the
interval decreases in the geometric progression:

at − at = (k − kb)
t · (a0 − a0). (6)

The width decrease to 0, and therefore, both bounds at and at tends to the
same limit. Let us denote this limit by a.
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Computing the equilibrium. At each stage, the lower bound increases by
a value

at − at−1 = kb · (at−1 − at−1)

and the upper bound decreases by the amount

at−1 − at = (1− k) · (at−1 − at−1).

Thus, at each iteration, the change in the lower bound is equal to kb/(1 − k)
times the change in the upper bound. In the limit, when both bounds tend to
the same “equilibrium” value a, we thus have the same ratio

a− a0 =
kb

1− k
· (a0 − a).

In other words, the point a divides the original interval [a0, a0] in proportion
kb/(1− k). Thus, the resulting equilibrium point has the form

a = a0 +
1− k

1− k + kb
· (a0 − a0) =

1− k

1− k + kb
· a0 +

kb
1− k + kb

· a0. (7)

Prices at different moments of time reformulated in terms of the equi-
librium value. One can check that the seller’s price at at the t-th iteration
is equal to

a+ (a0 − a) · (k − kb)
t. (8)

5 What is the Purpose of Negotiations in the
First Place?

Problem: why negotiations? In the above text, we simply analyzed ne-
gotiations. However, as we have mentioned in the previous section, the long
negotiation process ends up with a single value a anyway. So why not come up
with this value anyway? Why do we need a long negotiation process?

Idea of an explanation. The example of a souvenir seller may explain why
negotiations are reasonable. While some buyers do go through the whole nego-
tiation process and get the equilibrium price, other may value their time more
and stop negotiations earlier – or even buy at the original asking price.

This idea is describe, in detail, in [4, 5].

How to formalize this idea. Each iteration of the negotiation process re-
quires a certain time. Let us denote by wb the amount of money by which the
buyer values the time needed for a single iteration. In these terms, for the buyer,
spending time on t iterations is equivalent to losing the amount wb · t.

Similarly, let us denote by ws the amount of money by which the seller values
the time needed for a single iteration. In these terms, for the seller, spending
time on t iterations is equivalent to losing the amount ws · t.
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If the buyer waits until t iterations, then, in accordance to the formula (8)
derived in the previous section, the buyer overpays the amount ∆ · kt0, where
∆

def
= a0 − a denotes the overpayment of the original asking price a0, and k0

def
=

k − kb. In addition to paying this price, the buyer also loses the amount wb · t
proportional to the negotiations time. Thus, the overall loss to the buyer is

∆ · kt0 + wb · t. (9)

The seller gains the overpricing amount ∆ · kt0 but loses the amount ws · t
proportional to the negotiations time. Thus, the overall gain to the seller is

∆ · kt0 − ws · t. (10)

When to stop negotiations? When t → ∞, the buyer’s loss tends to ∞
and the seller’s gain becomes loss. Thus, both sides are interested in stopping
the negotiation process. For the buyer, the best time to stop is when the overall
loss (9) is the smallest. Differentiating the expression (9) with respect to t and
equating the derivative to 0, we conclude that

∆ · kt0 · ln(k0) + wb = 0,

i.e., that

∆ · kt0 =
wb

| ln(k0)|
,

kt0 =
wb

∆ · | ln(k0)|
,

and thus, that

t =
ln(wb)− ln(∆)− ln(| ln(k0)|)

ln(k0)
.

For the seller, the longer the negotiations hold, the more he or she loses.
When the gain (10) becomes 0, it is time to stop and accept the buyer’s offer.
Thus, the seller can continue negotiations until the iteration t for which

∆ · kt0 = ws · t. (11)

6 Proofs

Proof of Proposition 1. This proof easily follows from the general results
about additive functions from [1]. For completeness, we can reproduce the proof
here. Let us denote f(1) by k. We want to prove that f(a) = k · a for all a.

1◦. Let us first prove that f(n) = k · n for all integers n.

Indeed, due to additivity, from n = 1 + . . .+ 1 (n times), we conclude that

f(n) = f(1) + . . .+ f(1) (n times),
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i.e., that f(n) = n · f(1) = k · n.
2◦. Let us now prove that f(r) = k · r for all rational numbers r = p/q.

Indeed, due to additivity, from p = r ·q = r+ . . .+r (q times), we conclude that

f(p) = f(r) + . . .+ f(r) (q times),

i.e., that f(p) = q · f(r). Therefore, f(r) = f(p)/q. From Part 1, we already
know that f(p) = k · p, hence f(p/q) = f(r) = (k · p)/q = k · (p/q) = k · r. The
statement is proven.

3◦. Finally, let us prove that f(a) = k · a for all non-negative real numbers a.

Indeed, an arbitrary non-negative real number a can be, with an arbitrary
accuracy 2−n, approximated by non-negative rational numbers ln ≤ a ≤ un

for which ln → a and un → a as n → ∞.
Due to additivity, we have f(a) = f(ln) + f(a− ln) and since all the values

of the function f(x) are non-negative, we conclude that f(ln) ≤ f(a). Similarly,
we can prove that f(a) ≤ f(un) and thus, f(ln) ≤ f(a) ≤ f(un). For rational
numbers ln and un, we already know that f(ln) = k · ln and f(un) = k · un,
hence we get k · ln ≤ f(a) ≤ k · un. In the limit n → ∞, when ln → a and
un → a, we get k · a ≤ f(a) ≤ k · a, i.e., the desired equality f(a) = k · a. The
proposition is proven.

Proof of Proposition 2. In view of the comment right before the formulation
of Proposition 2, let us reformulate the problem in terms of intervals.

Every interval [a, a] can be represented as a sum of two interval: a degenerate
interval [a, a] and an interval [0, a− a] with a zero left endpoints:

[a, a] = [a, a] + [0, a− a].

Due to additivity, we have

f([a, a]) = f([a, a]) + f([0, a− a]).

Thus, to find the value f([a, a]) for a general interval, it is sufficient to find the
values f([a, a]) for degenerate intervals and the values f([0, a− a]) for intervals
with zero left endpoints.

For a degenerate interval [a, a] that contains only one point a, the require-
ment that f(a) ∈ a implies that f([a, a]) = a.

For intervals of the type [0, a], we have [0, a] + [0, b] = [0, a + b]. Thus, due
to additivity, the function f([0, a]) satisfies the conditions of Proposition 1, and
hence, f([0, a]) = k · a for some k ≥ 0. The requirement that f([0, a]) ∈ [0, a],
i.e., that f([0, a]) ≤ a, implies that k ≤ 1. Thus,

f([a, a]) = f([a, a]) + f([0, a− a]) = a+ k · (a− a),

hence
f([a, a]) = k · a+ (1− k) · a.

The proposition is proven.
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Proof of Proposition 3. Let (a0, . . . ,aT ) be an arbitrary tuple of non-
negative intervals with the inclusion property at+1 ⊆ at.

Due to the inclusion property, we have aT ⊆ a0 and thus, aT ≥ a0. Let us
denote the corresponding non-negative difference aT − a0 by d.

Due to additivity, for the intervals

bt
def
= at + [d, d] = [at + d, at + d],

we have
f(b0, . . . ,bT ) = f(a0, . . . ,aT ) + f([d, d], . . . , [d, d]). (12)

Due to the requirement that f(a0, . . . ,aT ) ∈ aT , we have f([d, d], . . . , [d, d]) = d,
hence (12) implies

f(b0, . . . ,bT ) = f(a0, . . . ,aT ) + d. (13)

Now, we will represent each interval bt as a sum aT +ct, where ct
def
= bt−aT

and ct
def
= bt − aT . Here, ct = bt − aT = at − aT + d. Due to inclusion property,

we have at ⊆ a0 hence at ≥ a0 thence, by definition of the difference d,

at − aT + d = at − aT + aT − a0 = at − a0.

Thus, all the values ct are non-negative, so we have a tuple of non-negative
intervals. It is easy to see that this tuple satisfies the property ct+1 ⊆ ct. Thus,
by additivity,

f(b0, . . . ,bT ) = f(aT , . . . ,aT ) + f(c0, . . . , cT ). (14)

Here, cT = bT − aT = d and cT = bT − aT = d, so cT = [d, d] and thus, due to
the property f(c0, . . . , cT ) ∈ cT , we conclude that f(c0, . . . , cT ) = d. Thus, the
formula (14) takes the form

f(b0, . . . ,bT ) = f(aT , . . . ,aT ) + d. (15)

Substituting the expression (13) for f(b0, . . . ,bT ) into the left-hand side of the
formula (15), we conclude that

f(a0, . . . ,aT ) + d = f(aT , . . . ,aT ) + d,

hence
f(a0, . . . ,aT ) = f(aT , . . . ,aT ).

Thus, the recommendation indeed depends only on the latest interval. The
proposition is proven.
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Proof of Proposition 4. Let us define the differences ∆t as follows: ∆0 = a0
and ∆t = at−at−1 for t ≥ 1. Once we know the differences, we can reconstruct

the original values at as at =
t∑

s=0
∆s. In terms of the differences, the original

monotonicity condition a0 ≤ a1 ≤ . . . ≤ aT takes the simplified form ∆t ≥ 0 for
all t.

Every function f(a0, . . . , aT ) can be reformulated in terms of the differences
∆t as f(a0, a1, . . . , aT ) = F (∆0,∆1, . . . ,∆T ), where

F (∆0, . . . ,∆T )
def
= f(∆0,∆0 +∆1, . . . ,∆0 + . . .+∆T ).

Thus, to find the desired function f(a0, a1, . . . , aT ), it is sufficient to find the
new function F (∆0,∆1, . . . ,∆T ).

In terms of the new function, the conditions on the function F are additivity
and F (∆0,∆1, . . . ,∆T ) ≥ ∆0 + . . .+∆T for all ∆t. Due to additivity, the fact
that

(∆0,∆1, . . . ,∆T ) = (∆0, 0, . . . , 0) + (0,∆1, 0, . . . , 0) + . . .+ (0, 0, . . . , 0,∆T )

implies that

F (∆0,∆1, . . . ,∆T ) = F0(∆0) + F1(∆1) + . . .+ FT (∆T ),

where F0(∆0)
def
= F (∆0, 0, . . . , 0), F1(∆1)

def
= F (0,∆1, 0, . . . , 0), . . . , FT (∆T )

def
=

F (0, 0, . . . , 0,∆T ) and, in general, Ft(∆t)
def
= F (0, 0 . . . , 0,∆t, 0, . . . , 0). For each

of the functions Ft(∆t), additivity (due to Proposition 1) implies that Ft(∆t) =
ct ·∆t for some ct ≥ 0, hence

F (∆0,∆1, . . . ,∆T ) =

T∑
t=0

ct ·∆t.

The condition that

F (∆0,∆1, . . . ,∆T ) =
T∑

t=0

ct ·∆t ≥
T∑

t=0

∆t

implies, for the case when only one value ∆t is different from 0, that ct ≥ 1.

Vice versa, once ct ≥ 1 for all t, the condition F (∆0,∆1, . . . ,∆T ) ≥
T∑

t=0
∆t is

satisfied.
The proposition is proven.
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