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Abstract One of the main tasks of interval computation is to analyze situations
in which we only know the lower and upper bounds on the desired quantity, i.e., we
only known an interval that contains this quantity. One of the objectives of such
analysis is to make decisions. According to decision theory, a consistent decision
making procedure is equivalent to assigning probabilities to different values within
each interval. Thus, we arrive at the problem of describing a natural probability
distribution on an interval. In this paper, we describe such a distribution for the
practically important case of the “weakest link” arrangement, when the collapse of
each link is catastrophic for a system. This situation occurs in fracture mechanics,
when a fracture in one of the areas makes the whole plane inoperable, in eco-
nomics, when the collapse of one large bank or one country can have catastrophic
consequences, etc.
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1 Introduction

Need to make decisions. One of the main practical objectives of science and engi-
neering is to make decisions, i.e., to select an alternative which is the best for the
decision maker.

How to describe preferences of a decision maker: the notion of utility. A standard
way to describe preferences of a decision maker is to use the notion of utility; see,
e.g., [7,8,10,12,14]. To describe the utility of an outcome A, we need to select
two extreme outcomes: a very unfavorable alternative A− and a very favorable
outcome A+.

We assume that all outcomes A in which we are interested are better than A−
and worse than A+. If we denote the relation “the decision maker prefers A′ to A”
by A ≤ A′, then we can describe this assumption as A− ≤ A ≤ A+.

Then, for each probability p ∈ [0, 1], we can consider a lottery L(p) in which we
have A+ with probability p and A− with the remaining probability 1− p.

For p = 1, the lottery L(p) coincides with A+, so we have A ≤ A(1). For p = 0,
the lottery L(p) coincides with A−, so we have A(0) ≤ A. The larger p, i.e., the
larger the probability of a beneficial event A+, the more beneficial is the lottery
L(p) for the decision maker. So, if p < q, then L(p) < L(q).

Let p0 be the infimum (greatest lower bound) of the set of all the values p for
which A ≤ L(p). Then:

– When p < p0, then for p̃ = (p+p0)/2, we have p̃ < p0 and thus, by definition of
the infimum, we cannot have A ≤ L(p̃). Thus, we have L(p̃) ≤ A. Since p < p̃,
we have L(p) < L(p̃) ≤ A and thus, L(p) < A.

– When p > p0, then, since p0 is the greatest lower bound, p is not a lower bound,
i.e., there exists a value p̃ for which A ≤ L(p̃) and p̃ < p. Since p̃ < p, we have
L(p̃) < L(p) hence A < L(p).

Thus, we have the value p0 that has the following property:

– when p < p0, the corresponding lottery is worse than the event A: L(p) < A,
and

– when p > p0, the corresponding lottery is better than the event A: L(p) > A.

This threshold value p0 is called the utility of the event A. The utility is usually
denoted by u(A).

We can simplify the above somewhat complicated relation between A and p0
by saying that the event L(p0) is equivalent to A. We will denote this equivalence
by A ∼ L(p0).

How to describe the utility of an action with uncertain consequences. In practice, we
can rarely predict the exact consequences of each decision. The consequences de-
pend on the circumstances. For example, if we decide whether to take an umbrella
or not, the consequences of this decision depend on whether it will rain or not.
In the ideal situation, we know the probabilities p1, . . . , pn of different possible
consequences E1, . . . , En. In other words, the action leads to E1 with probability
p1, to E2 with probability p2, . . . , and to En with probability pn.

By definition of the utility, the event E1 is equivalent to a lottery L(u(E1)) in
which we get A+ with probability u(E1), the event E2 is equivalent to a lottery
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L(u(E2)) in which we get A+ with probability u(E2), etc. Thus, the original action
is equivalent to the composite lottery, in which:

– with probability p1, we get a lottery that results in A+ with probability u(E1),
and in A− otherwise;

– with probability p2, we get a lottery that results in A+ with probability u(E2),
and in A− otherwise;

– . . .

In this composite lottery, we get either A+ or A−, and the probability of getting
A+ can be easily computed as

u
def
= p1 · u(E1) + p2 · u(E2) + . . .+ pn · u(En).

Thus, the original action is equivalent to the lottery L(u). By definition of the
utility, this means that the utility of the action is equal to u.

From the mathematical viewpoint, u is the expected value of the utility of
different consequences, so we can conclude that the utility of an action is the
expected value of utilities of its consequences.

What if we do not know the probabilities of different consequences? In many practical
situations, we do not know the exact values of the probabilities of different conse-
quences. For each event Ei, we can estimate its subjective probability ps(Ei) as the
probability pi for which the lottery L(pi) (in which we get A+ with probability pi,
otherwise we get A−) is equivalent to the new “lottery” L(Ei) in which we get A+

if Ei occurs, otherwise we get A−.

In other words, we determine the subjective probability ps(Ei) as the utility
u(L(Ei)) of the new lottery L(Ei).

In practice, it is sometimes difficult to ask experts. The traditional utility theory ap-
proach – that we described above – is to elicit, from the experts, all the information
about their preferences and their subjective probabilities.

In some applications, e.g., when we undertake a large project, this is possible
and reasonable. For example, decision theory has been used to select a location for
a major airport. With such a long-term billion-dollar investment that affects many
potential users, it makes sense to spend a certain amount of time and resources to
get a clear picture of user preferences.

However, often, we face decisions which need to be made fast and which are
not that critical. In such situations, we do not have time to elicit all the values
of subjective probabilities, and, even when we have some time for this elicitation,
spending too many resources on this elicitation would cut off into the benefits.

Need to get reasonable probability distributions. A typical situation is when the con-
sequences of an action depend on some quantity a, we do not know the actual
probabilities of different values of this quantity, and we have no time and/or re-
sources to elicit subjective probabilities of different values a.

In this case, we need to come up with a reasonable probability distribution for
a, a distribution that will be used in decision making.
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Need to assign distributions on an interval. Usually, we know some bounds on each
quantity, i.e., we know that the value a is always larger than or equal to some
value a and always smaller than or equal to some value a. In other words, we know
that the value a belongs to the interval [a, a].

In this case, we need a natural way to assign probabilities on an interval.

What we do: consider weakest link case. In this paper, we consider a practically
important case of the “weakest link” arrangement.

Informally, this means that we have a multi-link system, and the collapse of
each link is catastrophic for a system. Such situations are typical in economics,
when the collapse of one large bank or one country can have catastrophic conse-
quences. They are also typical in fracture mechanics, when a fracture in one of the
areas makes the whole structure (e.g., an airplane wing) inoperable.

2 Analysis of the Problem

Weakest link: a usual mathematical description. The weakest link situation is usually
described as follows: the quality of each link i is characterized by a value vi, and the
quality of a system as a whole is determined by the smallest of the corresponding

values vi: v
def
= min

i
vi.

It is reasonable to assume that the value vi are independent random variables.
In mathematical terms, this means that we are looking for a distribution of the
minimum min

i
vi of several independent variables. Such distributions are usually

called extreme value distributions; see, e.g., [1,5,6,9,15].

Extreme value distributions: standard theory. We want to find the probability dis-
tribution of the extreme values. Traditionally, a probability distribution is de-

scribed by a cumulative distribution function F (v0)
def
= Prob(v ≤ v0) that de-

scribes the probability that a random variables does not exceed a given number
v0. However, from the practical viewpoint, we are interested in probabilities of
rare events, i.e., in the probabilities that v exceeds the given value v0. Thus, for ex-
treme value distributions, it is more convenient to use the corresponding function
G(v0) = 1− F (v0) = Prob(v > v0).

In deriving the types of distributions, it is usually taken into account that the
numerical value of a physical quantity v depends:

– on the choice of a measuring unit v → a · v (e.g., 1.7 m = 170 cm), and
– on the choice of the starting point v → v + b (e.g.: A.D. or since the French

Revolution).

Under these transformations, the original function G(v0) turns into a new re-scaled
function G(a · v0 + b). It is therefore reasonable, instead of looking for a single
function G(v0), to look for a family G of distributions {G(a · v0 + b)}a,b obtained
from some function G(v0).

By definition of an extreme distribution as a minimum, if n independent iden-
tically distributed variables vi are distributed according to the extreme value dis-

tribution, then their minimum v′
def
= min vi is the minimum of minimums, so it
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should also be distributed according to the extreme value distribution. Clearly,
v′ > v0 ⇔ v1 > v0 & . . . & vn > v0; so, since vi are independent, we conclude that

G′(v0) = Prob(v > v0) =

n∏
i=1

Prob(vi > v0) = (G(v0))
n.

Thus, the desired family G should contain, with each function G(v0), also a function
G′(v0) = (Gi(v0))

n.

Similarly, for the maximum v′′ of α · n values, we conclude that the function
G′′(v0) = (G(v0))

α·n belongs to the family G, where G′′(v0) = (G′(v0))
α.

It is therefore reasonable to conclude that if G(v0) ∈ G, then Gα(v0) ∈ G for all
α. By definition of the family G, this means that for every α, there exist a(α) and
b(α) such that Gα(v0) = G(a(α) · v0 + b(α)).

Extreme value distributions: standard derivation. The above functional equation can

be simplified if we consider an auxiliary function g(v0)
def
= − ln(G(v0)). For this

auxiliary function, the above formula takes the form α · g(v0) = g(a(α) · v0 + b(α)).
When α = 1, we have a(α) = 1, and b(α) = 0. Differentiating both sides of

the above formula by α and taking α = 1, we get g =
dg

dv0
· (a · v0 + b), i.e.,

dg

g
=

dv0
a · v0 + b

, where we denoted a
def
= a′(1).

When a = 0, integration leads to ln(g) =
v0
b

+ c, so g(v0) = exp
(
v0
b

+ c
)
and

G(v0) = exp
(
− exp

(
v0
b

+ c
))

. When a ̸= 0, for v
def
= v0 +∆v, with ∆v = b/a, we

get
dg

g
=

dv

a · v hence ln(g) = a · ln(v) + c, so g = c · va = c · (v0 −∆v)a, hence

G(v0) = exp (−c · (v0 −∆v)a) .

Comment. Actually, we get two different types of distributions depending on
whether a > 0 or a < 0.

Not all linear transformations are physically meaningful. The above derivations are
based on the assumption that we have linear symmetries v0 → a · v0 + b.

For some quantities like time or temperature, all values are possible, so we
have both shift- and scale-invariance.

For other quantities, only some values are possible. For example, height can
only take non-negative values, i.e., possible values are limited to the set [0,∞). In
this case, only linear transformations that preserve this set make physical sense.
In other words, we only consider scalings v0 → a · v0.

How to extend this analysis to distributions on an interval: discussion. For the quanti-
ties whose values are limited to a fixed interval [v, v], it also makes sense to restrict
ourselves to linear transformations that preserve this set [v, v] of possible values.
However, the only linear transformation that preserves this interval is identity.

Our solution: to go beyond linear symmetries, to more general (non-linear) sym-
metries.
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Basic nonlinear symmetries: reminder. Sometimes, a system also has nonlinear sym-
metries. How can we describe the set of such symmetries?

If a system is invariant under transformations f(x) and g(x), then:

– it is invariant under their composition f ◦ g, and
– it is invariant under the inverse transformation f−1.

In mathematical terms, this means that symmetries form a group.
In general, we may have transformation groups that require infinitely many

parameters: for example, the group of all possible transformations, i.e., all possible
one-to-one functions from the real line to itself. However, in practice, at any given
moment of time, we can only store and describe finitely many parameters. Thus,
it is reasonable to restrict ourselves to transformation groups whose elements can
be described by finitely many parameters, i.e., to finite-dimensional groups.

Thus, we arrive at the following problem: describe all finite-dimensional trans-
formation groups that contain all linear transformations. This question was first
formulated by N. Wiener, the father of cybernetics, in [17]. For an Euclidean space
of arbitrary dimension n, such Lie groups have been classified in [16]. In particular,
for our case n = 1, the only such groups are the group of linear mappings and the
group of all fractionally-linear mappings

f(x) =
a · x+ b

c · x+ d
. (1)

Since we are interested in non-linear re-scalings, we should therefore consider re-
scalings of the type (1).

Resulting idea. In the linear case, we required that Gα(v0) is equal to the result
G(a(α) · v0 + b(α)) of applying a linear transformation v0 → a(α) · v0 + b(α) to v0.

Now, we similarly require that we require that Gα(v0) is equal to the result
of applying a fractionally-linear transformation, i.e., that for every α, there exist
a(α), b(α), c(α), and d(α) for which

Gα(v0) = G

(
a(α) · v0 + b(α)

c(α) · v0 + d(α)

)
for some transformation

v0 → a(α) · v0 + b(α)

c(α) · v0 + d(α)

that preserves the set [v, v] of possible values.

Side observation: symmetries explain the basic formulas of Neural Networks.

Fractionally-linear transformations have been actively used; for example, they were
used to explain the empirically successful form f(x) = 1/(1+e−x) of the activation

function, i.e., a function that is used in describing how the output y of a neuron is

related to its inputs x1, . . . , xn: y = f(x), where x
def
=

n∑
i=1

wi · xi −w0, for some real

numbers wi.
The details of this explanation are given, e.g., in [13]. The main idea behind

this explanation is as follows. The input x is only determined modulo starting
point. If we change the starting point for measuring xi, then the original value x
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changes into x + s. When we apply the activation function f(x) to this changed
input, we get the value f(x+ s).

In other words, changing the starting point means that we replace the original
activation function f(x) with a new activation function f(x+s). It is reasonable to
require that the new output f(x+s) is equivalent to the original output f(x) mod-
ulo an appropriate transformation. We have already shown that all appropriate
transformations are fractionally linear. Thus, we conclude that for every s, there
exist values a(s), b(s), c(s), and d(s) for which we have:

f(x+ s) =
a(s) · f(x) + b(s)

c(s) · f(x) + d(s)
.

Differentiating both sides of this functional equation by s and equating s to 0,
we get a differential equation for f(x). Its known solution is the above activation
function – which can thus be explained by symmetries.

3 Extreme Distributions on an Interval: Derivation and the Main Result

Reduction to [0, 1]. Before we start our derivation, let us observe that very interval
can be linearly reduced to the interval [0, 1]. Thus, it is sufficient to consider the
case when [v, v] = [0, 1].

Fractionally-linear transformations that preserve the interval [0, 1]. According to our
idea, we must describe all fractionally-linear transformations

f(x) =
a · x+ b

c · x+ d

that preserve the interval [0, 1].
First, dividing both numerator and denominator of the fractionally-linear for-

mula by d, and using a/d, b/d, and c/d instead of the original values of a, b, and
c, we get a simplified expression

f(x) =
a · x+ b

1 + c · x .

For a monotonic transformation to preserve [0, 1], we must have f(0) = 0 and
f(1) = 1. Substituting the above formula for f(x) into the equation f(0) = 0, we
can conclude that b = 0. Substituting the above expression (with b = 0) into the

equation f(1) = 1, we conclude that
a

1 + c
= 1, hence c = a− 1 and

f(x) =
a · x

1 + (a− 1) · x
.

Resulting reformulation of our problem. Now, we can reformulate our problem as
follows: for every α, there exists a(α) for which

Gα(v0) = G

(
a(α) · v0

1 + (a(α)− 1) · v0

)
.
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Derivation of the formula. By taking logarithms of both sides of the above formula,
we get

α · g(v0) = g

(
a(α) · v0

v0 + (a(α)− 1)

)
.

When α = 1, there is no transformation, so a(α) = 1.
Differentiating both sides of the above equation by α and substituting α = 1,

we get the differential equation

g =
dg

dv0
· (a · v0 − a · v20).

Moving all the terms depending on g to the left-hand side and all the terms
depending on v0 to the right-hand side, we conclude that

dg

g
=

dv0
a · v0 − a · v20

.

The fraction in the right-hand side can be represented as the sum of two simpler
fractions:

dg

g
=

1

a
·
(
1

v0
+

1

1− v0

)
.

Now, we can explicitly integrate both sides. As a result, we get the following
formula:

ln(g) =
1

a
· (ln(v0)− ln(1− v0)) + c =

1

a
· ln
(

v0
1− v0

)
+ c,

hence

g(v0) = β ·
(
1− v0
v0

)C
for some parameter C.

For a general interval [v, v], we get

g(v0) = β ·
(
v − v0
v0 − v

)C

.

Exponentiating, we get G(v0) = exp(−g(v0)), hence we arrive at the following
result:

Result. For variables on an interval [v, v], the general extreme distribution has the
following form

G(v0) = exp

(
−β ·

(
v − v0
v0 − v

)C
)

.

Discussion. These distributions were empirically found in fracture mechanics by
A. Chudnovsky and B. Kunin [2–4,11].

For the specific case of C = 0, we get a uniform distribution – a usual distri-
bution on an interval.
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