
January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

International Journal of Foundations of Computer Science
c⃝ World Scientific Publishing Company

DESIGNING, UNDERSTANDING, AND ANALYZING

UNCONVENTIONAL COMPUTATION: THE IMPORTANT ROLE

OF LOGIC AND CONSTRUCTIVE MATHEMATICS

VLADIK KREINOVICH

Department of Computer Science, University of Texas at El Paso

El Paso, TX 79968, USA
vladik@utep.edu

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

In this paper, we explain why, in our opinion, logic and constructive mathematics are

playing – and should play – an important role in the design, understanding, and analysis
of unconventional computation.

Keywords: unconventional computations; logic; constructive mathematics.

2010 Mathematics Subject Classification: 03A05, 03F60, 03F65, 68Q05, 65G20, 03F03

1. Introduction

Challenge. There are many practical problems for which:

• the algorithms are, in principle, known, but

• computations requires such a long time that we have to stop them mid-way

and get poor quality results (if we get any meaningful results at all).

Traditional approaches to this challenge and their limitations. Traditional

approaches to his challenge are:

• to design faster super-computers (hardware), and/or

• to design faster algorithms.

Both approaches are reasonable and sound reasonable. However, when people im-

plement these approaches, they often implement them in a limited way.

For example, when computer engineers talk about faster computers, they usually

talk mostly about new computers:

• which are innovative on the engineering level – in the sense that they im-

plement new engineering ideas – but

1

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

2 V. Kreinovich

• which are not that innovative on the level of fundamental physics – in the

sense that the new designs use the same physical processes as the existing

computers.

Similarly, when computer scientists design faster algorithms, they usually mostly

design new algorithms for solving the exact same problem as before – albeit slightly

faster. For example, the existing software usually implement algorithms for finding

accurate solutions to the corresponding partial differential equations. This accuracy

makes sense in the ideal situations, when we know the initial conditions with high

accuracy. In practice, often, due to sparsity and inaccuracy of sensor data, we only

have approximate inputs. In such situations, when inputs are only known with high

uncertainty, it makes no sense to compute the results with a high accuracy.

Thus, when the traditional approaches are not sufficient, it is reasonable to try

alternative approaches that overcome these limitations. Specifically:

• re hardware: use unconventional physical (and biological) processes;

• re algorithms: perform computations only up to accuracy that matches the

input accuracy.

Our main claim. We claim that for both alternative approaches to succeed, it

is crucial to further develop the corresponding tools of mathematical logic – and

related methods of constructive mathematics.

2. Why Logic?

Stages of solving a problem. A computational solution to a problem consists of

the following stages:

• first, we specify a problem, i.e., describe the user’s problem in precise terms;

• then, we design and implement an algorithm for solving this problem;

• finally, we verify the corresponding program.

Let us show that logic is useful on all these three stages.

Logic has been efficiently used to specify problems. Sometimes, the prob-

lem is presented in terms of explicit algebraic or differential equations. However,

in general, the correct formulation of the practical problem requires logical terms

(logical connectives, quantifiers, etc.).

For example, if the task is to design a stable control, this means that for all

deviations which are not too large, the trajectory will eventually return to the

standard one. In precise terms, this means that there exists a bound ∆ such that,

for every moment t, if the distance ρ(x(t), x′(t)) does not exceed ∆, then for every

accuracy ε > 0, there exists a moment t0 > t such that for every t′ ≥ t0, the new

trajectory is ε-close to the original one. In precise terms, this means that

∃∆∀t∀x′(ρ(x(t), x′(t)) ≤ ∆ ⇒ ∀ε∃t0∀t′(t′ ≥ t0 ⇒ ρ(x(t′), x′(t′)) ≤ ε)).

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

Unconventional Computation: The Role of Logic and Constructive Mathematics 3

This is a simple example of a specification requiring quite a few quantifiers to

describe.

Logic has been efficiently used to design algorithms. A logical specifica-

tion not only provides a formalized description of the problem, it can often lead

to a solution to the problem. For example, several logic programming languages

(widely used in AI applications) make it possible to automatically transform logical

specifications into a code; see, e.g., [25, 26, 33].

Logic has been efficiently used in program verification. Not only the prob-

lem itself – i.e., the connection between the input and the desired output – can often

be naturally described in terms of logic: the desired behavior of each computational

module can also be naturally described in logical terms.

A natural requirement for a computational module is that for all inputs that sat-

isfy a certain pre-condition, the result must satisfy the corresponding post-condition.

For example, for a sorting module, the resulting list must be sorted and it must

consist of exactly the same elements as the input (albeit maybe in a different order).

Similarly to the way logic is used in problem specification, this logical description

not only helps to describe the computations, it also helps to reason about compu-

tations – since one of the main objectives of logic is reasoning. In particular, logical

tools are extremely important in program verification: once we formulate both the

specification and the computations in logical terms, the verification of a program

can be reduced to proving a precise logical result – that the specification condition

is satisfied for all the program outputs.

Logic can also help in developing proofs. For simple programs, correctness

proofs are often simple. For more realistic and more complex programs, such proofs

may be complex – and thus not easy to develop.

The general experience of proofs in different logics has recently led to the emer-

gence of logic-based automatic proof assistant programs, programs that help users

develop such proofs (HOL, Coq, etc.).

3. First Approach: Computations with Limited Accuracy

Analyzing the first approach: computations with limited accuracy. The

algorithms use both the sensor data and the results of (often time-consuming) aux-

iliary computations (e.g., computation of special functions). To speed up computa-

tions, we must determine which accuracy of these auxiliary computations is sufficient

to provide the desired accuracy of the final result.

In precise terms, our main task is to compute the value f(x), based on the value

x computed at some previous computation steps. If we only need to compute the

value f(x) with accuracy ε > 0, then it is sufficient to compute x only with an

accuracy δ > 0 for which ρ(x, x′) ≤ δ implies ρ(f(x), f(x′)) ≤ ε.

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

4 V. Kreinovich

Comment. In many useful applications, by the way, it is extremely important that

we guarantee that the actual values are within the given bounds of the computa-

tional results – e.g., we want to guarantee that the spaceship hits the Moon, that

the nuclear reactor regime stays within the stable area, etc.

Enter constructive mathematics. In practice, whatever value x we compute,

we always need to compute it with some accuracy. In other words, we are given some

rational number ε > 0, and we need to produce a rational number r(ε) for which

|r(ε)− x| ≤ ε. A real number that can be computed with an arbitrary accuracy is

called computable. In precise terms, a computable real number x is a number for

which there exists an algorithm that, given a rational number ε, produces a rational

number r(ε) for which |r(ε)− x| ≤ ε.

Similarly, for each computational transformation f : X → Y ,

• we must not only be able to efficiently compute f(x) given x,

• we must also be able, for any accuracy ε > 0, to efficiently produce δ > 0

for which a δ-accurate approximation to x produces an ε-accurate approx-

imation to f(x):

ρ(x, x′) ≤ δ ⇒ ρ(f(x), f(x′)) ≤ ε.

In other words, since we are interested in computations, we must focus on com-

putable objects (i.e., objects computable with an arbitrary given accuracy), and on

constructive mappings that enable us to transform computable objects into com-

putable ones.

This need has been recognized for several decades already – actually, starting

with the 1950s when the first computers appeared. There is a special branch of

mathematics called constructive mathematics that deals with such definitions; see,

e.g., [1, 2, 3, 4, 6, 18, 23].

At present, most research in constructive mathematics is devoted to specific

problems in which specific algorithms are needed. These results are scattered

around, are motivated mostly by specific problems, and are not easy to general-

ize and to use when a new specific problem appears. Thus, we arrive at:

Research Direction I.1. Develop general constructive mathematics techniques,

with a special emphasis on problems requiring intensive computations (such as large-

scale partial differential equations).

Need for constructive logic. For individual problems, we can creatively design

appropriate algorithms – this is how many existing algorithms of constructive math-

ematics have been originally designed. However, designing a radically new algorithm

is a very slow, time-consuming task. In most applications, we achieve good results

by:

• decomposing a problem into subproblems with known algorithms, and

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

Unconventional Computation: The Role of Logic and Constructive Mathematics 5

• combining these algorithms.

In the simplest situations, this decomposition can be described in algebraic or

analytical terms. However, a general decomposition and combination requires full

first order logic. For example:

• the solution of a certain equation can be reduced to the existence of some

auxiliary polynomial, or

• in robust control, the stability under all possible values of the parameters

within a certain domain is equivalent to certain inequalities.

Even a proper formulation of many problems, strictly speaking, requires first order

logic: e.g., we want to make sure that a certain control strategy works for all possible

perturbations that satisfy a certain property.

Thus, we need to find out when a logical combination of constructive results is

also constructive. This analysis was started by Kolmogorov in 1920s. The resulting

“constructive logic” is indeed actively used in constructive mathematics. Crudely

speaking, in constructive logic:

• the formula ∃xP (x) means that we can efficiently produce such an x for

which the property P (x) holds;

• the formula ∀x∃yP (x, y) means that there exists an algorithm φ : X → Y

such that P (x, φ(x)) is always true.

In view of the need to develop a general constructive mathematics approach, we

arrive at

Research Direction I.2. Develop general constructive logic techniques, with a

special emphasis on problems requiring intensive computations.

Interval computations: general idea. In a general definition of constructive

mathematics, we want to develop algorithms that work for all possible values of

accuracy. In applications, the accuracy is usually fixed. In this case, it makes sense

to develop simplified algorithms that work only for specific accuracy values. This

is, in essence, the main idea of interval computations [10, 11, 12, 13, 21, 29] – what

Yu. Matiyasevich has called applied constructive mathematics.

The name comes from the fact that for a single quantity, when we know the

measurement result x̃ with a known accuracy ∆, then all possible values of this

quantity form an interval [x̃−∆, x̃+∆].

Why intervals and not probability distributions. Traditional approach to

situations with measurement inaccuracy is to assume that we know the probability

distribution for the measurement error ∆x
def
= x̃ − x. Usually, it is assumed that

this distribution is Gaussian; see, e.g., [38]. However, there are practical situations

when we do not know this distribution.

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

6 V. Kreinovich

Indeed, the distribution for ∆x usually comes from the calibration of the corre-

sponding measuring instrument (MI). To perform this calibration, we compare the

results of measuring the same quantity by the available and by a “standard” MI

which is several times more accurate than the given one. Since the standard MI is

much more accurate, the corresponding measurement errors can be safely ignored

in comparison with the measurement errors of the original MI. In other words,

we can safely assume that the results of the standard MI are error-free, i.e., that

they practically coincide with the actual (unknown) values x of the corresponding

quantity. Thus, the difference ∆x = x̃ − x can be approximately described as the

difference between the results of measuring the same quantity by the original and

the standard MI. After several measurements, we get a sample of values ∆x, and

from this sample, we reconstruct the desired probability distribution for ∆x.

There are two types of practical situations when this procedure is not performed.

The first is the case of state-of-the-art measurements, e.g., in fundamental science.

In this case the measuring instrument that we use is the best, there is no better

MI that can serve as a standard. Yes, it would be nice if near the Hubble telescope,

there would be another telescope that would measure all the star coordinates with

5 times more accuracy – but the Hubble telescope is the best we have. In this

situation, we cannot determine the probability distribution for ∆x. At best, we

have an upper bound ∆ on the (absolute value of) this measurement error – i.e.,

we get an interval.

Another case when we do not know the probability distribution for ∆x is the

case of routine manufacturing on the factory floor. In this case, it is theoretically

possible to calibrate every sensor, but calibration costs a lot of money – sensors

are often cheap, but calibration means using the standard MI which is much more

expensive. As a result, for most sensor used in manufacturing, it is too expensive

to calibrate them. Instead of the probability distribution for ∆x, we only use the

upper bound ∆ provided by the manufacturer of the corresponding MI (and the

manufacturer must provide some bound, otherwise, if the manufacturer does not

guarantee any accuracy, this is not a measuring instrument.)

Interval computations: precise formulation of the main problem. The

main problem of interval computations is as follows:

• we have a data processing algorithm f(x1, . . . , xn) that transforms n real

numbers x1, . . . , xn into a new value y = f(x1, . . . , xn);

• we do not know the exact values of the inputs xi; instead, for every input

i, we only know the interval xi = [xi, xi] of the corresponding value.

Different values xi ∈ xi lead, in general to different values y = f(x1, . . . , xn). Our

objective is to find the range of possible value of y, i.e., the interval

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

Unconventional Computation: The Role of Logic and Constructive Mathematics 7

-

· · ·

-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

Main problem of interval computations: computational complexity. It is

known that the above main problem of interval computations is NP-hard even for

quadratic f ; see, e.g., [18]. In this case, when we cannot compute the exact range

y, a natural idea is to compute a good approximating enclosure, i.e., an interval Y

that contains (encloses) the desired range: Y ⊇ y.

Interval computations: inverse problem. So far, we have considered the main

(forward) problem, when

• we know the range X0 of possible values of x and

• we need to efficiently compute the corresponding range f(X0) of y = f(x).

In some practical applications, we need to solve the inverse problem, when:

• we know the range Y0 of y, and

• we must find the range X0 which guarantees that f(x) ∈ Y0.

Applications of interval computations. Interval computations have many ap-

plications; see detailed description in [10, 11, 12, 13, 21, 29].

Historically the first applications were to the design of trajectory of a spaceflight,

a trajectory that is guaranteed to hit the target area under all possible uncertainties.

Another important practical application is the design of elementary particle

super-colliders. In a super-collider, a group of elementary particles is moving with a

speed close to the speed of light, accelerated by the magnets until it hits the target.

It is known that this system is unstable, in the sense that under small deviations

in the original trajectory and/or in the magnetic fields, the particles will hit the

walls of the tunnel way before they reach the target. Interval computations are used

to design the colliders in which a way that under all allowable deviations from the

original trajectory and from the magnetic fields, the particles still hit the target.

Interval computations have also been successfully used:

• in industrial robotics, where it is important to make sure that the robot is

safe in all possible situations,

• in chemical engineering, where it is important to guarantee that the desired

chemical process works well for all allowable concentrations of different

chemicals and ores in the input product,

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

8 V. Kreinovich

• in nuclear safety, where it is important to guarantee that the reactor remains

safe for all allowed values of the parameters,

and in many other practical situations.

Logic (specifically, modal logic) has been efficiently used in interval com-

putations. Many problems of interval computations can be naturally reformulated

in terms of modal logic – specifically, it terms of the original modal logic of neces-

sity and possibility; see, e.g., [7, 28]. Specifically, in situations like robust control, we

want to make sure that the control is stable for all possible values of the parameters

from the given intervals, i.e., in terms of modal logic, that it is necessarily stable.

On the other hand, a system is controllable if for every state from the desired

interval, there exists a control value from the interval of control value that leads to

this state. In modal logic terms, this means that the control leading to the desired

state is possible.

Because of this connection, modal logic has been efficiently used in designing

algorithms for interval computations; see, e.g., [5, 8, 18]. There is even a special term

modal interval analysis for such applications.

From direct to indirect methods of algorithm design: proof mining. His-

torically, the first existence proofs were direct in the sense that they provided an

explicit construction. In this sense, the first existence proofs were constructive. Later

on, the Greeks invented indirect proofs, e.g., proofs by contradiction, that enabled

to prove the existence of an object without explicitly constructing such an object.

The proofs became non-constructive – but much simpler.

At present, most constructive proofs are direct – they provide, in effect, an

algorithm for constructing an object. It has been recently shown that in many cases,

it is possible to convert indirect proofs into constructive ones – namely, for some

statements (like the statements of existence and uniqueness) it is often possible to

extract a constructive proof from a non-constructive one.

The main idea is that, e.g., if a computable function f(x) has exactly one zero,

i.e., exactly one value x0 for which f(x0) = 0, then we can find this x0 with in-

creasing accuracy if, for value xi from the ε-nets {xi} – i.e., from finite sets for

which the whole range is a union of their ε-balls Bε(xi)
def
= {x : ρ(x, xi) ≤ ε} –

we compute the minimum mi = min
x∈Bε(xi)

|f(x)| of |f(x)| with sufficient accuracy δ.

Due to uniqueness, for sufficiently small ε and δ, all the values mi will be provably

larger than 0 except for points which are close to x0 – and thus, close to each other.

So, when all these points are 2ε-close, this means that x0 is 2ε-close to all of them

– and thus, that each of these points xi can serve as a 2ε-approximation to x0.

This possibility of “mining” a non-constructive proof for possible algorithms

has been actively used in many areas of computational mathematics; see, e.g., [14].

However, this area of research is only now developing its potential; more applications

are potentially possible, more work is needed.

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

Unconventional Computation: The Role of Logic and Constructive Mathematics 9

This “proof mining” makes it possible to go beyond the situations in which

algorithms are known – and the only problem is how to compute faster – to realistic

situations when even an algorithm is not yet known. Thus, we arrive at

Research Direction I.4. Further develop proof mining, with a special emphasis

on its use to develop algorithms for realistic large-scale problems.

Comment. The idea of proof mining is in line with the general idea of logic as a

specification language: once we formulate the original problem in logical terms, and

we prove that the problem is solvable, the proof mining automatically designs an

algorithm for solving this problem.

4. Second Approach: Unconventional Computations

Analyzing the second approach: unconventional computations. The main

idea of this approach is to use non-standard physical processes to speed up compu-

tations.

Quantum computing: successes. The most well-known example of this ap-

proach is quantum computing, where we can indeed achieve a speedup (see, e.g.,

[32]); for example:

• quantum computing allows us to search in an un-sorted array of size n in

time
√
n (Grove’s algorithm);

• quantum computing allows us to factor large integers in polynomial time

(Shor’s algorithm).

Limitations of quantum computing and need for other schemes. The main

limitation of quantum computing is that so far, the only provable speed-up is poly-

nomial. As a result (unless P=NP), it is not possible to use quantum computing to

solve NP-hard problems in polynomial time.

It is therefore desirable to explore other possible schemes that can potentially

lead to an exponential speed-up, i.e., that can potentially solve NP-hard problems

in polynomial time.

Acausal processes. The simplest example of such a scheme is to use acausal

processes, i.e., processes that go back in time and influence the past; see, e.g., [39].

The idea is to spend as much time as needed on computations, and then send the

result of the computation back in time, to the moment when the user formulated

the problem. Thus, the user will receive the result in no time at all.

The problem with this simple approach is that the actual time travel is known

to be paradoxical – e.g., what happens if a time traveler goes to the past and kills

his own grandfather before his father was conceived? A reasonable solution to this

paradox is that there are always some low-probability events (like a meteorite hitting

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

10 V. Kreinovich

the Earth at exactly the given spot), so since the time traveler was born, this means

that some low probability event prevented the time traveler from this killing. No

matter how many cautions the time travel traveler takes, there are always some very

low-probability events that cannot be all prevented. So, we arrive at a conclusion

that time travel can trigger events with very small probability p0 ≪ 1.

Let us show how this conclusion can be used to solve NP-hard problems in

polynomial time; for details, see [15, 16, 20, 27, 30]. As an example of an NP-hard

problem, we can take the propositional satisfiability problem SAT: given a propo-

sitional formula F (x1, . . . , xn), find the values of the propositional variables that

make this formula true. Now, the algorithm for solving SAT is as follows:

• generate n bits x1, . . . , xn by using some physically random process,

• check whether the generated bits satisfy the formula F (x1, . . . , xn), and

• if ¬F (x1, . . . , xn), launch the time travel – which is set up in such a way as

to generate a very-low-probability event.

For this scheme, nature has two choices:

• generate values xi that satisfy the formula f ; the probability of this is 2−n;

• run the time travel and thus, trigger a low-probability event with probabil-

ity p0 ≪ 1.

When 2−n ≫ p0, the time travel is statistically improbable, so we will generate a

sequence that satisfies the formula F (x).

Potential use of curved space-time. Another natural source of speedup is par-

allelization, when several computer work in parallel to perform the same task.

Parallelization does lead to a drastic speedup, but, alas, in Euclidean space,

parallelization only leads to a polynomial speed-up; see, e.g., [21, 31]. Indeed, the

speed of all the physical processes is bounded by the speed of light c. Thus, in

time T , we can only reach computational units at a distance ≤ R = c · T . The
volume V (R) of this area (inside of the sphere of radius R = c · T) is proportional
to R3 ∼ T 3. So, we can use ≤ V/∆V ∼ T 3 computational elements, where ∆V is

the smallest volume of a single computational element). Hence, we can simulate all

these parallel computation on a sequential computer and still get polynomial time.

An interesting fact is that in Lobachevsky space – historically the first curved

space – the volume inside a sphere grows exponentially with radius: V (R) ∼ exp(R).

According to modern physics, Lobachesvky space is not an adequate description

of the physical space, but the same exponential growth of V (R) occurs for some

more realistic space-time models. In such space-time models, we can fit exponen-

tially many processors inside the sphere of radius R – and thus get an exponential

speedup [21, 31].

Explicit use of Kolmogorov complexity. It is well known that biological pro-

cesses are often difficult to describe on the level of fundamental physics. To facilitate

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

Unconventional Computation: The Role of Logic and Constructive Mathematics 11

this description, a Nobelist M. Gell-Mann suggested that physical equations should

include terms explicitly depending on complexity [9]. A natural formalization of

this complexity is Kolmogorov complexity (see, e.g., [24]: the shortest length of a

program that generates a given sequence of symbols:

K(x)
def
= min{len(p) : p generates x}.

Under this assumption, by observing physical and biological processes, we can mea-

sure the value K(x) [19]. However, it is well known that K(x) is not algorithmically

computable [24], and it is also known that the ability to get non-computable values

can speed up computations. Thus, Gell-Mann’s scheme can indeed potentially speed

up computations.

Other schemes using new physical phenomena are based on:

• quantum field theory (G. Kreisel [22]),

• natural idea that every theory is approximate [16, 17], etc.

Unconventional computations and constructive mathematics. All above

schemes use or propose a radically new physical process.

It is worth noticing that some of the unconventional computation schemes were

discovered not by using or proposing a radically new physical process, but rather by

a diligent analysis of computability of simple (and seemingly physically reasonable)

physical equations such as the wave equation. It turned out that even for the wave

equation, there exist computable initial conditions u(x, 0) for which the solution

u(x, T) is not computable; see, e.g., [34, 35, 36, 37].

At present, the related research is mainly aimed at analyzing how physical pro-

cesses can, in principle, “compute” functions which are not computable in the usual

sense. From the viewpoint of our main objectives, however, it is desirable to extend

this activity to the analysis of what computations can be thus sped up.

Research Direction II.1. Use constructive mathematics to analyze how the use

of physical processes – described by physically meaningful equations – can speed up

computations.

Acknowledgments

This is an expanded version of a paper that Grigori “Grisha” Mints (Stanford

University) and myself have prepared for the DARPA Workshop on Unconventional

Computing (Stanford, California, March 23–24, 2010). Grisha is, in effect, a co-

author of this paper – but of course, I take all the blame for possible shortcomings.

This work was also supported by grant HRD-0734825 from the US National

Science Foundation (NSF) and by Grant 1 T36 GM078000-01 from the US National

Institutes of Health (NIH).

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

12 V. Kreinovich

References

[1] O. Aberth, Introduction to Precise Numerical Methods (Academic Press, San Diego,
California, 2007).

[2] M. Beeson, Foundations of Constructive Mathematics: Metamathematical Studies
(Springer, Berlin/Heidelberg/New York, 1985).

[3] M. Beeson, “Some relations between classical and constructive mathematics” Journal
of Symbolic Logic, 43 (1987) 228–246.

[4] E. Bishop and D. S. Bridges, Constructive analysis (Springer-Verlag, Berlin-
Heidelberg-New York, 1985).

[5] B. Bouchon-Meunier and V. Kreinovich, “From interval computations to modal math-
ematics: applications and computational complexity”, ACM SIGSAM Bulletin, 32(2)
(1998) 7–11.

[6] D. S. Bridges and L. Vı̂ta, Techniques of Constructive Mathematics (Springer, New
York, 2006).

[7] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev, Many-Dimensional
Modal Logics: Theory and Applications (Elsevier, Amsterdam, 2003).

[8] E. Gardeñes, M. A. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo, and A. Trepat,
“Modal intervals”, Reliable Computing, 7(2) (2001) 77–111.

[9] M. Gell-Mann, The Quark and the Jaguar (Freeman, New York, 1994).
[10] Interval computations website

http://www.cs.utep.edu/interval-comp
[11] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, with Ex-

amples in Parameter and State Estimation, Robust Control and Robotics (Springer-
Verlag, London, 2001).

[12] R. B. Kearfott, Rigorous Global Search: Continuous Problems (Kluwer, Dordrecht,
1996).

[13] R. B. Kearfott and V. Kreinovich (eds.), Applications of Interval Computations
(Kluwer, Dordrecht, 1996).

[14] U. Kohlenbach, Applied Proof Theory: Proof Interpretations and Their Use in Math-
ematics (Springer Verlag, Berlin, 2008).

[15] M. Koshelev, “Maximum entropy and acausal processes: astrophysical applications
and challenges”, In: G. J. Erickson et al. (eds.), Maximum Entropy and Bayesian
Methods (Kluwer, Dordrecht, 1998), pp. 253–262.

[16] O. M. Kosheleva and V. Kreinovich, “What can physics give to constructive mathe-
matics, In: Mathematical Logic and Mathematical Linguistics, Kalinin, Russia, 1981,
pp. 117–128 (in Russian).

[17] O. M. Kosheleva and S. V. Soloviev, “On the logic of using observable events in deci-
sion making. In: Proceedings of the IX National Symposium on Cybernetics, Moscow,
1981, pp. 49–51 (in Russian).

[18] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and
Feasibility of Data Processing and Interval Computations (Kluwer, Dordrecht, 1998).

[19] V. Kreinovich and L. Longpré, “Why Kolmogorov complexity in physical equations,
Intl J. of Theor. Physics, 37 (1998) 2791–2801.

[20] V. Kreinovich and L. Longpré, “Fast quantum algorithms for handling probabilistic
and interval uncertainty”, Mathematical Logic Quarterly, 50(4/5) (2004) 507–518.

[21] V. Kreinovich and M. Margenstern, “In some curved spaces, one can solve NP-hard
problems in polynomial time”, Notes of Mathematical Seminars of St. Petersburg
Department of Steklov Institute of Mathematics, 358 (2008) 224–250; reprinted in
Journal of Mathematical Sciences, 158(5) (2009) 727–740.

[22] G. Kreisel, “A notion of mechanistic theory, Synthese, 29 (1974) 11–26.

January 2, 2011 11:15 WSPC/INSTRUCTION FILE tr11-02

Unconventional Computation: The Role of Logic and Constructive Mathematics 13

[23] B. A. Kushner, Lectures on Constructive Mathematical Analysis (American Mathe-
matical Society, Providence, Rhode Island, 1985).

[24] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications
(Springer, Berling, Heidelberg, New York, 2008).

[25] J. Lloyd, Foundations of Logic Programming (Springer-Verlag, Berline, Heidelberg,
New York, 1987).

[26] J. McCarthy, Formalizing Common Sense (Ablex, Norwood, New Jersey, 1990).
[27] S. Yu. Maslov, Theory of Deductive Systems and Its Applications (MIT Press, Cam-

bridge, Massachusetts, 1987).
[28] G. Mints, A Short Introduction to Modal Logic (CSLI (Center for the Study of Lan-

guage and Information), Stanford University, Stanford, California, 1992).
[29] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis

(SIAM Press, Philadelphia, Pennsylviania, 2009).
[30] H. Moravec, Time travel and computing, Carnegie-Mellon Univ., CS Dept. Preprint,

1991.
[31] D. Morgenstein and V. Kreinovich, “Which algorithms are feasible and which are not

depends on the geometry of space-time”, Geombinatorics 4(3) (1995) 80–97.
[32] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information

(Cambridge University Press, Cambridge, Massachusetts, 2000)
[33] U. Nilsson and J. Maluszynski, Logic, Programming, and Prolog (Wiley, New York,

2000).
[34] M. Pour-El and J. I. Richards, “A computable ordinary differential equation which

possesses no computable solution”, Ann. Math. Logic, 17 (1979) 61–90.
[35] M. Pour-El and J. I. Richards, “The wave equation with computable initial data such

that its unique solution is not computable”, Adv. Math., 39 (1981) 215–239.
[36] M. Pour-El and J. I. Richards, Computability in Analysis and Physics (Springer-

Verlag, Berlin, 1989).
[37] M. Pour-El and N. Zhong, “The wave equation with computable initial data whose

unique solution is nowhere computable”, Math. Log. Q., 43 (1997) 499–509.
[38] S. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice

(Springer-Verlag, New York, 2005).
[39] K. S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy, (W. W.

Norton, New York and London, 1995).

