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Abstract— At first glance, most aspects of border protection
activity look like classical examples of zero-sum games, in which
the interests of the two sides are exactly opposite. This is how
such situations are planned now: this is how border patrol
agents are assigned to different segments of the border, this is
how routes of coast guard ships are planned, etc. However,
there is a big difference between such situations and the
traditional zero-sum games: in the traditional zero-sum games,
it is assumed that we know the exact objective function of
each participant; in contrast, in border protection planning
(e.g., in counter-terrorism planning), the adversary’s objective
function is rarely known in precise terms; at best, we have
the description of this objective function in terms of words
from natural language. In this paper, on an example of an UAV
patrolling the border, we show how fuzzy techniques can help in
planning border protection strategies under such uncertainty.

I. PATROLLING THE BORDER: A PRACTICAL PROBLEM

Remote areas of international borders can be (and are)
used by the adversaries: to smuggle drugs, to bring in
weapons. It is therefore desirable to patrol the border, to
minimize such actions.

Even with the current increase in the number of border
patrol agents, it is not possible to effectively man every single
segment of the border. It is therefore necessary to rely on
other types of surveillance.

Unmanned Aerial Vehicles (UAVs) are an efficient way of
patrolling the border:

• from every location along the border, they provide an
overview of a large area, and

• if needed at a different location, they can move rea-
sonably fast to the new location, without being slowed
down by clogged roads or rough terrain.

However, while the area covered by the UAV is large, it is
still limited. Due to resource limitations, we cannot have all
the points on the border under a constant UAV surveillance.
Thus, within a portion of the border that is covered by a
UAV, it is necessary to keep the UAV moving.

II. HOW TO DESCRIBE POSSIBLE UAV PATROLLING
STRATEGIES

For simplicity, let us assume that the UAV can fly reason-
ably fast along the border, so that for each point, the interval
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between two consequent overflies does not exceed the time
2T needed to successfully cross the border area back-and-
forth.

In the ideal case, this would means that the UAV is capable
of detecting all adversaries – and thus, preventing all border
violations. In reality, however, a fast flying UAV can miss
the adversary. It is therefore desirable to select a trajectory
that would minimize the effect of this miss.

The faster the UAV goes pass a certain location, the less
time it spends in the vicinity of this location, the more
probable it is that the UAV will miss the adversary. From
this viewpoint, an important characteristic of the trajectory
is the velocity v(x) with which the UAV passes through
the location x. So, by a patrolling strategy, we will mean
a function v(x) that describes how fast the UAV flies at
different locations.

This strategy must be selected in such a way that a total
time for a UAV to go from one end of the area to another
one is equal to the given value T . The time during which a
UAV passes from the location x to the location x + ∆x is
equal to

∆t =
∆x

v(x)
. (1)

Thus, the overall flight time is equal to the sum of these
times, i.e., to

T =

∫
dx

v(x)
, (2)

where the integral is taken over the whole length of the
border segment.

From the mathematical viewpoint, an arbitrary non-
negative function v(x) can describe the velocity at different
locations. In practice, not every function v(x) can be imple-
mented, since the UAV has the largest possible velocity V ,
so we must have v(x) ≤ V for all x.

From the computational viewpoint, it is convenient, instead
of the velocity v(x), to use its reciprocal

s(x)
def
=

1

v(x)
. (3)

In the geosciences, this reciprocal is called slowness; see,
e.g., [1] and references therein; we will use this term in this
paper as well.

In terms of slowness, the requirement that the overall time
be equal to T has a simpler form

T =

∫
s(x) dx. (4)



In terms of slowness s(x), the velocity limitation

v(x) ≤ V (5)

takes the form s(x) ≥ S, where S
def
=

1

V
. Since s(x) ≥

S, the value s(x) can be represented as S + ∆s(x), where
∆s(x)

def
= s(x)−S satisfy the simpler constraint ∆s(x) ≥ 0.

In terms of ∆s(x), the requirement that the overall time
be equal to T has a simpler form

T = S · L+

∫
∆s(x) dx, (6)

where L is the total length of the piece of the border that
we are defending, or, equivalently,

T0 =

∫
∆s(x) dx, (7)

where T0
def
= T − S · L.

III. PROBABILITY OF DETECTION

In order to select a reasonable patrolling strategy, we must
find out, for each strategy, what is the probability that under
this strategy, the adversary can still cross the border.

Let h denote a distance at which the UAV can still see.
This means that when the adversary is trying to cross at
location x, a UAV can, in principle, observe this adversary
when it is located in the zone between x−h and x+h. The
width of this zone is equal to

(x+ h)− (x− h) = 2h. (8)

We have denoted the UAV’s velocity at location x by v(x).
So, the time that it takes for a UAV to cross the zone of
width 2h is equal to

tobs =
2h

v(x)
. (9)

In terms of slowness, this expression takes a simpler form

tobs = 2h · s(x). (10)

Let ∆t denote the time during which a UAV takes one
snapshot of the underlying area. In these terms, during the
crossing time tobs, the UAV can take

n(x) =
tobs
∆t

=
2h

∆t
· s(x) (11)

snapshots.
Let p1 be the probability that an adversary can avoid

detection based on a single snapshot. Then, to avoid de-
tection during several snapshots means to avoid detection
during the first snapshot, during the second snapshot, etc.
It is reasonable to assume that the misses corresponding to
different snapshots are statistically independent. Under this
assumption, the probability p(x) to be missed under n(x)
snapshots is equal to the product of n(x) probabilities of a
miss corresponding to different snapshots, i.e., equal to

p(x) = p
n(x)
1 . (12)

Substituting the above expression for n(x) in terms of s(x),
we conclude that

p(x) = p
(2h/∆t)·s(x)
1 , (13)

i.e., that
p(x) = exp(−k · s(x)), (14)

where we denoted

k
def
=

2h

∆t
· | ln(p1)|. (15)

IV. RELATIVE IMPORTANCE OF DIFFERENT LOCATIONS

We also need to take into account that different locations
along the border have different importance.

For example, if smugglers succeed in bringing drugs to
the vicinity of the city of El Paso, they can store in a safe
place and distribute it without exposure. On the other hand,
if they bring the same shipment in the remote desert area,
they still need to bring it close to a town or a city, and risk
being detected while they are transporting this shipment.

In the case of smugglers, this importance can be described
in monetary terms: a shipment available in city can be sold
for a much larger amount than a shipment available at some
remote location from which it still has to be transported
to a city. The corresponding price w(x) of the shipment
successfully transported across the border at a point with
coordinate x can be used as a measure of potential benefit,
for the adversary, of penetrating the border at this particular
location.

For other types of border penetration, we can also similarly
estimate the potential benefit to the adversary.

We will start our analysis with a simplified case when we
know the exact value of w(x) for all x. After that, we will
explain how to deal with a more realistic case, when we only
know w(x) with uncertainty.

V. DECISION MAKING: REMINDER

We assume that the adversary has observed the UAV,
so the adversary knows the slowness function s(x) and is,
thus, capable of computing the probability p(x) of avoiding
detection. How does an adversary make decisions based on
this knowledge?

A standard way to describe preferences of a decision
maker is to use the notion of utility; see, e.g., [3], [4], [5],
[9], [11]. To describe the utility of an outcome A, we need to
select two extreme outcomes: a very unfavorable alternative
A− and a very favorable outcome A+.

We assume that all outcomes A in which we are interested
are better than A− and worse than A+. If we denote the
relation “the decision maker prefers A′ to A” by A ≤ A′,
then we can describe this assumption as A− ≤ A ≤ A+.

Then, for each probability p ∈ [0, 1], we can consider a
lottery L(p) in which we have A+ with probability p and
A− with the remaining probability 1− p.

For p = 1, the lottery L(p) coincides with A+, so we
have A ≤ A(1). For p = 0, the lottery L(p) coincides with
A−, so we have A(0) ≤ A. The larger p, i.e., the larger the



probability of a beneficial event A+, the more beneficial is
the lottery L(p) for the decision maker. So, if p < q, then
L(p) < L(q).

Let p0 be the infimum (greatest lower bound) of the set
of all the values p for which A ≤ L(p). Then:

• When p < p0, then for p̃ = (p+p0)/2, we have p̃ < p0
and thus, by definition of the infimum, we cannot have
A ≤ L(p̃). Thus, we have L(p̃) ≤ A. Since p < p̃, we
have L(p) < L(p̃) ≤ A and thus, L(p) < A.

• When p > p0, then, since p0 is the greatest lower bound,
p is not a lower bound, i.e., there exists a value p̃ for
which A ≤ L(p̃) and p̃ < p. Since p̃ < p, we have
L(p̃) < L(p) hence A < L(p).

Thus, we have the value p0 that has the following property:
• when p < p0, the corresponding lottery is worse than

the event A:
L(p) < A; (16)

• when p > p0, the corresponding lottery is better than
the event A:

L(p) > A. (17)

This threshold value p0 is called the utility of the event A.
The utility is usually denoted by u(A).

We can simplify the above somewhat complicated relation
between A and p0 by saying that the event L(p0) is equiv-
alent to A. We will denote this equivalence by A ∼ L(p0).

The notion of utility depends on the choice of the out-
comes A− (for which utility is 0) and A+ (for which utility
is 1). In principle, we select different outcomes A′

− and A′
+.

One can show that the new value u′(A) is linearly related to
the old one: u′(A) = a · u(A) + b, where:

• b = u′(A−) is the utility of A− in the new scale, and
• a + b = u′(A+) is the utility of A+ in the new scale,

so we can determine a as u′(A+)− u′(A−).
In other words, utility is defined modulo an arbitrary linear
transformation

u(A) → u′(A) = a · u(A) + b. (18)

In practice, we can rarely predict the exact consequences
of each decision. The consequences depend on the cir-
cumstances. For example, if we decide whether to take an
umbrella or not, the consequences of this decision depend on
whether it will rain or not. In the ideal situation, we know the
probabilities p1, . . . , pn of different possible consequences
E1, . . . , En. In other words, the action leads to E1 with
probability p1, to E2 with probability p2, . . . , and to En

with probability pn.
By definition of the utility, the event E1 is equivalent to

a lottery L(u(E1)) in which we get A+ with probability
u(E1), the event E2 is equivalent to a lottery L(u(E2))
in which we get A+ with probability u(E2), etc. Thus,
the original action is equivalent to the composite lottery, in
which:

• with probability p1, we get a lottery that results in A+

with probability u(E1), and in A− otherwise;

• with probability p2, we get a lottery that results in A+

with probability u(E2), and in A− otherwise;
• . . .

In this composite lottery, we get either A+ or A−, and the
probability of getting A+ can be easily computed as

u
def
= p1 · u(E1) + p2 · u(E2) + . . .+ pn · u(En). (19)

Thus, the original action is equivalent to the lottery L(u).
By definition of the utility, this means that the utility of the
action is equal to u.

From the mathematical viewpoint, u is the expected value
of the utility of different consequences, so we can conclude
that the utility of an action is the expected value of utilities
of its consequences.

VI. STRATEGY SELECTED BY THE ADVERSARY

We have already mentioned that utility is defined modulo
an arbitrary linear transformation. For convenience, let us
select the utility scale in such a way that for the adversary,
the utility of not being able to cross the border is 0.

In this scale, let w(x) denote the utility of the adversary
succeeding in crossing the border at location x. We have
assumed that we know the exact value of w(x) for every
location x.

According to decision theory, the adversary will select a
location x at which the expected utility

u(x) = p(x) · w(x) = exp(−k · s(x)) · w(x) (20)

is the largest possible.
Thus, for each slowness function s(x), the adversary’s gain

G(s) is equal to

G(s) = max
x

u(x) = max
x

[exp(−k · s(x)) · w(x)] . (21)

VII. TOWARDS AN OPTIMAL STRATEGY FOR
PATROLLING THE BORDER

Our objective is to select a strategy s(x) for which the
gain G(s) is the smallest possible.

Let xm be the location at which the utility u(x) =
exp(−k · s(x)) · w(x) attains its largest possible value. If
close to xm, we have a point x0 for which u(x0) < u(xm)
and s(x0) > S, then we can slightly decrease the slowness
s(x0) at the vicinity of x0 (i.e., go faster in this vicinity) and
use the resulting time to slow down (i.e., to go slower) at all
locations x at which u(x) = u(xm). As a result, we slightly
decrease the value u(xm) = exp(−k · s(xm)) · w(xm).

Yes, we also slightly increase the value

u(x0) = exp(−k · s(x0)) · w(x0), (22)

but for small changes, this value is still smaller that u(xm)
and thus, does not affect the maximum maxx u(x). As a
result, the gain G(s) decreases (this argument is similar to
the one presented in [6]).

So, when the adversary’s gain is minimized, we get

u(x) = u0 = const (23)



hence
exp(−k · s(x)) = u0

w(x)
, (24)

thence
s(x) =

1

k
· (ln(w(x))− ln(u0)) (25)

and
∆s(x) =

1

k
· ln(w(x))−∆0, (26)

where
∆0

def
= −1

k
· ln(u0)− S. (27)

When this value gets to s(x) = S and ∆s(x) = 0, we get
∆s(x) = S. Thus, we conclude that

∆s(x) = max

(
1

k
· ln(w(x))−∆0, 0

)
. (28)

The value ∆0 can be determined from the condition that∫
∆s(x) dx =∫

max

(
1

k
· ln(w(x))−∆0, 0

)
dx = T0. (29)

Since this integral monotonically decreases with ∆0, we can
use bisection to find the appropriate value ∆0; see, e.g., [2].

VIII. TOWARDS TAKING FUZZY UNCERTAINTY INTO
ACCOUNT

The above algorithm is based on the assumption that we
know the exact value of the adversary’s gain w(x) at different
locations. In reality, as we have mentioned, we only have
expert estimates for w(x). To formalize these estimates, we
can use fuzzy techniques; see, e.g., [8], [10].

Once we have the fuzzy values w(x), we can apply
Zadeh’s extension principle to the above crisp formulas
and thus, come up with fuzzy recommendations about the
slowness, such as “go somewhat slow here”, “go fast”, etc.
It is well known (see, e.g., [8], [10]) that Zadeh’s extension
principle is equivalent to processing α-cuts. Specifically, if
we know a relation y = f(x1, . . . , xn) between the inputs
x1, . . . , xn and the desired value y, and we know the fuzzy
values X1, . . . , Xn of the inputs, then the resulting fuzzy
value Y of the output can be obtained as follows: for every
α ∈ (0, 1], we have

Y (α) = f(X1(α), . . . , Xn(α)) =

{f(x1, . . . , xn) : x1 ∈ X1(α), . . . , xn ∈ Xn(α)}, (30)

where for each fuzzy value Z with a membership function
µZ(z), its α-cut Z(α) is defined as

Z(α)
def
= {z : µZ(z) ≥ α}. (31)

When a fuzzy value is a fuzzy number, each α-cut is an
interval Z(α) = [Z(α), Z(α)]. When all the inputs are fuzzy
numbers, the above formula takes the simplified form

[Y (α), Y (α)] =

{f(x1, . . . , xn) : xi ∈ [Xi(α), Xi(α)]. (32)

When the function y = f(x1, . . . , xn) is an increasing
function of all its variables, then its largest value is attained
when all its inputs attain their largest values, and its smallest
value is attained when all its inputs attain their smallest
values. In other words, the desired α-cut has the form
[Y (α), Y (α)], where

Y (α) = f(X1(α), . . . , Xn(α)); (33)

Y (α) = f(X1(α), . . . , Xn(α)). (34)

Similarly, when the function y = f(x1, . . . , xn) is an in-
creasing function of the variables x1, . . . , xk and decreasing
in xk+1, . . . , xn), then the α-cut has the form [Y (α), Y (α)],
where

Y (α) =

f(X1(α), . . . , Xk(α), Xk+1(α), . . . ,Xn(α)); (35)

Y (α) =

f(X1(α), . . . , Xk(α), Xk+1(α), . . . ,Xn(α)). (36)

In our case, for each location x, we know the fuzzy value
W (x) of the corresponding gain. This means that for each
degree α, we know the corresponding α-cut W (x)(α) =
[W (x)(α),W (x)(α)].

In the crisp case, based on the gains w(x), we first
compute the value ∆0 and then the corresponding changes
∆s(x) in the UAV’s slowness. Thus, in the fuzzy case, we
need to find the α-cuts for ∆0 and then, α-cuts for ∆s(x).

According to the above formula for ∆0, its value is
an increasing function of all the inputs w(x). Thus, we
conclude that for every α, the α-cut for ∆0 has the form
[∆0(α),∆0(α)], where ∆0(α) can be determined from the
condition that∫

max

(
1

k
· ln(W (x)(α)(x))−∆0(α), 0

)
dx = T0, (37)

and ∆0(α) can be determined from the condition that∫
max

(
1

k
· ln(W (x)(α)(x))−∆0(α), 0

)
dx = T0. (38)

The value ∆s(x) is increasing in w(x) and decreasing in
∆0. Thus,

• the smallest value ∆s(x)(α) is attained when w(x) is
the smallest and ∆0 is the largest, and

• the largest value ∆s(x)(α) is attained when w(x) is the
largest and ∆0 is the smallest:

∆s(x)(α) = max

(
1

k
· ln(W (x)(α))−∆0(α), 0

)
; (39)

∆s(x)(α) = max

(
1

k
· ln(W (x)(α))−∆0(α), 0

)
. (40)

The resulting recommendations can be used either as a
guidance for a human controller, or – by using fuzzy control
– in the design of the automatic controller.



Comment. Fuzzy techniques can be similarly used in other
problems related to security, e.g., in finding optimal place-
ment for bio-weapon detectors [7].
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