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ABSTRACT
The need for eliminating redundancies in systems of linear
inequalities arises in many applications. In linear program-
ming (LP), one seeks a solution that optimizes a given lin-
ear objective function subject to a set of linear constraints,
sometimes posed as linear inequalities. Linear inequalities
also arise in the context of tensor decomposition. Due to
the lack of uniqueness in higher-order tensor decomposition,
non-negativity constraints are imposed on the decomposi-
tion factors, yielding systems of linear inequalities. Elimi-
nating redundancies in such systems can reduce the number
of computations, and hence improve computation times in
applications.

Current techniques for eliminating redundant inequalities
are not viable in higher dimensions [7]. As an alternative
we propose a modified version of the Fourier-Motzkin Elim-
ination Algorithm (ModFMEA), implemented in Matlab, to
reduce redundancies in a given system of linear constraints
over reals posed as linear inequalities, i.e.,

∑N
n=1 anxn ≥ b

where an and b are real constants. Reduction is obtained,
at each orthant containing the solution set, by taking the
lower and upper bounds of xi-normalized inequalities xi ≥ l
and u ≥ xi respectively, where l and u are linear terms with
no occurrence of xi, for i = 1, 2, ..., N . The reduced system
over the whole solution set can be obtained by taking the
union of the reduced system at each orthant.

This method eliminates redundancies by retaining a sys-
tem of linear inequalities that define the set of feasible solu-
tions. It works under the assumption that all of the variables
are unconstrained, i.e., variables may take on negative and
positive values. Experimental results demonstrate reduc-
tion of systems in higher dimensions for both bounded and
unbounded solution sets with feasible computational times,
and provide important hindsight into its workings that al-
lows us to design an extension of ModFMEA (ExModFMEA) that
yields even more reduction.
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1. INTRODUCTION
The problem of eliminating redundancies in a system of

linear inequalities arises in many applications. In linear pro-
gramming one seeks a solution that optimizes a given objec-
tive function subject to a set of linear constraints, sometimes
posed as linear inequalities. The Simplex Method, a method
for finding the optima given a set of linear constraints, trans-
forms these inequalities into a standard form [8]:

minimize cx

subject to Ax = b,

where A is the coefficient matrix in RM×N , x is the pa-
rameter or variable column vector in RN , and b is the con-
stant column vector in RM . The Simplex Method requires
that the parameter vector be nonnegative. Inequalities are
transformed into equalities by introducing auxiliary vari-
ables. Linear inequalities also arise in the context of ten-
sor decomposition. Due to lack of uniqueness in higher-
order tensor decomposition, nonnegativity constraints are
imposed on the decomposition factors yielding systems of
linear inequalities [2], [5]. Inevitably, these applications in-
volve operations with systems of linear inequalities which
are, at most times, redundant. Eliminating redundancies in
such systems can reduce the number of computations, and
hence improve computation times in applications. From the
geometrical perspective, this problem is equivalent to find-
ing the convex hull of an N-polytope expressed by a system
of linear inequalities.

Current methods for eliminating redundant linear inequal-
ities are not viable in higher dimensions [7]. They consist of
applying a redundancy test, where a linear inequality is said
to be redundant if replacing it with its negation results in an
inconsistent system [7]. As an alternative we propose a mod-
ified version of the Fourier-Motzkin Elimination Algorithm
(ModFMEA), implemented in Matlab, to reduce redundan-
cies in a given system of linear constraints over reals posed
as linear inequalities, i.e.,

∑N
n=1 anxn ≥ b where an and b



are real constants. ModFMEA initially determines in what or-
thant(s) the solution set of the system lies in by intersecting
all of the orthants that contain each half-space given by the
linear inequalities. Reduction is obtained at each orthant
by taking the lower and upper bounds of xi-normalized in-
equalities xi ≥ l and u ≥ xi respectively, where l and u are
linear terms with no occurrence of xi, for i = 1, 2, ..., N . The
reduced system over the whole solution set can be obtained
by taking the union of the reduced system at each orthant.

This method eliminates redundancies by retaining a sys-
tem of linear inequalities that define the set of feasible solu-
tions. It works under the assumption that all of the variables
are unconstrained, i.e., variables may take on negative and
positive values. The algorithm effectively eliminates redun-
dancies, in most cases total reduction, for system of linear
inequalities in 2-D whose solution set is an unbounded con-
vex cone. Experimental results also demonstrate reduction
in systems of higher dimensions for both bounded and un-
bounded solution sets with feasible computational times. An
extension of ModFMEA (ExModFMEA), that addresses the short
comings of ModFMEA, is proposed at the end of the article.

The organization of the article is as follows. Section 2
covers the preliminary theoretical background for ModFMEA.
Sections 3 and 4 describe the current FMEA and the proposed
modified algorithm, ModFMEA. The testing strategy, results,
and analysis are given in Section 5. Finally, the extension of
ModFMEA is proposed in Section 6, with concluding remarks
and future directions in Section 7.

2. PRELIMINARIES
A system of M linear inequalities in an N -dimensional Eu-

clidian space can be expressed as a set of linear inequalities
or by using matrices and vectors:

Ax ≥ b (1)

where A is the coefficient matrix in RM×N , x is the param-
eter or variable column vector in RN , and b is the constant
column vector in RM .

The solution set S of the system of linear inequalities LI
is defined as follows:

S =
{
x ∈ RN |Ax ≥ b

}
(2)

and denoted by LI → S. A similar definition can be ex-
tended to single linear inequalities.

Definition 1. Equivalence:
Consider the two systems of linear inequalities LI and LI′.
They are said to be equivalent if and only if they have the
same solution set.

The definition of equivalence can naturally be extended to
single inequalities.

There are three types of normal forms a linear inequality
can take with respect to a given variable [1]. The following
are definitions of the three possible norms with respect to
the ith variable for a linear inequality.

Definition 2. Norms of linear inequalities:
Consider the following linear inequality

X :

N∑
n=1

anxn ≥ b. (3)

The ≥xi-norm, ≤xi-norm, and x̄i-norm of X are linear in-
equalities defined as follows:

≥xi(X) :

N∑
n 6=i

αnxn − β ≥ xi

≤xi(X) : xi ≥
N∑

n6=i

αnxn − β

x̄i(X) :

N∑
n6=i

anxn − b ≥ 0

where αn = −an/ai and β = −b/ai. The coefficient of the
ith variable must be negative, positive, and equal to zero for
the ≥xi-norm, ≤xi-norm, and x̄i-norm respectively.

The following defines the relations > and < on T (N ), the
set of linear terms over N variables.

Definition 3. Relations > and < on T (N) :
A linear term t ∈ T (N) is said to be less than (resp. greater
than) t′ ∈ T (N) if and only if for every xi ≥ 0, t is less than
(resp. greater than) or equal to t′ with the condition that
t 6= t′, where i = 1, 2, ..., N :

t < t′ (resp. t > t′ ) ⇔ ∀x1, x2, ..., xN ≥ 0, t 6= t′,

t(x1, x2, ..., xN ) ≤ t′(x1, x2, ..., xN ).

(resp. t(x1, x2, ..., xN ) ≥ t′(x1, x2, ..., xN ) ) .

An important result of the > and < relations on T (N),
and the foundation of our algorithm, is given by the following
theorem.

Theorem 1. Let LI be a system of two linear inequali-
ties: LI = {xi ≥ t, xi ≥ t′}, where t,t′ ∈ T (N−1) such that
xi does not occur in t and t′. Then

t′ > t⇔ LI ≡ xi ≥ t′.

Similarly, let LI′ be another system of two linear inequali-
ties: LI′ = {t ≥ xi, t′ ≥ xi}. Then

t′ < t⇔ LI ≡ xi ≤ t′.
Proof. Consider the linear terms t and t′ evaluated at

some point such that t = c and t′ = c′, where c, c′ ∈ R.
Then, by Definition 3

t′ > t⇔ c′ > c

for all xn ≥ 0, where n = 1, 2, ..., N and n 6= i. This implies
that the solution set s′ is contained in s, where xi ≥ c′ → s′

and xi ≥ c→ s, for xi ≥ 0. Since LI → S, it follows that

s′ ⊆ s⇔ S = s ∩ s′ = s′ ⇔ LI ≡ xi ≥ t′.

The proof for the second part of the theorem is omitted since
it is very similar to the first.

The notion of minimum and maximum from the set of real
numbers can be extended to the set of linear terms T (N)
resulting in the following definitions.

Definition 4. Minimum and maximum sets:
Let T be a subset of T (N), a finite set of linear terms. The
minimum set of T, denoted by min (T ), is defined as

min (T ) = {l ∈ T |@t ∈ T : t < l} . (4)

Similarly, the maximum set of T, denoted by
max (T ), is defined as

max (T ) = {u ∈ T |@t ∈ T : t > u} . (5)



Definition 5. Lower and upper bound inequalities:
Let T and T ′ be a subset of T (N − 1) such that

T =
{
t|t ≥ xi ∈ ≥xi(LI)

}
T ′ =

{
t′|xi ≥ t′ ∈ ≤xi(LI)

}
where t and t′ are linear term with no occurrence of xi. The
set of lower and upper bound inequalities of LI with respect
to xi are denoted by L and U respectively, and defined as

U = {u ≥ xi|u ∈ min (T )}

L =
{
xi ≥ l|l ∈ max (T ′)

}
where l and u are linear terms with no occurrence of xi.

Lemma 1. Let ≥xi(LI) be the ≥xi norm of a system of
linear inequalities LI, and let U be the upper bound inequal-
ities of LI with respect to xi. Then

U ≡ ≥xi(LI).

Lemma 2. Let ≤xi(LI) be the ≤xi norm of a system of
linear inequalities LI, and let L be the upper bound inequal-
ities of LI with respect to xi. Then

L ≡ ≤xi(LI)

Theorem 2. Let x̄i(LI) be the x̄i norm of a system of
linear inequalities LI, and let L and U be the lower and
upper bound inequalities of LI with respect to xi. Then

U ∪ L ∪ x̄i(LI) ≡ LI.
Proof. According to Lemmas 2 and 1,

U ≡ ≥xi(LI) and L ≡ ≤xi(LI)⇔

U ∪ L ∪ x̄i(LI) ≡≥ xi(LI) ∪≤ xi(LI) ∪ x̄i(LI)

⇔ U ∪ L ∪ x̄i(LI) ≡ LI.

From Theorem 2 we can conclude that reducing the norm
sets ≥xi(LI) and ≤xi(LI) to U and L respectively preserves
the solution set of the original problem.

3. FOURIER-MOTZKIN ELIMINATION
ALGORITHM

The Fourier-Motzkin Elimination Algorithm (FMEA) can
be thought of as the Gaussian elimination algorithm for sys-
tems of linear inequalities. It consists of three steps:

1. The elimination step deletes variables from a given sys-
tem of linear inequalities by applying their transitivity
property, i.e. if x ≤ y and y ≤ z then x ≤ z.

2. The deletion step removes any inequality of the form
a ≥ b, where a and b are constants and the inequality
holds true.

3. Application of the failure step applies to contradictions
(e.g., −3 ≥ 0) in the system, where the program ter-
minates concluding the system is inconsistent.

The FMEA applies the three steps repeatedly, terminating af-
ter an application of the failure step or when the system has
been reduced to the empty set, implying consistency. The
biggest draw back of the FMEA is its complexity. At each
application of the elimination step the system expands ex-
ponentially, doubly exponentially to be precise [1]. Despite
its caveats, the algorithm has proven of theoretical impor-
tance, in particular to the field of linear programming [6].

4. MODIFIED FMEA
A modified version of FMEA (ModFMEA) is implemented and

developed in Matlab as a method of eliminating redundan-
cies in a given system of linear inequalities. The modification
is made in the elimination step of the FMEA where redundant
inequalities are eliminated instead of variables. Distinction
between FMEA and ModFMEA is heightened by their function-
ality. FMEA checks for inconsistencies in a given system of
linear inequalities while ModFMEA eliminates redundant in-
equalities. Another important difference is in their compu-
tational complexity. ModFMEA does not increase the size of
the problem, i.e., the number of constraints does not in-
crease as is the case in FMEA. A deeper analysis of ModFMEA

complexity is provided at the end of the section.
ModFMEA consists of considering the trivial cases of re-

dundancy first, i.e., eliminating inequalities that are posi-
tive multiples of another, and then analyzing the non-trivial
cases. As a preprocessing step the getQuadS algorithm elim-
inates the orthants that do not contain any part of the solu-
tion set from the possible 2N orthants for a system in N -D.
The general idea for elimination in the non-trivial cases is
to find the lower and upper bound inequalities of the sys-
tem with respect to xi using the mini function. The re-
duced system of linear inequalities is equivalent to the origi-
nal problem constrained to the corresponding orthant. This
is repeated for all variables and all orthants.The subsequent
steps summarize ModFMEA.

Algorithm 1. ModFMEA:
For a given coefficient matrix A ∈ RM×N , and a con-
stant column vector b ∈ RM , the following steps are
performed to eliminate redundancies in the system of
linear inequalities Ax ≥ b, where x ∈ RN .

1. Process trivial cases: eliminate linear inequalities
that are positive multiples of others.

2. Apply getQuadS to obtain the orthants containing
the solution.

3. Process non-trivial cases for each orthant:
Loop for k = 1, 2, ...,K

(a) Reduction with respect to each variable:
Loop for n = 1, 2, . . . , N

i. Normalize current LI with respect to xn.

ii. Determine L and U of LI with respect to
xn applying the mini function.

iii. Replace LI with LI′ where
LI′ = L ∪ U ∪ x̄n(LI).

4. Return final LI.

4.1 The getQuadS Algorithm
In the two dimensional rectangular coordinate space, the

x and y axis divide the cartesian plane into 4 quadrants
where the x and y coordinates are restricted to either nega-
tive or positive values. In general an N -dimensional Euclid-
ian space is divided into 2Northants, quadrants for higher
dimensional spaces. Orthants are represented here by row
vectors whose entries take on the values of −1 or 1. Each
component corresponds to a single coordinate, specifying its
sign. For example, the second quadrant is represented by



the row vector q(2) = [−1, 1]. The set of all orthants from
an N -dimensional Euclidian space is denoted by Q(N), a
finite set with cardinality 2N . For the case where N = 2,

Q(2) = {[1, 1], [−1, 1], [1,−1], [−1,−1]}

=
{
q(1), q(2), q(3), q(4)

}
.

For a given system of linear inequalities of the form Ax ≥
b the getQuadS, algorithm deduces the set of orthants Q,
ideally a subset of Q(N), containing the solution set. The
algorithm essentially obtains a set of orthants for each linear
inequality by analyzing the signs of both the coefficients and
constants, taking their intersection to be Q.

(a) Graph of x+ y ≥ 1. (b) Half-spaces with α
and β equal to 1.

Figure 1: 2-D example.

(a) Graph of x− y ≥ 1. (b) Graph of −x+ y ≥ 1.

(c) Graph of −x− y ≥ 1.(d) Graph of x+ y ≥ −1.

Figure 2: 2-D example with alternative signs.

Consider the two-dimensional case with the inequality a1x+
a2y ≥ b, where a1 = 1, a2 = 1, and b = 1. From Fig. 1a
we can deduce that the solution set is contained in three
quadrants: Q =

{
q(1), q(2), q(4)

}
. Q also corresponds to the

union of the quadrants given by the two half-spaces in Eq. 6
and 7,

x ≥ α (6)

y ≥ β (7)

where α and β are constants with the same sign as a1 and
a2 respectively.

Changing the signs of a1 and a2 yields similar results, in
the sense that the solution is still contained within three
quadrants. As shown in Fig. 2a, 2b, and 2c changing the
sign on a1 results in a reflection of the graph about the y-
axis, and vise versa. This also applies to the case where
b = 0 and a1 or a2 are zero. When changing the sign on b,
such that b < 0, results in a solution set contained by all
of the quadrants, i.e., Q = Q(2) as shown in Fig. 2d. This
is true for all possible combinations in sign of a1 and a2,
and N -D inequalities. The following describes the getQuadS

algorithm.

Algorithm 2. getQuadS:
For a given system of linear inequalities of the form
Ax ≥ b with M inequalities and N parameters, the fol-
lowing steps are performed to acquire the set of orthants
Q ⊆ Q(N) that contains the solution set of the system.

1. Loop for m = 1, 2, ...,M .
Determine the set of orthants Qm for the mth in-
equality.

(a) Check sign of bm.
If bm < 0 return Q(N), else continue.

(b) Loop for n = 1,2,...,N.

Obtain Q
(n)
m , the set of orthants given by the

half-space of the nth variable corresponding
to the sign of amn.

i. If amn = 0 return empty set.

(c) Compute
⋃N

n=1Q
(n)
m = Qm.

2. Compute and return
⋂M

m=1Qm = Q.

4.2 Determining Lower and Upper Bound
Inequalities

After processing the trivial cases and determining the set
of orthants that contain the solution set, ModFMEA proceeds
with the non-trivial cases. ModFMEA eliminates redundant
inequalities by ascertaining the upper and lower bound in-
equalities with respect to each variable. Take the following
example in 2-D where the system contains two inequalities:

LI =

{
−y + x ≥ 0

−y + 3x ≥ 0
.

The solution set is contained within quadrants I, III, and
IV, as shown in Fig. 3. Consider first quadrant I where the
second inequality is deemed redundant. Normalizing the
system with respect to x yields the following:

LI =

{
x ≥ y
x ≥ 1

3
y

. (8)

From the y coefficient it is deduced that the first inequal-
ity is indeed the lower bound inequality with respect to x.
This implies that if y were to be evaluated for some y ≥ 0,
the lower bound inequality will yield a one-dimensional in-
equality that is contained inside the eliminated inequality.
For example, take y = 3. This results in x ≥ 3 and x ≥ 1



from Eq. 8, where it is obvious that the second inequal-
ity is redundant. Determining lower and upper bound in-

Figure 3: 2-D example of non-trivial cases.

equalities in 3-D can be visualized in a similar way. Take
two linear inequalities in 3-D constrained to the all-positive
octant, where x, y, z ≥ 0. Fixing the variable z at some
constant value, equivalent to obtaining a 2-D slice of the
volume through the z-axis, will result in a 2-D graph similar
to Fig. 3. Fixing either x or y, taking a 1-D slice, will yield
one-dimensional inequalities. If the first inequality were to
be the lower bound then it would imply that all 1-D slices,
from any 2-D slice, will result in a 1-D inequality contained
within the redundant inequality provided that the slices are
made for x, y, z ≥ 0. A similar process follows for upper
bounds and higher dimensions.

From Definition 4.2 the lower and upper bound inequal-
ities are systematically determined by obtaining the maxi-
mum and minimum sets of the corresponding linear terms.
According to Theorem 2, this is done by comparing the co-
efficients and constants of the linear inequalities. The fol-
lowing is an algorithm implemented in Matlab as a func-
tion, used to find the upper bound inequalities from a given
≤xi(LI)-norm set.

Algorithm 3. mini:

Given a set of linear terms, the mini function returns
its minimum set.

1. Initialize i to the number of linear terms.

2. While i > 1

(a) Set k = i − 1 and the reference term to the
ith linear term.

(b) Loop for j = k, k − 1, k − 2, . . . , 1

i. Compare the reference term with the jth

linear term.

ii. If reference term is lesser

- delete jth linear term

- update i = i− 1

iii. Else if jth linear term is lesser

- delete ith linear term

- and break loop

(c) Update i = i− 1

3. Return minimum set.

The mini function is also used to determine the maximum
set. For a given set of linear terms T , the maximum of the
set is equal to the minimum set of −T .

4.3 Computational Complexity
Referring back to Algorithm 3, we can see that up to

M(M+1)
2

comparisons between linear terms are made in the
case where no reduction is possible on a set of M linear
terms. However, since comparing two linear terms originat-
ing from an N -D system results in N comparisons, the mini

function makes a total of NM(M+1)
2

comparisons. An imple-
mentation similar to mini is developed for processing trivial
cases, therefore its worst-case complexity is O(NM2). The
getQuadS algorithm, as described in Algorithm 2, generates

NM orthants, where each orthant takes 2
N(N+1)

2 operations,

yielding a worst-case complexity of O(2
N(N+1)

2 NM).
From Algorithm 1 we arrive at an overall estimate of

ModFMEA’s worst case complexity for a system of linear in-
equalities withN variables andM inequalities. The function
mini is called a total of 2N times per orthant, for a total of
2(N+1)N times in the worst case, while the trivial cases and
the getQuadS algorithm are processed once. This results in
the following total number of comparisons:[

M(M + 1)

2

]
+ 2

N(N+1)
2 NM + 2(N+1)N

[
M(M + 1)

2

]
= O(2NN2M2). (9)

As shown by Eq. 9, ModFMEA is a more computationally
feasible algorithm than the doubly exponential FMEA. This
is mainly due to the fact that ModFMEA maintains the size of
the problem constant in the worst case where no reduction
is possible. In the cases where reduction is achieved, the
number of operations decreases as eliminations are made.

5. TESTING
The algorithm is tested on its effectiveness in eliminating

redundant inequalities considering the following:

• dimensional space of the system;

• whether the solution set is bounded or unbounded;

• size of the overall system: total number of inequalities;

• geometry and location of solution sets: what orthant(s)
contain the solution set;

• and relative core size: the ratio between the number
of non-redundant and total number of inequalities.

Consistent systems of linear inequalities of the form Ax ≥ b
are generated for test cases. These systems possess feasible
solution sets that are either bounded or unbounded on a
varying multitude of Euclidian dimensional spaces.

5.1 Description of Testing Strategy
Bounded solution sets of systems of linear inequalities

are geometrically described as bounded convex polytopes.
The linear inequalities that define this polytope, i.e., the
non-redundant inequalities, will be referred to as the core.
Generating the feasible system of linear inequalities consists
of first generating the core, which can be specified to have at
least N + 1 inequalities for an N -D space. The core is ran-
domly generated such that it is confined by an N -hypercube
centered at the origin with length 50. In other words, the co-
ordinates of each vertex of the polytope are randomly gener-
ated within the interval [−25, 25]. As of consequence the so-
lution sets acquire a sufficiently random geometry at random



locations, allowing for the testing of different geometries that
could occupy any feasible combination of orthants. The re-
dundant inequalities are then generated such that they con-
tain, but do not intersect, the core. This method allows us
control over the number of redundant, non-redundant, and
total number of linear inequalities in our system.

Systems with unbounded solution sets are analogously
geometrically described by unbounded convex-polytopes. Ho-
wever, for simplicity, only systems whose solution set results
in a convex cone are generated. This is the case for systems
of the form Ax ≥ 0, common in tensor decomposition and
other applications. These systems are generated with the
same approach described for systems with bounded solution
sets. With the exception of the second dimension, the num-
ber of non-redundant inequalities is for simplicity limited
to at least N inequalities for an N -D space. When deal-
ing with convex cones in 2-D, the number of non-redundant
inequalities is fixed to two.

Test cases were generated for all dimensions between 2
and 10, for a total of 9 dimensions tested. Three different
relative core sizes were generated for each dimension: 10%,
20%, and 30%. A total of 20 systems were generated for each
relative core size, per dimension, for a total of 20×3×9 = 540
systems of varying sizes for each bounded and unbounded
cases (a total of 1080 systems were generated). Since there
are constraints on the minimum number of non-redundant
inequalities, the size of the system is dependent on the num-
ber of inequalities that represent the smallest relative core
size: 10%. For consistency between the bounded and un-
bounded cases, this number is chosen to be N + 1, where N
is the dimension, and hence the total number of inequalities
generated for a system in N -D is (N + 1) × 10. For exam-
ple, the 3-D systems have 40 inequalities, where the number
of non-redundant inequalities goes from 4, 8, and 12 corre-
sponding to the three relative core sizes. As the exception,
unbounded cases for 2-D systems has only 30 inequalities
with 2 non-redundant inequalities.

5.2 Results
The results are summarized by Tables 1-2, and Fig. 4-5

for both bounded and unbounded cases respectively. The
maximum and minimum number of reductions made, or the
number of inequalities eliminated, shown in Tables 1 and
2 is acquired from all three relative core sizes. The size of
the core refers to the number of non-redundant inequalities
for the respective dimension, and varies according to the
relative core size. For example, the core size in Table 1 for
3-D polyhedrons varies between 4 and 12, specifically 4,8,
and 12 for the corresponding relative core sizes. According
to Table 1 the maximum number of reductions observed for
generated polyhedra, in all relative core sizes, is 32 from a
total system size of 40 where the number of non-redundant
inequalities varied from 4, 8, and 12.

Fig. 4 and Fig. 5 are graphs of relative average reduc-
tion, average number of reductions divided by the number
of redundant inequalities, at each relative core size versus di-
mension. The magenta line with triangle markers in Fig. 5
shows that on average, the amount of reduction at 30% rel-
ative core size dropped from nearly 100% in 2-D to 30% in
10-D. In other words, the algorithm was able to reduce ap-
proximately a third of the redundant inequalities in 10-D
whose system contained 30% non-redundant inequalities.

Size of Size of Maximum # Minimum #
Dimension System Core of reductions of reductions

2 30 3-9 20 4
3 40 4-12 25 0
4 50 5-15 19 0
5 60 6-18 12 0
6 70 7-21 23 0
7 80 8-24 31 0
8 90 9-27 74 0
9 100 10-30 29 0
10 110 11-33 68 0

Table 1: Bounded cases.

Size of Size of Maximum # Minimum #
Dimension System Core of reductions of reductions

2 30 2-2 28 26
3 40 4-12 27 4
4 50 5-15 28 0
5 60 6-18 48 0
6 70 7-21 35 0
7 80 8-23 61 0
8 90 9-27 47 0
9 100 10-30 73 0
10 110 11-33 60 0

Table 2: Unbounded cases.

Figure 4: Relative average reduction for bounded cases.

5.3 Analysis
ModFMEA is shown to eliminate redundancies for both boun-

ded and unbounded cases for several relative core sizes. Re-
sults demonstrated overall cases of under-reduction, where
ModFMEA was unable to eliminate all redundant inequali-
ties. Examining ModFMEA reveals two main causes of under-
reduction: undetectable redundant inequalities, and empty
orthants.

Undetectable redundant inequalities are inequalities that
despite being redundant ModFMEA is unable to eliminate them
since they are perceived as non-redundant. The cause of
these cases can be traced back to the definition of the “>”
and “<” relations on linear terms. When eliminating re-
dundancies ModFMEA compares the corresponding inequali-
ties over the interval [0,∞) and/or (−∞, 0] depending on



Figure 5: Relative average reduction for unbounded cases.

the orthant. If two linear inequalities intersect within the
orthant where elimination is taking place, neither inequality
can be eliminated. Hence, a redundant inequality becomes
undetectable if it intersects all of the corresponding non-
redundant inequalities of the orthant in question. This leads
to the accumulation of undetectable redundant inequalities
as reduction takes place at each orthant, from which the
union of the reduced system is taken according to Algo-
rithm 1.

Consider the following example:

LI =


−y + x ≥ −2

−y + 3x ≥ 1

−y − x ≥ −3

y ≥ −1

. (10)

where the solution set is graphically shown by the shaded
area in Fig. 6a. The redundant inequality is given by the
first inequality in Eq. 10. Reduction with respect to the
first quadrant should yield the second and third inequali-
ties as the non-redundant inequalities. However, application
of ModFMEA results in eliminating only the last inequality.
Since the redundant inequality intersects both of the non-
redundant inequalities in the first quadrant it becomes an
undetectable redundant inequality, even if the intersection
is outside of the solution set.

Empty orthants refer to orthants that do not contain any
part of the solution. Applying ModFMEA at such orthants
leads to improper reduction. The getQuadS algorithm gen-
erates these empty orthants due to its inability to completely
eliminate them. The set of orthants returned by the algo-
rithm does however contain the solution set, so no informa-
tion is lost. The following system, given in Fig. 6b, demon-
strates a case of empty orthant retention. Clearly it can be
deduced that the first quadrant is the only quadrant that
contains the solution set. The first step in getQuadS algo-
rithm is to obtain the quadrants that contain the solution
set of each inequality. For this example, set of quadrants for
one of the inequalities includes the 1st, 2nd and 3rd quad-
rants. The other inequality’s solution set is contained within
the 1st, 3rd, and 4th quadrants. Taking the intersection be-
tween the two sets yields the 1st and 3rd quadrants, where
the latter is an empty quadrant.

The relative average reduction for both bounded and un-

(a) Undetectable redundant
inequality.

(b) Empty orthant
retention.

Figure 6: 2-D examples of causes of under-reduction.

bounded cases reveals a negative correlation between the
effectiveness of ModFMEA in eliminating redundant inequali-
ties and higher dimensions (see Fig. 4 and 5). This is at-
tributed to the fact that empty orthant retention and cases
of undetectable redundant inequalities increase with higher
dimensions. The more dimensions there are the easier it is
for a redundant inequality to intersect the non-redundant in-
equality. Also, higher dimensions lead to an increase number
of orthants from which undetectable redundant inequalities
may originate, and an increase in the number of retained
empty orthants.

6. EXTENSION OF MODFMEA
The notion of lower and upper bound inequalities in ModFM-

EA offers a condition for eliminating redundant inequalities.
However, this condition is rather strict in the sense that
the inequalities in question are compared for all xi ≥ 0,
as defined in the “>” and “<” relations on the set of lin-
ear terms. Despite its shortcomings, ModFMEA has laid the
theoretical groundwork for a more efficient method, the ex-
tended ModFMEA (ExModFMEA). Instead of requiring the upper
and lower bound inequalities be defined over the interval
[0,∞) for each variable, or (−∞, 0] depending on the or-
thant, ExModFMEA defines these bounds over the intervals
that the parameters are constrained to according to their
solution set. Obtaining the bounds for the solution set can
be achieved through interval solvers [4].

Bounded solution sets are given by bounded convex N-
polytopes whose parameters are constrained by finite inter-
vals , i.e. the N-polytope can be enclosed by a N-hyperrectan-
gle or N-orthotope (the N -D generalization of rectangles).
It is sufficient to analyze the inequalities at these end points.
Similarly, unbounded solution sets are given by unbounded
convex N-polytopes, or convex cones in the case where b =
0. In this case all of the parameters can be artificially
bounded by replacing the occurrences of −∞ and ∞, for
simplicity, with −1 and 1 respectively. This would allow for
further reduction of redundant inequalities as described for
the bounded cases.

The following illustrates the application of ExModFMEA to
system given by Eq. 10. From Fig. 6a we can deduce that x
and y are bounded to the intervals [0, 4] and [−1, 2] respec-
tively. It is important to mention that in practice, interval
solvers will not yield intervals as tight as the ones given in
this example. This is mainly due to the fact that inter-
val solvers provide outer approximations, which most often
are wider intervals (depending on the geometry of the sys-



tem) that are still useful for reduction [3], [4]. Transforming
Eq. 10 to the x-norm yields the following system:

x ≥ y − 2

x ≥ 1
3
y + 1

3

−y + 3 ≥ x
y ≥ −1

. (11)

The last two inequalities correspond to the ≥x(LI) and
x̄(LI) norms where no elimination is possible since each
norm contains a single inequality. Evaluating the ≤x(LI)-
norm inequalities for y at the lower and upper bounds results
in four 1-D inequalities. This is equivalent to taking a 1-D
slice of the solution, parallel to the x-axis, for y = −1 and
y = 2 as shown in Fig. 7.

Figure 7: Solutions set bounded by y ∈ [−1, 2].

Figure 8: Resulting 1-D inequalities.

The inequality x ≥ y − 2 generates x ≥ −3 and x ≥ 0
when evaluating y at its lower and upper bounds respec-
tively. Similarly x ≥ 1

3
y+ 1

3
yields the following inequalities:

x ≥ 0 and x ≥ 1. Comparing the upper and lower bound
generated inequalities separately as done in Fig. 8 reveals
thats the 1-D inequalities resulting from x ≥ 1

3
y + 1

3
are

contained inside the inequalities given by x ≥ y − 2, and
hence we can deduce that x ≥ y − 2 is redundant.

7. CONCLUSION
Systems of linear inequalities arise in many applications

where the computational complexity of operations involving
such systems is dependent on the total number of inequal-
ities. Eliminating redundancies in such systems can reduce
the number of computations, and hence improve computa-
tion times in applications. Current techniques in for elim-
inating redundant inequalities are not viable in higher di-
mensions [7].

We propose a modified version of the FMEA, a more ge-
ometrical approach for eliminating redundancies. ModFMEA

eliminates redundancies by first processing trivial cases, where

one inequality is a positive multiple of another. The algo-
rithm then eliminates non-trivial redundancies by determin-
ing the lower and upper bounds of xi-normalized inequalities
at each orthant containing the solution set. A total of 1080
test cases were generated for in a variety of dimensions rang-
ing from 2-D to 10-D. Experimental results demonstrate re-
duction for bounded and unbounded cases in all dimensions
tested with feasible computational times. Results also af-
firm a negative correlation between efficiency in reduction
and the increase of dimension. Further analysis of ModFMEA

reveals susceptibility to cases of under-reduction due to un-
detectable redundant inequalities and elimination in empty
orthants.

Despite its shortcomings, ModFMEA has provided the the-
oretical groundwork for a more efficient method of elimi-
nating redundancies. We propose an extension of ModFMEA

(ExModFMEA) which specifically addresses the issues of under-
reduction. A bound is approximated for each variable using
an interval solver, from which lower and upper bound in-
equalities with respect to xi are determined by analyzing
the resulting inequalities at the boundaries of the solution
set. This process also applied to unbounded cases. Future
directions include implementation and extensive testing of
ExModMEA.
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