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Abstract. In this paper, we use geometric approach to show that
under reasonable assumption, the spatial variability of a field f(x),
i.e., the expected value F (z)

def
= E[(f(x+z)−f(x))2], has the form

F (z) =

∣∣∣∣∣ n∑
i=1

n∑
j=1

gij · zi · zj

∣∣∣∣∣
α

. We explain how to find gij and α from

the observations, and how to optimally place sensors in view of this
spatial variability.
Need to describe spatial variability. To understand climate trends,
we need to describe not only the values of temperature, humidity,
wind speed and direction at a single location, we also need to know
how these characteristics change from one location to the other. In
other words, we need to describe spatial variability of the corre-
sponding characteristics.

There is a similar need in other application areas. For example,
to understand the brain activity within a region, in addition to de-
scribing brain activity at certain locations, we also need to describe
how this brain activity changes from one location to the other, i.e.,
we need to describe spatial variability of the corresponding charac-
teristics.
How to describe spatial variability: use of random variables. In
general, we have a characteristic f(x) that takes different values at



different locations x. Since we cannot exactly predict the exact fu-
ture values f(x), it is reasonable to consider them random variables.
Random variables f(x) corresponding to different locations x form
a random field.
How to describe spatial variability: use of normal distributions.
The values f(x) are determined by a large number of different fac-
tors. In statistics, the joint effect of many small independent factors
is – due to the Central Limit Theorem – well described by a nor-
mal distribution; see, e.g., (Sheskin 2004). Thus, it is reasonable to
assume that the variables f(x) are normally distributed.

A normal distribution is uniquely determined by its first two mo-
ments, i.e., by the expected values E[f(x)] and E[f(x) · f(y)]. The
values E[f(x)] and E[(f(x))2] describe the behavior at a single loca-
tion. Thus, to describe spatial variability, it is sufficient to describe
the values E[f(x) · f(y)] for x ̸= y. Since we know the values
E[(f(x))2] and E[(f(y))2], describing E[f(x) · f(y)] is equivalent
to describing the following expected value:

C(x, y)
def
= E[(f(y)− f(x))2] =

E[(f(y))2] + E[(f(x))2]− 2E[f(x) · f(y)].
Homogeneity. Locally, the distribution is usually homogenous, i.e.,
does not change after a shift. Thus, if we change x to x + z and y
to y + z, we should get the same value C(x, y): C(x + z, y + z) =
C(x, y). For z = −z, this leads to C(x, y) = C(0, y − x). So, to
describe spatial variability, it is sufficient to describe the function

F (z)
def
= C(0, z) = E[(f(x+ z)− f(x))2].

Comment. For z = 0, the above definition leads to F (0) = 0.
Other natural requirements. It is reasonable to assume that F (z)
continuously depends on z.

It is also reasonable to assume that there is spatial variability,
i.e., that F (z) > 0 for z > 0.

Another requirement is that f(x) is very close to f(y) only for
close x and y. Formally, we will require that for some value F0 > 0,
the set {z : F (z) ≤ F0} is bounded.



Comment. It should be mentioned that the spatial distribution is of-
ten anisotropic, i.e., depends on the direction. For example, a North-
South oriented mountain range goes through the city of El Paso. The
closeness to the mountain affects temperature, rainfall, wind, etc.
As a result, the meteorological characteristics change much more
when we move in the East-West direction than when we move in the
North-South one.
We need to select a few-parametric family of functions F (z). In
different practical situations, we have different functions F (z) ≥ 0.
To describe all such situations, it is desirable to have a parametric
family F of possible functions F (z).

Often, we only have a limited amount of data, so we can only
statistically significantly determine a small number of parameters of
the function F (z). For example, in environmental sciences, we have
a limited number of observations in remote areas such as most areas
of Arctic and Antarctica. In brain research, we also often only have
limited data. To cover such situations, it is desirable to have simple,
few-parametric families F .
Desired properties of few-parametric families. The numerical
value of a physical characteristic depends on the choice of a measur-
ing unit. For example, for length, if we change from inches to cm,
the numerical values increase by 2.54. In general, if we use a new
unit which is λ times smaller than the previous one, then numerical
values f(x) increase by λ, and the resulting values of F (z) increase
by λ2. In principle, we can have an arbitrary positive value C = λ2,
so it is reasonable to require that the family F contains, with every
function F (z), also all functions C · F (z) for every C > 0.

Another possible change is a change in spatial coordinates. In
some applications, the usual coordinates work best, in other ap-
plications, polar, cylindrical, or other coordinates are more ap-
propriate. Locally, each smooth coordinate transformation xi →
fi(x1, . . . , xn) can be well approximated by a linear function xi →
n∑

j=1

aij · xj + ai, i.e., in matrix terms, x → Ax + a. Under this

transformation, the difference z = y − x is replaced with Az. It is
therefore reasonable to require that the the family F contains, with



every function F (z), also all functions F (Az) for all non-degenerate
matrices A.

It turns out that these two requirements are sufficient to deter-
mine few-parametric families F with the smallest possible number
of parameters.

Main result. Let F be a
n · (n+ 1)

2
-parametric family of continu-

ous functions F (z) from IRn to IR for which F (z) = 0, F (z) > 0 for
z ̸= 0, and for some F0 > 0, the set {z : F (z) ≤ F0} is bounded. Let
us also assume that the family F contains, with every function F (z),
also all functions C · F (z) for all C > 0 and all functions F (Az)
for all non-degenerate matrices A. Then, every function F ∈ F has
the form

F (z) =

∣∣∣∣∣
n∑

i=1

n∑
j=1

gij · zi · zj

∣∣∣∣∣
α

for some real values α and gij .
Proof. In this proof, similarly to (Li et al. 2002), we will use ellip-
soids centered at 0, i.e., ellipsoids E = {z :

∑
gij · zi · zj ≤ 1}.

We will call them c-ellipsoids (c for centered). To describe all
such c-ellipsoids, we need to describe all symmetric matrices gij ,

so the family of c-ellipsoids is
n · (n+ 1)

2
-dimensional. The border

{z :
∑

gij · zi · zj = 1} of an ellipsoid E will be denoted by ∂E.
1◦. Let F ∈ F . Let us first prove that there is a c-ellipsoid E0 on
whose border ∂E0 we have F (z) = F0 for all z ∈ ∂E0.

1.1◦. By definition of the class F , the set S def
= {z : F (z) ≤ F0}

is bounded, and each function F ∈ F is continuous. Since F (z) is
continuous, the set S is closed.

Every bounded set can be enclosed into a c-ellipsoid. It is known
(see, e.g., (Busemann 2005)) that, among all ellipsoids containing
a given closed bounded set, there is exactly one ellipsoid with the
smallest volume.

Let E0 denote the c-ellipsoid with the smallest volume that con-
tains the set S. We will say that this ellipsoid corresponds to the
function F (z).



Comment. The existence of the smallest-volume ellipsoid follows
from the fact that every continuous function on a compact set attains
its minimum. Uniqueness follows from the fact that if we have two
c-ellipsoids E and E ′ of the same volume containing the same set,
then we can select coordinates in which both matrices are diagonal,
i.e., have the form

∑
gi · z2i ≤ 1 and

∑
g′i · z2i ≤ 1; then, for g′′i =

gi + g′i
2

, the ellipsoid
∑

g′′i · z2i ≤ 1 also contains the bounded set
and, as can be easily shown, has a strictly smaller volume than E
and E ′.
1.2◦. It is known that every c-ellipsoid E in appropriate affine co-
ordinates becomes a unit ball {z :

∑
z2i ≤ 1}. In other words,

every ellipsoid can be obtained from a unit ball by an appropriate
affine transformation. By combining the affine transformations cor-
responding to E and to E0, we conclude that E can be obtained from
the ellipsoid E0 by an affine transformation z → Az.

Under an affine transformation, the ratio of volumes is preserved.
So, since E0 the c-ellipsoid with the smallest volume contains the set
S = {z : F (z) ≤ F0}, E is the c-ellipsoid with the smallest volume
containing the set S ′ = {z : F ′(z) ≤ F0}, where F ′(z)

def
= F (Az) ∈

F .
Different ellipsoids correspond to different functions F ′(z), so

we have as many such functions F ′(z) as there are ellipsoids – i.e.,

a
n · (n+ 1)

2
-dimensional family.

1.3◦. There are many affine transformations (rotations) that preserve
the ball; in particular, for every two points on a unit sphere, there is
a rotation that transforms one into another.

Thus, there are many affine transformations that preserve every
ellipsoid E. In particular, for every two points z, z′ ∈ ∂E on this
ellipsoid’s border, there is an affine transformation that preserves
∂E and transforms z into z′.

For the ellipsoid E0, let us denote, by G0, the group of all affine
transformations that preserve ∂E0.
1.4◦. Let us show that the border ∂E0 of the ellipsoid E0 contains
some points from the set S def

= {z : F (z) ≤ z0}.



We will prove this by contradiction. Let us assume that the bor-
der ∂E0 of the ellipsoid E0 does not contain any points from the set
S. Then, we can proportionally shrink E0 and get a new c-ellipsoid
with the smaller volume that still contains S. This contradicts to the
fact that E0 has the smallest volume. The statement is proven.
1.5◦. Let us prove that for all z ∈ ∂E0 ∩ S, we have F (z) = F0.

Indeed, since z ∈ S, by definition of the set S, we have F (z) ≤
F0. On the other hand, since z belongs to the border ∂E0, the point
z is a limit of points zn from outside E0: zn → z. Outside E0, there
are no points from S, so for all zn ̸∈ E0, we have F (zn) > F0.
Since the function F (z) is continuous, in the limit zn → z, we get
F (z) ≥ F0. From F (z) ≤ F0 and F (z) ≥ F0, we conclude that
F (z) = F0.
1.6◦. Finally, let us prove that every point z ∈ ∂E0 belongs to the
set S; due to Part 1.5 of this proof, this will imply that F (z) = F0

for all z ∈ ∂E0.
We will prove this statement by contradiction. Let us assume

that not every point z ∈ ∂E0 belongs to the set S. Since transforma-
tions from G0 transform every point z ∈ ∂E0 into every other point
z′ ∈ ∂E0, this means that not all transformations from G0 preserve
the intersection ∂E0∩S. Thus, transformations that preserve the in-
tersection form a subgroup G′

0 ⊂ G0. Subgroups of the group of ro-
tations are well known, they have smaller dimension than G0. Thus,
we have a finite-parametric family of transformations (of dimension
≥ 1) that preserve ∂E0 and turn the set S = {z : F (z) ≤ F0} into
a different set S ′ – i.e., which turn F (z) into a different function
F ′(z) for which the ellipsoid E0 is the same. Thus, we have an at
least 1-dimensional family of functions F ′(z) corresponding to E0.

By applying an affine transformation, we get a similar fam-
ily of functions for every ellipsoid. The family of ellipsoids

is already
n · (n+ 1)

2
-dimensional, and for each of them, there

is an ≥ 1-dimensional family of functions – thus, we get a ≥(
n · (n+ 1)

2
+ 1

)
-dimensional family of functions F ′(z) – which

contradicts to our assumption that the whole family F is no more



than
n · (n+ 1)

2
-dimensional. This contradiction shows that indeed

∂E ⊆ S.
2◦. The ellipsoid E0 corresponding to the function F (z) has the form
{z : ∥z∥2 ≤ 1}, where ∥z∥2 def

=
∑
i,j

gij · zi · zj . Let us prove that the

function F (z) has the form F (z) = h(∥z∥) for some function h(t)
from real numbers to real numbers.

In other words, we need to prove that for every value v, the func-
tion F (z) has a constant value on the border ∂Ev

def
= {z : ∥z∥2 = v}

of the ellipsoid Ev
def
= {z : ∥z∥2 ≤ v} which is obtained from E0 by

an appropriate dilation (homothety).
Indeed, if the function F (z) had two different values on differ-

ent points z, z′ ∈ ∂Ev, then, similarly to Part 1.6 of this proof, we
would be able to apply appropriate affine transformations and get
a ≥ 1-parametric family of functions F ′(z) corresponding to the

same ellipsoid E0 and thus, a ≥
(
n · (n+ 1)

2
+ 1

)
-dimensional

family of functions F ′(z) – which contradicts to our assumption that

dim(F) ≤ n · (n+ 1)

2
.

3◦. To complete the proof, let us show that h(t) = const · tα.
Let us consider the functions F (z) corresponding to all

c-ellipsoids E which have the same volume V (E) as E0: V (E) =
V (E0). The dimension of the family of all such ellipsoids is
n · (n+ 1)

2
− 1.

For every function F (z) = h(∥z∥) ∈ F , and for every two real
numbers C > 0 and k > 0, the family F contains the function
C · F (k · z) = C · h(k · ∥z∥). The corresponding transformations
form a 2-dimensional multiplicative group.

The resulting family of functions cannot be fully 2-dimensional,
since then, by considering such a family for every ellipsoid E with
V (E) = V (E0), we would have a family of dimension

≥
(
n · (n+ 1)

2
− 1

)
+ 2 =

n · (n+ 1)

2
+ 1 >

n · (n+ 1)

2



inside the family F . Thus, in the 2-dimensional transformation
group, there is a ≥ 1-dimensional subgroup that keeps the function
h(t) invariant.

All subgroups of the 2-dimensional transformation group are
well known, so we have C(k) · h(k · t) = h(t) for some C(k), and
hence, h(k · t) = C−1(k) ·h(t). It is known (see, e.g., (Aczel 2006)),
that every continuous function that satisfies this functional equation
has the form h(t) = A · tα for some A and α. The statement is
proven, and so is our main result.
Discussion: relation to Riemannian geometry. In general, the
values gij describing spatial variability differ from one location to
another. Thus, to describe spatial variability, we need to describe
the values gij(x) corresponding to different locations x. Mathemat-
ically, this is equivalent to describing a Riemannian metric.
How to determine gij and α from the empirical data? Based on
the recorded values f(x, t) at different locations x at different times
t = 1, . . . , T , we can estimate C(z) = E[(f(x+ z)− f(x))2] as

C(z) =
1

T
·

T∑
t=1

(f(x+ z, t)− f(x, t))2.

We can then use the following iterative procedure to find gij and
α. Initially, we take g

(0)
ij = δij , i.e., g(0)ii = 1 and g

(0)
ij = 0 when

i ̸= j. At each iteration k, we start with the values g(k−1)
ij , and do the

following.
First, we estimate α(k) from the condition C(z) ≈∣∣∣∑ g
(k−1)
ij · zi · zj

∣∣∣α We can find this α by taking the logarithms of
both sides and applying the Least Squares Method to the resulting
system of linear equations with unknown α:

lnC(z) ≈ α · ln

(
n∑

i=1

n∑
j=1

g
(k−1)
ij · zi · zj

)
.

Once α(k) is computed, we estimate g
(k)
ij by applying the Least

Squares Method to the following system of linear equations with



unknown gij: (C(z))1/α
(k) ≈

n∑
i=1

n∑
j=1

gij · zi · zj.

Towards optimal sensor location. We want to place the sensors so
as to reconstruct the value of f(x) at all locations x with the desired
accuracy ε. (Thus, in the spatial direction along which f(x) changes
faster we should place sensors more frequently.)

In precise terms, we want to place sensors in such a way that for
each spatial location x, there is a sensor location s for which

E[(f(x)− f(s)]2 =

∣∣∣∣∣
n∑

i=1

n∑
j=1

gij · (xi − si) · (xj − sj)

∣∣∣∣∣
α

≤ ε2.

For every symmetric matrix gij , there are affine coordinates –
formed by its eigenvectors – in which this matrix become a unit
matrix. In this case, the above condition simply means that every
location must be ε-close to a sensor location. It is known that un-
der such condition, the asymptotically smallest number of sensors is
provided by an equilateral triangle grid, i.e., a grid formed by equi-
lateral triangles; see, e.g., (Kershner 1939).
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Hence, in general, the sensor grid can be obtained from the equi-
lateral triangle one by an appropriate affine transformation.
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In other words, we should place sensors along the grid parallel
to eigenvectors of the matrix gij .
Future work. We plan to apply the above model to describe the
spatial dependence of the meteorological data and to make the cor-
responding recommendations on the optimal sensor placement.
A similar problem of spatial distribution. Instead of spatial varia-
tion, we can consider a similar problem of spatial distributions, i.e.,
the problem of describing low-dimensional affine-invariant families
of probability density functions – families that contain, with every
function ρ(x), the function (det(A))−1 · ρ(Ax + a). Similar ellip-
soid arguments – but with general ellipsoids instead of c-ellipsoids
– show that in this case, every distribution from the corresponding
family has the form ρ(x) = h(∥x − a∥) for some function h(t) and

some vector a, where ∥z∥2 =
n∑

i=1

n∑
j=1

gij · zi · zj for some values gij .
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