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Abstract

In many application areas, we encounter heavy-tail distributions – for
example, such distributions are ubiquitous in financial applications. These
distributions are often described by Pareto law. There exist techniques for
estimating the parameters of such the corresponding Pareto distributions
based on the sample x1, . . . , xn. In practice, we often only know the values
xi with interval uncertainty. In this paper, we show how to estimate the
parameters of the Pareto distribution under such uncertainty and how to
describe deviation and dependence for general heavy-tailed distributions.

The results of this paper partly appeared in [2, 3].

1 Formulation of the General Problem: Esti-
mating Parameters of the Heavy-Tailed Dis-
tributions under Interval Uncertainty

Need for heavy-tailed distributions. To estimate the risk of extreme and
catastrophic events, we usually perform a statistical analysis of the existing
data, and use the results of this analysis to predict the probabilities (and risk)
of extreme and catastrophic events. For example, based on the observations of
small earthquakes recorded in a certain area, we estimate the probability of a
future potentially catastrophic earthquake; based on the observed variations in
the economic characteristics, we predict the probability of catastrophic (crisis)
changes, etc.

In most applications of statistical methods to science and engineering, re-
searchers use either the normal distribution or distributions related to normal
– such as lognormal; see, e.g., [31, 36]. In these distributions, the probability of

1



a value decrease exponentially with this value. As a result, large deviations are
practically impossible.

For example, for a normal distribution with mean a and standard deviation
σ, the probability of a value x to be outside the “three sigma” interval [a −
3σ, a + 3σ] is approximately 0.1%, and the probability to be outside the “six
sigma” interval [a− 6σ, a+ 6σ] is approximately 10−8.

In practice, however, we often encounter random processes in which large
deviations are possible. In many such distributions, the variance is infinite;
such distributions are called heavy-tailed. These distributions surfaced in the
1960s, when Benoit Mandelbrot, the author of fractal theory, empirically studied
the fluctuations and showed [23] that larger-scale fluctuations follow the Pareto
power-law distribution, with the probability density function ρ(x) = A · x−α,
for some constant α ≈ 2.7. For this distribution, variance is infinite. The above
empirical result, together with similar empirical discovery of heavy-tailed laws
in other application areas, has led to the formulation of fractal theory; see, e.g.,
[24, 25].

Since then, similar heavy-tailed distributions have been empirically found in
other financial situations [4, 5, 7, 12, 26, 28, 32, 35, 39, 40, 41], and in many
other application areas [1, 14, 24, 27, 34].

Need to take into account interval uncertainty. In practice, we rarely
know the exact values of xi. For example, in financial situations, we can take,
as xi, the price of the financial instrument at the i-th moment of time – e.g.,
on the i-th day. However, the price does not remain stable during the day – it
fluctuates. Of course, we can always arbitrarily select a value, but it is more
reasonable to consider the whole range [xi, xi] of the daily prices instead of a
single value xi.

Different values xi from the corresponding intervals lead, in general, to differ-
ent estimates f(x1, . . . , xn) for the parameters of the heavy-tailed distribution.
To get a good understanding of the corresponding risk, it is therefore desirable
to compute not just a single value of each characteristic, but rather the range

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

of possible values of this characteristic when each xi takes different values from
the corresponding interval xi. It is therefore desirable to find the range of all
resulting values of f(x1, . . . , xn).

Due to the ubiquity of interval uncertainty, the need to estimate a range of
a given function f(x1, . . . , xn) over given intervals x1, . . . ,xn occurs in many
other application areas. The problem of computing this range is known as the
main problem of interval computations; see, e.g., [18, 17, 29].

In spite of the simplicity of the problem’s formulation, in general, the interval
computations problem is NP-hard (computationally intensive [30]); see, e.g.,
[21].

It is even NP-hard if we restrict ourselves to simple functions: e.g., to
quadratic ones. Moreover, the problem is NP-hard even for the simplest statis-
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tically meaningful quadratic function: the function

V (x1, . . . , xn) =
1

n
·

n∑
i=1

x2i −

(
1

n
·

n∑
i=1

xi

)2

that describes the sample variance [8, 9].

2 First Problem: Estimating Parameters of the
Pareto Distribution under Interval Uncertainty

Estimating parameters of the Pareto distribution. Large deviations de-
scribe crises, so their analysis is very important. To get accurate predictions of
the possible large deviations, we must get accurate estimates of the parameters
x0 and α based on the observed data values x1, . . . , xn.

In [20], it was shown that by applying the Maximum Likelihood techniques
to the Pareto distribution, we get the following estimates:

x̂0 = min(x1, . . . , xn); (1)

and

α̂ = n ·

(
n∑

i=1

ln

(
xi

min(x1, . . . , xn)

))−1

. (2)

Need to take into account interval uncertainty. As we have mentioned,
it is desirable to compute the ranges of possible values of these characteristics
x0 and α when each xi takes different values from the corresponding interval
xi.

3 First Result: Estimating x0 under Interval Un-
certainty

Problem: reminder. Let us first estimate the range of the estimate x0 =
min(x1, . . . , xn) when x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn].

How we can solve this problem. The function x0 = min(x1, . . . , xn) is a
(non-strictly) increasing function of each of its variables.

Thus, the largest possible value of this function is attained when each of the
variables xi attains its largest possible value xi = xi. So, the largest possible
value of x0 is equal to min(x1, . . . , xn).

Similarly, the smallest possible value of this function is attained when each
of the variables xi attains its smallest possible value xi = xi. Thus, the smallest
possible value of x0 is equal to min(x1, . . . , xn).

So, we arrive at the following result.
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The interval of possible values of x0: result. The interval [x0, x0] of
possible value of the parameter x0 can be computed as follows:

x0 = min(x1, . . . , xn); (3)

x0 = min(x1, . . . , xn). (4)

4 Estimating α under Interval Uncertainty: Anal-
ysis of the Problem

Reducing the problem to simpler ones: idea. We want to find the range
[α, α] of the estimate α, as described by the formula (2). To simplify our analysis,
let us reduce this problem to several simpler ones.

Reducing the problem to simpler ones: first step. First, according to
the description of the estimate α (formula (2)), this estimate has the form

α =
n

r
, (5)

where we denoted

r =

n∑
i=1

ln

(
xi

min(x1, . . . , xn)

)
. (6)

Since the function
n

r
is decreasing,

• the largest possible value α of α =
n

r
is attained when r takes the smallest

possible value, and

• the smallest possible value α of α =
n

r
is attained when r takes the largest

possible value.

So, if we can find the range [r, r] of possible values of r, we can then find the
range [α, α] for α as follows:

α =
n

r
; α =

n

r
. (7)

Thus, the original problem of computing the range of a complex expression (2)
can be reduced to the auxiliary problem of computing the range of a somewhat
simpler expression (6).

Reducing the problem to simpler ones: second step. To reduce the prob-
lem further, let us further simplify the expression (6). For this simplification,
we can use the fact that r is the sum of several logarithms, and the sum of the
logarithms is equal to the logarithm of the product:

r = ln(S), (8)
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where we denoted

S
def
=

n∏
i=1

xi
min(x1, . . . , xn)

=

n∏
i=1

xi

(min(x1, . . . , xn))n
. (9)

Since the function ln(S) is increasing,

• the largest possible value r of r = ln(S) is attained when S takes the
largest possible value, and

• the smallest possible value r of r = ln(S) is attained when S takes the
smallest possible value.

So, if we can find the range [S, S] of possible values of S, we can then find the
range [r, r] for r as follows:

r = ln(S); r = ln(S). (10)

Thus, the problem of computing the range of a complex expression (6) can be
reduced to the auxiliary problem of computing the range of a somewhat simpler
expression (9).

Further reduction. When we know that xj is the smallest of n values
x1, . . . , xn, then the expression (9) can be simplified even further:

S =

n∏
i=1

xi

xnj
. (11)

By canceling the terms xj in the numerator and in the denominator, we can
further simplify this expression into

S =

∏
i ̸=j

xi

xn−1
j

. (12)

Let us show how after this reduction, we can explicitly compute both bounds S
and S.

Computing S: analysis. The expression (12) is increasing as a function of
all the variables xi with i ̸= j and decreasing as a function of the remaining
variable xj . Thus, its largest possible value is attained when:

• all the variables xi with i ̸= j attains its largest possible value xi, while

• the variable xj attains its smallest possible value xj .

The corresponding expression is equal to

Sj =

∏
i ̸=j

xi

xn−1
j

. (13)
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Multiplying both numerator and denominator by xj , we conclude that

Sj =

n∏
i=1

xi

xj · xn−1
j

. (14)

This expression is only possible when xj ≤ xi for all i ̸= j, i.e., when xj ≤ xi for
all i. A number is smaller than several numbers if it is smaller than the smallest
of them, i.e., if

xj ≤ min(x1, . . . , xn). (15)

It should be mentioned that the right-hand side of this inequality has already
appeared in this text – as the upper endpoint x0 for the parameter x0.

Among the values Sj corresponding to all such j, we need to choose the
largest one. According to (14), each of the values Sj is the result of dividing

the same product
n∏

i=1

xi by the value xj · xn−1
j . Thus, the largest possible value

Sj corresponds to the smallest possible value of the product xj · xn−1
j .

The largest value S of S corresponds to the largest value r of r and thus,
to the smallest value α of α. Thus, we arrive at the algorithm for computing α
that is described in the next section.

Computing S: analysis. Let x1, . . . , xn be the values at which the function
S attains its minimum, and let xj be the smallest of these values.

If all the values xi are equal to each other, then we get S = 1. In this case,
we can increase all the values until we reach the upper endpoint xi of one of the
intervals. Then, we get xi = xi, and for every other k, we get xi = xi = xk ≤ xk,
hence xi ≤ xk for all k, and xi = min(x1, . . . , xn) (= x0).

For this i, we have xi = xi, and for all other k ̸= i, we get xk = max(xi, xk).
Let us show that a similar formula holds when not all the coordinates of the
optimizing vector (x1, . . . , xn) are equal to each other.

Indeed, the expression (12) is increasing as a function of all the variables xi
with i ̸= j and decreasing as a function of the remaining variable xj .

Thus, if we could increase xj without changing all other values xi – and still
preserve the conditions xj ≤ xj and the inequalities xj ≤ xi – we would be able
to further decrease the value (12). Since we started with the values for which
S attains its minimum, such a increase in xj is impossible. The fact that we
cannot increase xj without violating the constraints xj ≤ xj and xj ≤ xi means
that at least in one of the constraints, we have equality. Thus:

• we either have xj = xj ,

• or we have xj < xj and xj = xi for some i ̸= j.

Let us consider the second case. In the second case, we may have several
values xi for which xj = xi. If for all these values, we have xi < xi, then we can
increase this common value xj = xi = . . . and thus, further decrease S. Thus,
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the fact that we have selected the minimizing vector implies that at least for
one i, we have xj = xi = xi.

Thus, for the minimizing vector, the smallest value min(x1, . . . , xn) is at-
tained at one of the upper endpoints xi. Since this value xi is the smallest, we
get xi ≤ xk for all k ̸= i, and since xk ≤ xk, we conclude that xi ≤ xk for
all k. Thus, the minimal value xi = min(x1, . . . , xn) is the smallest of n upper
endpoints:

xj = min(x1, . . . , xn) = x0. (16)

For every k ̸= i, we select the smallest possible value xk ∈ [xk, xk] for which
xk ≥ xi, i.e., the value xk = max(xi, xk).

The smallest value S of S corresponds to the smallest value r of r and thus,
to the largest value α of α. Thus, we arrive at the algorithm for computing α
that is described in the corresponding section.

5 Algorithm for Computing α

First stage. To find α, first, we compute the value

x0 = min(x1, . . . , xn). (17)

Comment. If we have already computed the range [x0, x0], for x0, then we do
not need to compute anything: we just borrow the corresponding value x0.

Second stage. We test j = 1, . . . , n, and among all the indices j for which
xj ≤ x0, we select the one with the smallest possible value of the product

xj · xn−1
j .

Final formula. The smallest possible value of α is attained when xj takes
the value xj while all other variables take the values xi. For these values,
min(x1, . . . , xn) = xj , hence the j-th term in the sum (2) disappears, and the
expression (2) takes the form

α = n ·

∑
i ̸=j

ln

(
xi
xj

)−1

. (18)

Computation time. At each stage, this algorithm takes the linear number of
steps, i.e., the number of steps bounded by the number of variables n. Thus,
overall, we have a linear-time algorithm.

This computation time is asymptotically optimal. Indeed, we need to
take into account each of the intervals [xi, xi]. We need at least one computation
step to read each of these values. Thus, the overall number of computation
steps cannot be smaller than n. So, our algorithm that takes times ≤ const · n
is asymptotically optimal.
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6 Algorithm for Computing α

First stage. To find α, first, we compute the value

x0 = min(x1, . . . , xn). (19)

Comment. If we have already computed the range [x0, x0], for x0, then we do
not need to compute anything: we just borrow the corresponding value x0.

Second stage. For each k = 1, . . . , n, we take xk = max(x0, xk), and then
compute the corresponding value α as

α = n ·

(
n∑

k=1

ln

(
max(x0, xk)

x0

))−1

. (20)

Computation time. This algorithm also takes linear time and is, thus, also
asymptotically optimal.

7 Second Problem: How to Describe Deviation
from the “Average” for General Heavy-Tailed
Distributions

Formulation of the problem. For heavy-tailed distributions, variance is
infinite, so we cannot use variance to describe the deviation from the “average”.
Thus, we need to come up with other characteristics for describing this deviation.

In the following text, we will describe such characteristics, and we will de-
scribe how we can estimate these characteristics under interval uncertainty.

Analysis of the problem. In this section, we handle the first problem: how
to characterize deviation from the “average” for heavy-tailed distributions. Of
course, there are many possible mathematical definitions, our objective is to
select a definition that best reflects the user’s preferences.

A standard way to describe preferences of a decision maker is to use the
notion of utility u; see, e.g., [10, 11, 19, 22, 33]. According to decision theory, a

user prefers an alternative for which the expected value
n∑

i=1

pi ·ui of the utility is

the largest possible. Alternative, we can say that the expected value
n∑

i=1

pi · Ui

of the disutility U
def
= −u is the smallest possible.

In our case, instead of considering n different values x1, . . . , xn, we consider
a single value m. Since we are replacing each original value xi with a new value
m which is only an approximation to xi, there is some resulting disutility. For
example, if we dress based on the expected average temperature m and the
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actual temperature is xi ̸= m, then we may feel somewhat warm or somewhat
cold. Similarly, if the heating and cooling system of the campus buildings is
programmed based on the assumption that the outside temperature is m and
the actual temperature is xi ̸= m, the system does not work perfectly well, and
we may need to spend extra resources (and extra heaters and/or ventilators) to
make the temperature in the offices most comfortable.

The further away the approximate value m from the actual one xi, the
larger the disutility. Let U(d) denote the disutility cause by the difference
d = xi −m. When xi coincides with m, there is no disutiluty, i.e., U(0) = 0. If
this difference d is positive, then, the larger d, the larger the disutility: d1 ≤ d2
implies U(d1) ≤ U(d2). Similarly, if the difference d is negative, the smaller d,
the larger the disutility: d1 ≤ d2 implies U(d1) ≥ U(d2).

Under this notation, for each i, the disutility is equal to U(xi −m). In the

sample, we have n estimates with equal probability pi =
1

n
; thus, the expected

value of the disutility is equal to

1

n
·

n∑
i=1

U(xi −m). (21)

It is therefore reasonable to select, as the “average” m, the value for which this
disutility attains the smallest possible value. The resulting value of expected
disutility can then be used as the desired characteristic of the deviation of the
values from the average. Thus, we arrive at the following definitions.

Resulting definitions. Let U(d) ≥ 0 be a function from real numbers to non-
negative real numbers such that U(0) = 0, U(d) is (non-strictly) increasing for
d ≥ 0, and U(d) is (non-strictly) decreasing for d ≤ 0.

For each sample x1, . . . , xn, by a U -estimate, we mean the value mU that
minimizes the expression (21). By a U -deviation, we mean the value

VU
def
= min

m

1

n
·

n∑
i=1

U(xi −m). (22)

Comment. Because of the definition of mU , the value VU takes the form

VU =
1

n
·

n∑
i=1

U(xi −mU ). (23)

Examples. When U(x) = x2, the expression (21) turns into the expression

1

n
·

n∑
i=1

(xi −m)2 for which minimization leads to the arithmetic average m =

1

n
·

n∑
i=1

xi. For this arithmetic average, the expression VU is the usual variance.
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When U(x) = |x|, the expression turns into the expression
1

n
·

n∑
i=1

|xi −m|

for which minimization leads to the median. For the median mU , the expression
VU is the average absolute deviation

VU =
1

n
·

n∑
i=1

|xi −mU |.

How to estimate mU and VU . Once we compute mU , the computation of VU
is straightforward: we just apply the function U(d) n times and compute the
corresponding expression.

EstimatingmU means optimizing a function of a single variable. This partic-
ular optimization problem is well-known and actively used in statistics, because,
as we will show, it is equivalent to the Maximum Likelihood approach to the
following problem. Let us assume that we know the shape ρ0(x) of the actual
distribution but not the starting point, i.e., we know that the actual distribution
has the form ρ0(x −m) for some unknown value m. To estimate this value m
based on the sample x1, . . . , xn, we can use the maximum likelihood method,
i.e., find m for which the probability density

L = ρ0(x1 −m) · . . . · ρ0(xn −m)

attains the largest possible value. Maximizing this probability is equivalent to
minimizing the value

ψ
def
= − ln(L) =

n∑
i=1

U(xi −m),

where we denoted U(x)
def
= − ln(ρ0(x)). Minimizing this value is equivalent to

minimizing the value (21); thus, this value is exactly our estimate mU .
Similar algorithms are also used in robust statistics – an area of statistics

in which we need to make statistical estimates under partial information about
the probability distribution.

In robust statistics (see, e.g., [16]), there are several different types of tech-
niques for estimating a shift-type parameter a based on a sample x1, . . . , xn.
The most widely used methods are M-methods, methods which are mathemati-
cally equivalent to the maximum likelihood approach from the traditional (non-
robust) statistics.

Comment. The relation between utilities, maximum likelihood methods, and
robust statistics was analyzed in [37].
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8 Estimating the Heavy-Tailed-Related Devia-
tion Characteristics under Interval Uncertainty:
Analysis of the Problem

What we want. In the previous section, we described how to define the
deviation VU in the heavy-tailed case, and how to estimate the value of the
deviation when we know the exact values x1, . . . , xn. As we have mentioned, in
practice, the values xi are often only known with interval uncertainty, i.e., we
only know the intervals xi = [xi, xi] that contain the unknown values xi. In this
case, it is desirable to compute the range VU = [V U , V U ] of possible values of
VU when xi ∈ xi.

The value V U is the minimum of the function VU (x1, . . . , xn) when xi ∈ xi,
and the value V U is the maximum of the function VU (x1, . . . , xn) when xi ∈ xi.
So, to estimate these values, let us recall when a function attains its minimum
and maximum.

When does a function attains its minimum and maximum on an in-
terval: a general reminder. Let us start with functions of one variable f(x)
defined on an interval [x, x]. A continuous function always attains its smallest
possible value at some point x ∈ [x, x]. This point can be:

• either inside the interval x < x < x;

• or the left endpoint x = x,

• or at the right endpoint x = x.

It is well known, from calculus, that if a function f(x) attains its minimum or
maximum at some point x inside the interval, then at this point, the derivative

of f is equal to 0:
df

dx
= 0.

If the minimum is attained at the left endpoint x = x, then at this point,

we cannot have
df

dx
< 0, because otherwise, for small ∆x > 0, we would have

f(x+∆x) = f(x) + ∆x · df
dx

+ o(∆x) < f(x),

which contradicts our assumption that f(x) is the smallest value of f(x) on the

given interval. Thus, in this case, we must have
df

dx
≥ 0.

Similarly, if the minimum is attained at the right endpoint x = x, we must

have
df

dx
≤ 0. For maximum:

• if the maximum is attained at the left endpoint x = x, we must have
df

dx
≤ 0;

• if the maximum is attained at the right endpoint x = x, we must have
df

dx
≥ 0.
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Thus, for minimum, we have one of the following three option:

• either the minimum is attained for x = x and
df

dx
≥ 0;

• or the minimum is attained for x = x and
df

dx
≤ 0;

• the minimum is attained strictly inside the interval [x, x], and
df

dx
= 0.

When does a function of several variables attains its minimum and
its maximum? For a function of several variables, a similar conclusion can
be reached for each of these variables. Thus, if (x1, . . . , xn) denotes the tuple
at which the tuple attains its minimum, then for every i, we have one of three
following options:

• either xi = xi and
∂f

∂xi
≥ 0;

• or xi = xi and
∂f

∂xi
≤ 0;

• or xi ∈ (xi, xi) and
∂f

∂xi
= 0.

Similarly, if (x1, . . . , xn) denotes the tuple at which the tuple attains its maxi-
mum, then for every i, we have one of three following options:

• either xi = xi and
∂f

∂xi
≤ 0;

• or xi = xi and
∂f

∂xi
≥ 0;

• or xi ∈ (xi, xi) and
∂f

∂xi
= 0.

Applying the general conclusions about minima and maxima to our
problem. Let us apply these conclusions to the function VU (x1, . . . , xn). From
the fact that the value mU corresponds to the minimum of the expression (21),
we conclude that for this value, the derivative of the expression (21) with respect
to m is equal to 0, i.e., that

− 1

n
·

n∑
i=1

U ′(xi −m) = 0, (24)

where U ′(d) denotes the derivative of the function U(d). Differentiating the
expression (23) with respect to xi and taking into account thatmU also depends
on xi, we conclude that

∂VU
∂xi

= U ′(xi −m)−

(
1

n
·

n∑
i=1

U ′(xi −m)

)
· ∂mV

∂xi
.
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Due to (24), the expression in parentheses is equal to 0 and thus,

∂VU
∂xi

= U ′(xi −m). (25)

By definition of the function U(d), we have U ′(xi−m) > 0 only for xi > m and
U ′(xi −m) < 0 only for xi < m.

Thus, when the function VU attains its minimum, we have:

• either xi = xi and xi ≥ m,

• or xi = xi and xi ≤ m,

• or xi ∈ (xi, xi), and xi = m.

If xi < m, then the i-th interval is fully to the left of the valuem, i.e., xi < m for
all xi ∈ [xi, xi]. In this case, we cannot have xi ∈ (xi, xi) – otherwise we would
have xi = m, and we know that xi < m. Similarly, we cannot have xi = xi
because otherwise, we will have xi ≥ m, and we know that xi < m. Thus, the
only remaining option is xi = xi.

Similarly, when m < xi, then the i-th interval is right to the left of the value
m, i.e., xi > m for all xi ∈ [xi, xi]. In this case, the only possible option is
xi = xi.

Finally, when xi ≤ m ≤ xi, the only remaining option is xi = m.

Comment. For simplicity, in our analysis, we ignored the fact that it is possible
to have U ′(d) = 0 for d > 0; if we take this possibility into account, then,
strictly speaking, we can no longer argue that every tuple for which the deviation
measure VU attains its minimum has the above type, we can still argue that there
is a tuple of this type for which VU attains its minimum. Crudely speaking, if
the minimum is attained for the value xi at which U

′(xi −m) = 0, we can still
modify xi without changing the value V until we can no longer do that – i.e.,
until we either get the endpoint or the value m.

Thus, once we know where m is with respect to all the bounds xi and xi,
we can uniquely determine where the minimum of VU is attained under this
restriction on m:

• if xi ≤ m, then we have xi = xi;

• if m ≤ xi, then we have xi = xi;

• if xi ≤ m ≤ xi, then xi = m.

In all three cases, xi is the closest value to m on the interval [xi, xi].
The value m can now be determined by the requirement that for this m,

the sum (21) take the smallest possible value. Since for xi = m, we have
U(xi −m) = U(0) = 0, it is sufficient to consider only the intervals i for which
xi ̸= m. Thus, m is equal to the U -average of such values xi. So, we arrive at
the following algorithm.
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9 Algorithm for Computing V U

Algorithm. In order to find V U , let us first sort all 2n endpoints xi and xi
into an increasing sequence

x(1) ≤ x(2) ≤ . . . ≤ x(2n).

To these values, we add x(0)
def
= −∞ and x(2n+1)

def
= +∞, then we get

−∞ = x(0) ≤ x(1) ≤ x(2) ≤ . . . ≤ x(2n) ≤ x(2n+1) = +∞.

The resulting values divide the real line into 2n + 1 zones [x(k), x(k+1)],
k = 0, 1, . . . , 2n. For each zone, we select the values x1, . . . , xn as follows: for
some value m (to be determined),

• if xi ≤ r(k), then we select xi = xi;

• if r(k+1) ≤ xi, then we select xi = xi;

• for all other i, we select xi = m.

Then, we take only the values for which xi ̸= m, and find their U -estimate and
– if this U -estimate is in the zone – compute the corresponding U -deviation.

The smallest of thus computed U -deviations is the desired value V U .

Computation time for this algorithm. Sorting takes

O(n · log(n))

steps; see, e.g., [6]. After that, for each of 2n = O(n) zones, we need O(n) steps
to perform the computations and the time – that we will denote by Texact – to
compute the U -estimate and U -deviation. Thus, the total computation time is
equal to O(n·log(n))+O(n2)+O(n)·Texact. Since O(n·log(n))+O(n2) = O(n2),
we thus conclude that the algorithm takes time

O(n2) +O(n) · Texact.

Conclusion. If we can compute VU for exactly known xi in polynomial time,
then we can compute V U under interval uncertainty also in polynomial time.
For example:

• if we could compute VU for exact xi in linear time O(n), then we can
compute V U for interval xi in quadratic time O(n2);

• if we could compute VU for exact xi in quadratic time O(n2), then we can
compute V U for interval xi in cubic time O(n3).
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10 Computing V U : Analysis of the Problem

Where does the function VU attains its maximum? Similar analysis of
the problem of computing the maximum V U of the function (23) leads to the
following conclusion:

• if xi ≤ m, then we have xi = xi;

• if m ≤ xi, then we have xi = xi;

• if xi ≤ m ≤ xi, then we can have both xi = xi and xi = xi.

Resulting algorithm is not feasible for large n. So, in principle, we can
find V U by trying all possible combinations of endpoints that satisfy the above
conditions, and selecting the largest of the appropriate values VU .

The problem with this idea is that, in general, we have two possibilities for
each i, so overall, we may have an exponential number 2n of combinations. Even
for reasonable-size n, e.g., for n = 300, the number of combinations exceeds the
number of particles in the Universe and thus, cannot be feasibly computed.

This is in line with the above fact that even for the case when U(d) = d2,
the problem of computing V U is NP-hard.

Cases when a feasible algorithm is possible. However, there are practically
important cases when we can compute V U in polynomial time.

First case. The first case is when there is a constant C such that every group
of > C intervals has an empty intersection.

In this case, for each zone, there are ≤ C intervals for which xi ≤ m ≤ xi,
so we need to check ≤ 2C combinations for each zone. Since C is a constant,
this means O(1) and not affecting the asymptotic computation time.

Second case. The second case is when no interval is a proper subinterval of
another, i.e., when [xi, xi] ̸⊆ (xj , xj) for all i and j.

This happens, e.g., when all the measurements are made by the same measur-
ing instrument. A measuring instrument can have different accuracy at different
parts of the scale, e.g., it may lead to a narrower interval [0.59, 0.61] in one part
of the scale and wider interval [1.2, 1.4] at another part. However, it is not
realistic to expect two intervals [0.59, 0.61] and [0.1, 1.2] ⊇ [0.59, 0.61] produced
by the same measuring instrument.

Under this no-subinterval property, as one can check, lexicographic order

[xi, xi] ≤ [xj , xj ] ⇔ ((xi < xj) ∨ (xi = xj &xi < xj))

sorts the intervals by both the left- and the right endpoints:

x1 ≤ x2 ≤ . . . ≤ xn; x1 ≤ x2 ≤ . . . ≤ xn.

In this case, for all intervals for which xi ≤ m, we have xi = xi, and for all
intervals for which m < xi, we have xi = xi, For intermediate intervals, we may
have both xi = xi and xi = xi.
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Let us show that among all the tuples on which the maximum is attained,
there is always a tuple of the type (x1, . . . , xk, xk+1, . . . , xn), i.e., a tuple in
which we first have only lower endpoints, and then all upper endpoints.

Indeed, let us assume that the maximum is attained on some tuple for which
xi = xi and xj = xj for some j > i. If the two intervals coincide, then we can
swap them and eliminate this problem. Thus, it is sufficient to consider the case
when the intervals are different.

In this case, we cannot have xi < m because then, we would have xi = xi,
so m ≤ xi. Similarly, we cannot have m < xi because then, due to the above
ordering property, we would havem < xi ≤ xj hencem < xj and xj = xj , Thus,
we have xi ≤ m ≤ xi. Similarly, we can prove that in this case, xj ≤ m ≤ xj ,
i.e., that

xi ≤ xj ≤ m ≤ xi ≤ xj .

The maximum is attained when xi = xi and xj = xj . Here, both values xi and
xj belong to both intervals [xi, xi] and [xj , xj ]. The value VU does not change
if we simply swap two values xi and xj , i.e., take xi = xj and xj = xi. Since
the intervals are different, we cannot have both xi = xi and xj = xj , so either
xi > xi or xj < xj . We already know that in this case, maximum cannot be
attained.

Thus, it is sufficient to check only the tuples of the type (x1, . . . , xk, xk+1, . . . , xn).
There are n+ 1 such tuples, so we have a polynomial-time algorithm.

Third case. Similar arguments can be made when the intervals can be divided
into a fixed number m of groups within each of which there is a no-subinterval
property. This can happen, e.g., when all the measurements are made by m
different measuring instruments.

In this case, we can similarly sort intervals corresponding to each group (i.e.,
each measuring instrument), so it is sufficient to pick a transition point kj for
each of the groups j = 1, . . . ,m.

Thus, we arrive at the following algorithms.

11 Efficient Algorithms for Computing V U

First algorithm. This algorithm is applicable to the case when for some
integer C, every subset of > C intervals [xi, xi] has an empty intersection. The
algorithm is as follows.

First, we sort all 2n endpoints xi and xi into an increasing sequence, and
add the values x(0) = −∞ and x(2n+1) = +∞, resulting in:

−∞ = x(0) ≤ x(1) ≤ x(2) ≤ . . . ≤ x(2n) ≤ x(2n+1) = +∞.

For each zone [x(k), x(k+1)], we do the following:

• if xi ≤ r(k), then we select xi = xi;

• if r(k+1) ≤ xi, then we select xi = xi;
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• for all other i, we select either xi = xi or xi = xi.

For each zone, we have ≤ C indices i that allow two selections, so we thus get
≤ 2C selections. For each of these selections, we compute the U -deviation. The
largest of these U -deviations is the desired value V U .

This algorithm requires time O(n2) +O(n) · Texact.

Second algorithm. This algorithm is applicable to the case when no two
intervals are proper subintervals of each other, i.e., when [xi, xi] ̸⊆ (xj , xj) for
all i and j.

In this case, first, we sort all the intervals in lexicographic order, i.e., by the
order

[xi, xi] ≤ [xj , xj ] ⇔ ((xi < xj) ∨ (xi = xj &xi < xj)).

We then consider all n + 1 tuples of the form (x1, . . . , xk, xk+1, . . . , xn), with
k = 0, 1, . . . , n. For each of these tuples, we compute the U -deviation. The
largest of these U -deviations is the desired value V U .

This algorithm requires time O(n · log(n)) +O(n) · Texact.

Third algorithm. This algorithm is applicable if for some m, all the intervals
can be divided into m groups each of which satisfies the above no-subinterval
property. In this case, we sort all intervals within each group in lexicographic
order. For each group j = 1, . . . ,m, with nj ≤ n elements, we consider nj +1 ≤
n+1 tuples of the form (x1, . . . , xkj

, xkj+1, . . . , xn), and we consider all possible
combinations of such tuples corresponding to all possible vectors (k1, . . . , km).
For each of these ≤ nm vectors, we compute the U -deviation. The largest of
these U -deviations is the desired value V U .

This algorithm requires time O(n · log(n)) +O(nm) · Texact.

12 What Are the Reasonable Measures of De-
pendence for Heavy-Tailed Distributions?

Formulation of the problem. If we have several possibly related samples
x1, . . . , xn and y1, . . . , yn, then, in addition to knowing how much each sample
deviates from its “average”, it is also desirable to know how much they depend
on each other.

In the traditional statistics, a reasonable measure of dependence is the cor-
relation, which is defined as

ρxy =

1

n
·

n∑
i=1

(xi −mx) · (yi −my)√
Vx · Vy

.

This correlation describes linear dependencies.
For heavy-tailed distributions, as we have mentioned, variances are infinite,

so this formula cannot be applied. Thus, we need to come up with a numerical
characteristic for describing dependence.
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One possibility: use Kendall’s tau. The traditional correlation only de-
scribes linear dependence.

To describe possibly non-linear monotonic dependencies, we can use, e.g.,
Kendall’s tau (see, e.g., [36]) – which can be estimated as the proportion of
pairs (i, j) for which x and y change in the same direction, i.e.

• either xi ≤ xj and yi ≤ yj

• or xj ≤ xi and yj ≤ yi.

Kendall’s tau can be applied (and has been applied) to heavy-tailed distributions
as well.

Remaining problem. But what is we are interested not in all possible mono-
tonic dependencies, but only in linear ones, or, more generally, only in depen-
dencies y = f(x) belonging to a certain class of functions F (e.g., all quadratic
functions, or all fractionally linear functions).

Our idea. Let us again take into account disutility. The above measure of
deviation estimates the disutility of replacing all the values xi with a single
value mx, and the disutility of replacing all the values yi with a single value my.
Dependence means that if we know xi, we can get a better approximation for
yi than my.

For example, if we want to predict temperature in El Paso, then we approx-
imate this temperature by an average value and get some deviation. However,
we know that there is a correlation between the temperature in El Paso and the
temperature in the nearby city of Las Cruces. Thus means that if we know the
temperature in Las Cruces, we can predict the temperature in El Paso better
than by simply taking the average of El Paso temperatures.

In general, to approximate the values yi,

• instead of using a single value my (and selecting the value for which the
expected disutility is the smallest),

• we use the value f(xi) for an appropriate function f ∈ F – and we select
the function f for which the expected disutility is the smallest possible.

Thus, we arrive at the following definitions:

Resulting definitions. Let x1, . . . , xn and y1, . . . , yn be two tuples, let U(d) ≥
0 be a utility function, and let F be a class of functions from real numbers to
real numbers.

By an F-regression, we mean a function f ∈ F for which the value

1

n
·

n∑
i=1

U(yi − f(xi)) (26)

is the smallest possible.
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In particular, when F is the class of all constant functions, we get the U -
estimate. When U(d) = d2 and F is the class of all linear functions, we get the
usual linear regression.

By a (U,F)-correlation c, we mean the proportion of how much the average
disutility decreases when we use xi to help predict the values yi, i.e.,

c
def
=

VU (y)− VU,F (y|x)
VU (y)

,

where

VU (y)
def
= min

m

1

n
·

n∑
i=1

U(yi −m)

and

VU,F (y|x)
def
= min

f∈F

1

n
·

n∑
i=1

U(yi − f(xi)).

Observation. For the class of linear functions F and for U(d) = d2, the resulting
value c coincides with the square ρ2 of the usual correlation.

Discussion. For normal distributions, correlation is symmetric: if we can
reconstruct yi from xi, then we can reconstruct xi from yi. Our definition is,
in general, not symmetric. This asymmetry make perfect sense. For example,
suppose that yi = x2i .

• Then, if we know xi, then we can uniquely reconstruct yi, so the recon-
struction of yi from xi is perfect.

• However, if we know yi, we can only reconstruct xi modulo sign, so the
reconstruction of xi from yi is not perfect.

Remaining open problem. It is desirable to come up with efficient algo-
rithms that would estimate the above measures of dependence under interval
uncertainty.
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