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Abstract. In his logical papers, Leo Esakia studied corresponding ordered topological

spaces and order-preserving mappings. Similar spaces and mappings appear in many

other application areas such the analysis of causality in space-time. It is known that

under reasonable conditions, both the topology and the original order relation ≤ can be

uniquely reconstructed if we know the interior < of the order relation. It is also known

that in some cases, we can uniquely reconstruct < (and hence, topology) from ≤. In this

paper, we show that, in general, under reasonable conditions, the open order < (and hence,

the corresponding topology) can be uniquely determined from its closure ≤.
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1. Formulation of the Problem

Order-preserving mappings of topological spaces in logic and in
physics: general reminder. Many interesting mathematical results ap-
pear when we are able to find connection between two seemingly different
areas of mathematics – and thus, use known results and techniques from
one area to study techniques from another area. In particular, for Heyting
algebras – models of intuitionistic logics – many results originated from a
relation between Heyting algebras and a special class of (partially) ordered
topological spaces called Esakia spaces, a relation that was discovered and
actively explored by Leo Esakia in [10, 11]. In his research, L. Esakia paid
special attention to studying order-preserving maps between the correspond-
ing partially ordered spaces.

Esakia’s work was not the first application of ordered topological spaces
and order-preserving mappings: such spaces and mappings also naturally
appear in space-time physics and in other areas of logic.

In physics, a natural ordering relation is the causality relation between
events, when a ≤ b means that an event a can influence the event b. Here,
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topology corresponds to closeness of events. It is usually assumed that the
relation ≤ is closed, i.e., if bn → b and a ≤ bn, then a ≤ b. Indeed, if bn → b,
this means, crudely speaking, that for every given measurement accuracy,
when n is sufficiently large, we cannot distinguish events bn and b. So,

• if a ≤ bn, i.e., if physical evidence shows a can influence all events bn,
and

• bn → b, meaning that b is indistinguishable from bn,

then this same evidence shows that a can influence b (a ≤ b).

In Newton’s physics, in which signals can potentially travel with an ar-
bitrarily large speed, the causality relation is trivial: an event a = (t, x) oc-
curring at the spatial location x at time t can influence the event a′ = (t′, x′)
if and only if t < t′ (or t = t′ and x = x′).

The fundamental role of the non-trivial causality relation emerged with
the Special Relativity, according to which the speed of all the signals is
limited by the speed of light c, as a result of which a = (t, x) ≤ a′ = (t′, x′)

if and only if t′ ≥ t and
d(x, x′)

t′ − t
≤ c; see, e.g., [12].

In the original relativity theory, causality was one of the main concepts.
Its central role was revealed in the 1950s, when A. D. Alexandrov proved that
in special relativity, causality implied Lorenz group: every order-preserving
transforming of the corresponding partial ordered set is linear, and can be
represented as a composition of spatial rotations, Lorentz transformations
(describing a transition to a moving reference frame), and re-scaling x → λ·x
(corresponding to a change of unit for measuring space and time) [1, 5]. This
theorem was later generalized by E. Zeeman (and by many others) and is
currently known as the Alexandrov-Zeeman theorem; see, e.g., [2, 3, 4, 6, 7,
13, 14, 15, 16, 17, 18, 21, 23, 25, 27, 28, 29, 30, 31, 32, 35, 43].

Special relativity theory is an approximate description of space-time,
a description that does not take into account that space-time is curved.
To describe curved space-times, we need General Relativity Theory and its
generalizations. The notion of causality is the basis of several formalizations
of space-time physics, both as foundations of the General Relativity Theory
and as a way to describe its generalizations; see, e.g., [8, 26, 24, 25, 27, 39].

In logic, partial orders are used when we formalize commonsense and ex-
pert reasoning. In this application, to each statement, we assign the expert’s
degree of certainty that this statement is true. A natural partial ordering
relation a ≤ b describes the fact that we are more certain in b than in a; see,
e.g., [20, 34, 37, 38, 41, 42].
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In this application, topology represents the closeness of the corresponding
degrees of certainty. In this case, it is also reasonable to require that the
relation ≤ is closed.

Another important application of partial orders is decision making, when
we need to describe human preferences [9, 22, 33, 36, 40].

Need for open partial orders. In many applications, we only observe
an event b with some accuracy. For example, in physics, we may want to
check what is happening exactly 1 second after a certain reaction. However,
in practice, we cannot measure time exactly, so, we can only observe an
event which is close to b – e.g., an event that occurs 1± 0.001 sec after the
reaction. In general, we can only guarantee that the observed event is within
a certain neighborhood Ub of the event b.

Because of this uncertainty, the only possibility to experimentally confirm
that a can influence b is when for some neighborhood Ub of the event b,
we have a ≤ b̃ for all b̃ ∈ Ub. In topological terms, this “experimentally

confirmable” relation a < b means that b contains in the future cone C+
a

def
=

{b : b ≥ a} of the event a together with some neighborhood, i.e., that b
belongs to the interior of the closed cone C+

a .

Comment. To avoid confusion, please note that here a < b does not mean
a ≤ b and a ̸= b.

Similar arguments justify the need to consider open cones also in case of
uncertainty.

In physics, there is another motivation for open cones: open cones cor-
respond to influences with speeds smaller than the speed of light. This
is important because, according to modern physics, there are two types of
objects (see, e.g., [12]):

• objects with non-zero rest mass that can travel with any possible speed
which is smaller than the speed of light – but not with the speed of light,
and

• objects with zero rest mass (like photons), that can travel only with the
speed of light, but not with any smaller speed.

Thus, open cones correspond to causality by traditional (kinematic) objects.
Because of this, the open relation a < b is also known as kinematic causality,
and spaces with this open relation < are known as kinematic spaces [39].
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Natural questions: what is the relation between open and closed
partial orders? In all the above applications, on the same space, we have
three things – topology and two different ordering relations

• the original (closed) partial order ≤ and

• the open partial order <.

It is reasonable to ask to what extent knowing only some of these things
enables us to reconstruct the others.

Relation between open and closed partial orders: what is known.
It is known that under some physically (and logically) reasonable assump-
tions, the open relation uniquely determines the topology and the closed
relation.

The corresponding topology was first introduced by A. D. Alexandrov
and is thus known as Alexandrov topology. It is a topology whose base are

open intervals (a, b)
def
= {c : a < c < b}. For this definition to be valid, we

need to make sure that intervals do form a base of a topology, i.e., when a
point x belongs to the intersection of two open intervals, there a whole open
interval containing x is contained in this intersection.

Once this topology is defined, we can define a ≤ b as b belonging to the

closure K+
a of the open cone K+

a = {b : a < b}. Of course, we need to make

sure that a dual definition a ∈ K−
b , where K−

b = {b : b < a} leads to the
exact same ordering.

It is also usually assumed that for every element a, there are elements
larger than a and smaller than a, and that if a < b, then there is a point in
between a and b.

Under these conditions, the above description determines the topology
and the closed order in terms of the open order <. Thus, the open order
uniquely determines both the topology and the closed order.

In the case of special relativity, the inverse is also true: if we know the
closed partial order, then we can uniquely reconstruct the open order as
well – and so, the topology. Hence, every 1-1 transformation preserving a
closed order also preserves the open order and the topology. This conclusion
is used in many proofs that every order-preserving transformation is linear.
The proof of this conclusion is based on the easy-to-check observation that
when a ≤ b, we have a < b if and only if the relation ≤ restricted to the
closed interval [a, b] = {c : a ≤ c ≤ b} is not a total (linear) order, i.e., if and
only if there exist c and c′ for which a ≤ c ≤ b, a ≤ c′ ≤ b, c ̸≤ c′, and c′ ̸≤ c.
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It is known, however, that this observation does not hold in general. For
example, on the 3-D space IR3 with a standard topology, we can define a
component-wise partial order as follows: a = (a1, a2, a3) ≤ b = (b1, b2, b3) if
and only if a1 ≤ b1, a2 ≤ b2, and a3 ≤ b3. In this space, the corresponding
open order is also easy to describe: a = (a1, a2, a3) < b = (b1, b2, b3) if
and only if a1 < b1, a2 < b2, and a3 ≤ b3. Here, however, we can have
a = (0, 0, 0) ≤ b = (0, 1, 1), a ̸< b, but for c = (0, 0, 1) and c′ = (0, 1, 0), we
have a ≤ c ≤ b, a ≤ c′ ≤ b, c ̸≤ c′, and c′ ̸≤ c.

Remaining problem – that we solve in this paper. A natural ques-
tion is: what happens in the general case? Can we uniquely reconstruct
an open order if we know the corresponding closed order? In this paper,
we show that under reasonable assumptions, such a reconstruction is indeed
possible.

This work was motivated by our discussions with Leo Esakia during his
visit to Las Cruces, New Mexico.

2. Definitions and the Main Result

Definition 1. [39] A set X with a partial order < is called a kinematic
space if is satisfies the following conditions:

∀a∃a−, a+ (a− < a < a+);

∀a, b (a < b → ∃c (a < c < b));

∀a, b, c (a < b, c → ∃d (a < d < b, c));

∀a, b, c (b, c < a → ∃d (b, c < d < a)).

Definition 2. For every partial ordered set, and every a < b, by an interval

(or open interval), we mean the set (a, b)
def
= {x : a < c < b}.

Definition 3. A kinematic space is called separable if there exists a count-
able set {xn} such that every open interval contains one of the elements xi.
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Definition 4. [39] For every separable kinematic space, we define conver-
gence an → a as follows:

an → a ⇔ ∀a−, a+ (a− < a < a+ ⇒ ∃N ∀n (n ≥ N ⇒ a− < an < a+))).

For each set S, it closure S is defined as the set of all the the points s for
which sn → s for some sn ∈ S.

Comment. In other words, an → a if and only if every interval (a−, a+)
containing a also contains almost all elements of an – i.e., all but finitely
many of them.

Mathematical comment. In this paper, we consider separable kinematic
spaces, i.e., spaces in which there is a countable set {xn} which is every-
where dense in X. In such spaces, to describe topology, it is sufficient to
consider convergence of sequences. Our result, however, can be easily ex-
tended to general (not necessarily separable) kinematic spaces if, instead of
sequences {an}, we consider nets {aα}α∈A corresponding to directed sets A;
see, e.g., [19].

Definition 5. [39] A kinematic space is called normal if

b ∈ {c : c > a} ⇔ a ∈ {c : c < b}.

Notation. For a normal kinematic space, we denote b ∈ {c : c > a} by

a ≤ b. For every a ≤ b, the set [a, b]
def
= {c : a ≤ c ≤ b} is called a closed

interval.
The following transitivity and closure properties hold for this relation:

Proposition 1. [39] For every separable normal kinematic space and for
every elements a, b, and c, the following holds:

• a ≤ a;

• if a < b, then a ≤ b;

• if a ≤ b and b < c, then a < c;

• if a < b and b ≤ c, then a < c.

The proof of the first part of Proposition 1 is based on the following lemma:
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Definition 6. We say that a sequence {an} is <-decreasing if an > an+1

for all n.

Lemma 1. For every separable kinematic space, for every element a, there
exists an <-decreasing sequence an of element an > a for which an → a.

Comment. For readers’ convenience, all the proofs are placed in the special
(final) Proofs section.

A dual lemma also holds:

Definition 7. We say that a sequence {an} is <-increasing if an < an+1

for all n.

Lemma 2. For every separable kinematic space, for every element a, there
exists an <-increasing sequence an of element an < a for which an → a.

Proposition 2. [39] For every separable normal kinematic space:

• if an ≥ b and an → a, then a ≥ b;

• if an ≤ b and an → a, then a ≤ b;

• if a ≤ b and b ≤ c, then a ≤ c.

Comment. Please note that the limit relation ≤ is not necessarily an order,
since we may have a ≤ b, b ≤ a, and a ̸= b. For example, in the closure
of the above Newtonian causality order, e = (t, x) ≤ e′ = (t′, x′) ⇔ t ≤ t′.
In this case, (0, (0, 0, 0)) ≤ (0, (1, 0, 0)) and (0, (1, 0, 0)) ≤ (0, (0, 0, 0)), but
(0, (0, 0, 0)) ̸= (0, (1, 0, 0)). In such cases, we have a non-trivial equivalence
relation a ≡ b ⇔ (a ≤ b& b ≤ a). For each element a, its equivalence class
{b : b ≡ a} is equal to [a, a].

To formulate our result, we need to introduce the an additional complete-
ness property.

Definition 8. We say that a sequence {an} is ≤-decreasing if an ≥ an+1

for all n.

Definition 9. We say that a sequence {an} is bounded from below if there
exists an element b for which b ≤ an for all n.
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Definition 10. We say that a separable kinematic space is complete if
every ≤-decreasing bounded sequence has a limit.

Physical comment. From the application viewpoint, this requirement does
not change much. Indeed, the events are only approximately known anyway,
so explicitly adding a limit event a = lim an does not affect the physical
picture: for all practical purposes, the limit a is indistinguishable from an
for large n.

The following result shows that completeness holds in most physically
interesting cases, for example, in the space-time corresponding to special
relativity.

Definition 11. A kinematic space is called intervally compact if in this
space, every closed interval is compact.

Proposition 3. Every intervally-compact separable normal kinematic
space is complete.

The following result states that a complete (open) kinematic order can
indeed be uniquely reconstructed from the corresponding closed order:

Theorem. If two complete separable normal kinematic orders < and <′

on the same set X lead to the same closed order ≤=≤′, then <=<′.

3. Proofs

3.1. Proof of Lemma 1

Since the kinematic space is separable, there exists a sequence xn that has
elements in every open interval. We will construct a sequence an with the
following additional property: for every n, if xn > a, then xn > an.

By definition of a kinematic metric, there exists an element a+ > a; we
will take this element as a1.

Let us now assume that the values a1 > . . . > an−1 > a have already been
constructed. The construction of the next element an will depend on whether
xn > a or not. If xn > a, then we have a < xn, an−1. So, by definition of a
kinematic space, there exists an element c for which a < c < xn, an−1. We
will take one of these elements c as an.
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If xn ̸> a, then we have a < an−1. So, by definition of a kinematic space,
there exists an element c for which a < c < an−1. We will take one of these
elements c as an.

We have constructed a <-decreasing sequence. Let us prove that this
sequence converges to a, i.e., that for every a− < a < a+, there exists an N
such that for all n ≥ N , we have a− < a < a+. Indeed, since a < a+, the
sequence xn has an element xN in an open interval (a, a+): a < xN < a+.
By our construction, xN > a implies that a < aN < xN . By transitivity,
we conclude that a− < aN < a+. Since the sequence an is <-decreasing,
we conclude that for n > N , we have a < an < aN , so, by transitivity,
a− < an < a+. Convergence is proven.

3.2. Proof of Lemma 2

This proof is similar to the proof of Lemma 1.

3.3. Proof of Proposition 1

Let us first prove that a ≥ a. Indeed, by Lemma 1, there exists a sequence
an for which an > a and an → a. Thus, a ≥ a.

Let us prove that if a < b, then a ≤ b. Indeed, we can take bn = b. Each
open interval neighborhood of b contains b and thus, contains all elements
of the sequence bn. Thus, bn → b and hence, a ≤ b.

Let us now prove that if a ≤ b and b < c, then a < c. Indeed, by
definition, a ≤ b means that there is a sequence bn → b for which a < bn for
all n. By definition of convergence, bn → bmeans that for every two elements
b− < b < b+, there exists N for which, for all n ≥ N , b− < bn < b+. By
definition of a kinematic space, there is an element b− < b. As b+, we take
b+ = c. In this case, for sufficiently large n, we have bn < c, so a < bn and
transitivity imply that a < c.

Finally, let us prove that if a < b and b ≤ c, then a < c. Indeed, since
the kinematic space is normal, b ≤ c means that there exists a sequence
bn → b for which bn < c for all n. By definition of convergence, bn → b
means that for every two elements b− < b < b+, there exists N for which,
for all n ≥ N , b− < bn < b+. By definition of a kinematic space, there is an
element b+ > b. As b−, we take b− = a. In this case, for sufficiently large n,
we have bn > a, so bn < c and transitivity imply that a < c.

Finally, let us prove that the relation ≥ is transitive. Let a ≥ b and
b ≥ c. By definition, a ≥ b means that there exists a sequence an > b for
which an → a. As we have shown, from an > b and b ≥ c, we conclude that
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an > c. Thus, an > c for some sequence an → a. This is exactly what is
means to have a ≥ c. The statement is proven.

The proposition is proven.

3.4. Proof of Proposition 2

Without losing generality, let us prove the first statement, i.e., let us assume
that an → a and an ≥ b, and let us prove that a ≥ b. For that, we will need
to prove that there exists a sequence a′n > b for which a′n → a. As such
a sequence, we will take a <-decreasing sequence a′n for which a′n > a and
a′n → a, a sequence whose existence was proved in Lemma 1. Since a′n → a,
to complete our proof, it is sufficient to prove that a′n > b for all n.

Indeed, let n be an arbitrary natural number. By definition of a kine-
matic space, there exists an element a− < a, so we have a− < a < a′n. Since
the element a is contained in the open interval (a−, a

′
n) and an → a, by def-

inition of convergence, there exists an N for which a− < aN < a′n. By defi-
nition, aN ≥ b means that there exists a sequence of elements aN1, aN2, . . .
for which aNk > b and aNk → aN . Since aN ∈ (a−, a

′
n), by definition of

convergence, this implies that for some K, we have aNK ∈ (a−, a
′
n). From

aNK < a′n and aNK > b, we conclude that a′n > b. The proposition is
proven.

3.5. Proof of Proposition 3

If {an} is a ≤-decreasing bounded sequence, with a bound b, then all its el-
ements belong to the interval [b, a1]. Since the kinematic space is intervally-
compact, this interval is compact. Thus, by known properties of compact-
ness, the sequence {an} has a convergent subsequence ank

→ a, where
nk → ∞. By definition of the Alexandrov topology on a kinematic space,
this means that for every a− < a < a+, there exists a K for which, for
all k ≥ K, we have a− < ank

< a+. Let us show that an → a, i.e., that
for every a− and a+, there exists an N for which, for all n ≥ N , we have
a− < an < a+. Indeed, let K be the value corresponding to these a− and
a+, and let us take N = nK . In this case, aN = anK < a+.

When n ≥ N , then, due to the fact that the sequence is ≤-decreasing,
we have an ≥ aN , so due to aN < a+, we have an < a+.

Since nk → ∞, there exists a value k0 ≥ K for which nk0 ≥ n and hence,
ank0

≤ an. Thus, from a− < ank0
and ank0

≤ an, we conclude that a− < an.
Convergence is proven, and so it the proposition.
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3.6. Proof of the Theorem

The proof of this result uses the following natural auxiliary notions:

Definition 12. For every element e ∈ X, let Se denote the set of all ≤-
monotonically decreasing sequences a = {an} for which e ≤ an for all n and
∞∩
n=1

[e, an] = [e, e]. On this set of sequences, we can define a new pre-ordering

a ≥ b ⇔ ∀n∃m(an ≥ bm).

Our proof is based on the following three lemmas:

Lemma 3. For every complete separable normal kinematic space, if a ∈ Se,
then an → e.

Lemma 4. For every complete separable normal kinematic space, if a se-
quence a ∈ Se is <-decreasing, then it is a largest element in Se, i.e., a ≥ b
for all b ∈ Se.

Lemma 5. For every complete separable normal kinematic space, a > b
if and only if there exists a ≤-decreasing sequence {sn} with s1 = a and a
limit e ≥ b which is the largest element in the set Se.

Comment. Lemma 5 describes < in terms of ≤. Thus, ≤=≤′ indeed implies
<=<′.

Proof of Lemma 3. If a ∈ Se, then an is a ≤-decreasing sequence which
is bounded by e. Since the kinematic space is complete, this sequence has a
limit. Let us denote this limit by b.

From an ≥ e and an → b, in the limit, we get b ≥ e; see Proposition 2.
From the fact that aN ≤ an for all N ≥ n, in the limit, we get b ≤ an for all
n. Thus, e ≤ b ≤ an for all n, i.e., b belongs to all the closed intervals [e, an]
and so, b belongs to the intersection [e, e] of all these closed intervals.

The fact that b ∈ [e, e] means that b ≤ e and e ≤ b. Now, for every
element x, if x < b then from x < b and b ≤ e, we conclude that x < e. Vice
versa, if x < e, then from x < e and e ≤ b, we conclude that x < b. Thus,
x < b if and only if x < e. Similarly, for every element x, we have b < x if
and only if e < x. So, in terms of the open relation <, the elements e and b
are interchangeable. Since the limit is defined in terms of the open relation
<, the fact that an → b implies that an → e. The lemma is proven.
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Proof of Lemma 4. Let us show that if a is an <-decreasing element of
Se and b ∈ Se, then a ≥ b, i.e., that for every n, there exist an m for which
an ≥ bm. Indeed, by Lemma 3, b ∈ Se implies that bn → e. By definition of
convergence, this means that for every a− < e < a+, there exists an m0 for
which, for all m ≥ m0, we have a− < bm < a+.

By definition of a kinematic space, there exists an element a− < e. Since
an > an−1 and an−1 ≥ e, we conclude, by Proposition 2, that an > e. So,
we can take a+ = an. Then, there exists an m for which bm < a+ = an and
thus, bm ≤ an. The Lemma is proven.

Proof of Lemma 5. Let a > b. Then, similarly to the proof of Lemma
1, we can construct a <-decreasing sequence sn for which s1 = a, sn > b,
and sn → b: the only difference is that we select s1 = a instead of s1 = b+.
One can easily show that this sequence belongs to the set Sb. Indeed, if
b ≤ x ≤ sn for all n, then in the limit sn → b, we conclude that b ≤ x ≤ b,
i.e., that x ∈ [b, b]. Then, due to Lemma 4, we conclude that s is the largest
element in the set Sb.

Vice versa, let us assume that a = s1 for some sequence s which is the
largest in Se for some e ≥ b. This means that for every other sequence s′ ∈
Se, we have s ≥ s′. In particular, as s′, we can take a <-decreasing sequence
s′n for which s′n → e. For this sequence, s′n > e for all n. From s ≥ s′, we
conclude, in particular, that there exists an m for which a = s1 ≥ s′m. From
a ≥ s′m > e ≥ b, we now conclude – via Proposition 1 – that a > b.

Proposition is proven.
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