
JOGGLER: DATA HARVEST AND ANALYSIS TOOL

ONDREJ NEBESKY

Department of Computer Science

APPROVED:

Dr. Steven Roach, Ph.D., Chair

Dr. Vladik Kreinovich, Ph.D.

Dr. Craig Tweedie, Ph.D.

c©Copyright

by

Ondrej Nebesky

2011

JOGGLER: DATA HARVEST AND ANALYSIS TOOL

by

ONDREJ NEBESKY

PROJECT

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Computer Science

THE UNIVERSITY OF TEXAS AT EL PASO

May 2011

Abstract

Increase in use of stand-alone systems for recording data has made data harvesting across

several fields easier and faster. However, raw data collected from such systems need to

be manipulated and processed to enable meaningful analysis. Although data are readily

available, one major issue concerning analysts and scientists is collation of data from various

sources. Without a standard data format, scientists and analysts are required to put in

resources to bring in data from multiple sources together. The problem is aggravated when

a particular data source changes its data format.

This project introduces the Joggler framework for a collection of services and inter-

faces to enable analysts to quickly process data and bring them to other application with

minimum of coding. The Joggler framework has been demonstrated on various projects,

including weather data visualization and data visualization from the Jonarda experimental

site.

iv

Table of Contents

Page

Abstract . iv

Table of Contents . v

Chapter

1 Introduction . 1

1.1 Problem . 1

1.2 General Approach . 2

1.3 Results . 3

2 Background . 4

2.1 Yii Framework . 4

2.2 R statistical software . 5

2.3 PostgreSQL . 6

2.4 Web-services . 6

2.5 Flex . 7

3 Joggler . 8

3.1 Architecture . 8

3.2 R software integration . 10

3.3 Classes and their Responsibilities . 11

3.4 Database . 13

3.5 Security . 13

3.6 Verification . 14

3.7 Deployment . 15

4 The Joggler User Interface . 17

4.1 Menu Structure . 17

4.2 Data Upload . 19

v

4.3 Other Screens . 22

5 Conclusions . 24

5.1 Future Work . 25

References . 26

vi

Chapter 1

Introduction

1.1 Problem

The work described here is motivated by two examples. The first example concerns the use

of weather data for climate analysis. In the past few decades, several on-line services have

begun providing weather data collected in United States, including Weather Underground

(WU [1]) and National Oceanic and Atmospheric Administration (NOAA [2]). Each data

set from those servers contain data for one day, month or year for one weather station. One

issue with these data arises from the need to deal with the incompatible data formats.

The second example is a recent Cyber-ShARE [3] project for visualizing data from

the Jornada [4] experimental site, which is located in New Mexico state. Data are being

collected from various sensors placed on a tower and a moving tramline. This project needs

to display processed sensor data on a map. A Flex-based map application connects to many

web-services to load different layers, such as map images and sensor locations. There is

no simple way to publish data that is updated frequently. We want to visualize our data

on a production Flex-based website without having to write data processing code on the

client side. Processing the data might be especially difficult when statistical functions are

involved. A single web accessible data file containing already processed data works well

when there is no need to update the data.

A production site should have fast response. It cannot afford to run complex data

processing in the background or download the data from its original storage every time the

data is requested. Daily data on the NOAA server [5] for one weather station for one year is

typically 50KB (8KB compressed) in CSV (Comma Separated Values) format and 180KB

1

in XML format. When accessing data for multiple cities for several years, downloaded files

can easily reach several megabytes.

1.2 General Approach

Joggler is a collection of web-services and interfaces that provide client applications with

data storage, access, and processing capabilities. Joggler supports two types of users:

programmers who access the browser-based Joggler user interface in order to configure

web-services used in their applications, and end users who access data provided by Joggler

to the client application.

The output specification for the web-services (see section 2.4) is configured by the

programmer. For example, we want to produce a graph of precipitation and spatial data

created by the R software 3rd party library and publish it a via web-service. The R code,

database query and other scripts should be fully configurable through the web interface

without modifying Joggler code. This approach allows us to create many different web

services fitting exactly to consumer application needs.

Figure 1.1: Joggler Framework with example clients

2

1.3 Results

Applications of this software providing proof of concept include the Jornada GIS software

and a climate data Flex application. Joggler generates, for example, climate graphs using

R and enables users to run SQL queries on up-to-date data. A prototype Flex application

is gathering climate data through Joggler and displaying it on a map. However, the tool

has even greater value for the Jornada site, which is currently being developed. Database

caching is being used to upload processed data into a database, which is automatically

published via a web-service to a Geographic Information System (GIS) Flex application

and rendered into a graph. The tool is installed for Cyber-ShARE groups.

3

Chapter 2

Background

This chapter is a short introduction to technologies and software products used in Jog-

gler. These include the Yii framework [7], the R statistical software package [11], the

PostgresSQL database [12], web services [14], and Flex [13].

2.1 Yii Framework

Joggler is a PHP-based [6] application running on an Apache server using Yii Framework [7].

Yii Framework is an easily extendible, object-based framework that comes with components

for both data manipulation and user interfaces. The framework is light and fast compared

to well-known Zend [8] or Cake [9] frameworks. Yii Framework uses a clean MVC (Model

View Controller) architecture. All the models are inherited from the built-in ActiveRecord

class, which enables developers to load and store objects to the database without using

SQL language and defining relations through database foreign keys.

Controllers take input from URL and POST requests and run actions. Each action

renders one or more views.

Yii Framework extensions are stored in an extensions directory along with shared classes

used in the rest of the application (app components in Figure 2.1). The folder includes

for example a WYSIWYG editor, Javascript jQuery libraries, menu components, form

components and shared classes used for debugging, authentication, and unit conversion.

4

Figure 2.1: Yii Framework Architecture

2.2 R statistical software

R is powerful statistical software used for data processing and plotting. An external binary

file is called when data is ready. R runs a user-specified script and may return a graph in

PNG format or text output. R is extendible by many packages and can create complex

graphs using minimum code.

Here is an example R code rendering a graph displayed in Figure 2.2 from Jornada

NDVI tramline data:

png()

ndvi<-read.table("[data]", header=T, sep=",")

plot(ndvi$X_1, type="l", col="blue", xlab="Date", ylab="NDVI", ylim=c(0,0.5))

lines(ndvi$X_55, type="l", col="red")

lines(ndvi$X_110, type="l", col="green")

legend("topright", inset=.05, col=c("blue", "red", "green"),

title="Tram Position (m)", c("1", "55", "110"), fill=c("blue", "red", "green"))

5

Figure 2.2: R graph example

2.3 PostgreSQL

PostgreSQL database is used to store Joggler application data structures and also recom-

mended as a cache for data. Tables storing data from NOAA and Weather Underground

can be purged, since it can be downloaded again in any moment.

2.4 Web-services

A web-service is a method of communication between two applications over a network. It

uses the HTTP protocol to exchange XML messages. The Simple Object Access Protocol

(SOAP) is a widely used web-service protocol, and the SOAP library is available in many

programming languages. The SOAP library provides an abstract layer for programmer,

so there is no need to deal with underlying XML messages. Joggler is using SOAP to get

input from the client application and return processed data.

6

2.5 Flex

Flex an open source framework for building client side application, which communicates

over network in order to load the data. Flex uses Adobe Flash technology to build rich

user interface.

Figure 2.3: Flex user interface example

7

Chapter 3

Joggler

The Spring 2010 Software Engineering class at UTEP focused on tools used for climate data

harvesting, gap filling, processing by statistical software and publishing via web services.

Most of these projects resulted in prototypes with limited functionality, but all the teams

produced detailed software requirement documents that were used as a starting point. The

Joggler requirements changed during the development process, and many new requirements

came with the Jornada project.

In general, the system should be able to automatically gather data, store them into

database and publish via web-service using user defined SQL queries and scripts.

Main features:

• Provides easy access to near real-time climate data;

• uses a database as a cache;

• incorporates R statistical software;

• produces web services to pass the data to other applications;

• provides storage of processed data.

3.1 Architecture

Joggler uses components connected to chains to process and collect data. The data flow

between Joggler components is displayed in Figure 3.1. New components are inherited from

existing ones and can be easily plugged into Joggler.

8

Figure 3.1:
Component architectural diagram - the arrows indicates flow of data
between Joggler components and external entities.

When a programmer creates a web-service, one or more Joggler components are used.

Components pass input and data between each other and together make a chain. The chain

is a final product and can be called through a web-service. Any component inside the chain

can also be called from a web-service to display temporary data in the final visualization.

A chain is also used as a data source for another chain. For example, there might be

two chains collecting data from two servers passing data to another one, which is used to

process it.

9

Figure 3.2:
Flex vs. R graphs look and feel - The graphs produced in R (on the
right) represents visualization of regression analysis of NDVI and Green
Index from meter 3 from tramline at Jornada experimental site. The
graph on left produced in Flex is visualizing used data.

3.2 R software integration

R statistical software is used inside a chain for additional data processing. Complex graphs

and text output produced by R can be displayed in the client application. Programmers just

need to provide R code. However, there are some limitations, which should be considered.

First, a graph produced by R is a simple image and does not allow any interactivity. For

example, the user can see exact values on a graph produced in Flex by hovering a mouse

over a point. On the other hand, Flex interface does not support complex graphs with

trend lines. Comparison of graphs produced by Flex and R are displayed in Figure 3.2.

Second, the text output coming from R is formatted to be human readable, which makes

it difficult to use in other applications. A parser is required to get values from the formatted

text.

10

3.3 Classes and their Responsibilities

This section describes main classes used to build data collecting and processing chains.

These classes implement the interface to the Model View Controller (MVC) architecture.

Figure 3.3:
Chain Structure class diagram - objects inside one data processing chain
and their connections. Chain is the basic block of whole application.
A component can use another chain as a data source.

DComponent

The DComponent is a super-class for all the Joggler components. The purpose of this class

is to provide an interface to store parameters, define default values, create related objects

such as interface and interface items, make connections to other components, and define

11

user interface forms used to configure components.

DInterface + DInterfaceItem

The DInterface class is used to manage a collection of DInterfaceItems. DInterfaceItem is

an input parameter that can be set by a web-service request or a test form. These input

parameters are used as placeholders in scripts (SQL, R, PHP) or hard-coded into com-

ponents. For example, start date input parameter is used almost in every chain to filter

data loaded from the database. Example SQL query: SELECT * FROM table WHERE

measurement date > [start date].

Interfaces are linked to each other similarly as components. The reason is that input

an value has to be passed to each component in the chain, and different components can

use different names for the same parameter. If parameter name is the same, the interface

passes the parameter automatically. However, the user can always define custom interface

mapping between components.

Chain

The Chain class is a component container. One component belongs to one chain only. A

set of components behave like one object and makes it easier to label its functionality and

configure in the user interface.

ChainLink

Responsibility of this class is to connect chains together through components inside. Con-

nected chains behavior is similar to single chain. Links allows users to reuse existing chains

without copying components inside. For example, a user can attach Weather Underground

data-source chain as well as NOAA data-source chain inside one component to make sure

that data from both sources will be in database before a final SQL query is executed.

12

3.4 Database

Joggler uses multiple databases. The primary reason is that we want to use the tool on

existing independent databases and data management systems. Joggler stores models to

its own database. This setup also allows easier backups. Application tables have only a

few kilobytes, compared to data tables, which can take much more. In addition, we can

access data from various databases, such as PostgreSQL, MySQL, MSSQL and many more

changing only one configuration parameter.

Separating data from the application structure also improves security. The users can

run their own queries only on the data storage database without having any access to the

application database. The user account can have read-only access permission guaranteeing

that source data cannot be modified and in the same time have ability to create new web

services inside Joggler.

However, the tool can be also used for direct data upload into database, which requires

higher permissions. Tables in the data storage database are created on the fly. The user

can upload Comma Separated Values (CSV) file and system consequently creates database

table in this schema.

Access to the database can be a performance bottleneck. When data is not found in the

database, it is downloaded from its source, inserted to database, and loaded again. Storing

one record at the time might cause big delays. SQL is text oriented protocol and sends

a lot of redundant data, especially when we need to store a high number of records. The

solution, in this case, is a buffer, which commits 100 records in one single query.

3.5 Security

All web-services provided by Joggler are public accessible without any authentication. Au-

thentication is used only before Joggler object is modified.

We want to make sure that parameters passed to the web-service will not expose any

13

additional data from the server. In general, the attacker can use SQL injection vulnerability

by putting SQL code inside an input parameter, which modifies original SQL query and

as a result returns different data or modifies the database. Joggler is executing not only

SQL queries, but also custom R and PHP code, which provides more opportunities for code

injection. The attacker can potentially get control of the server.

Input values coming from the user through the client application have to be sanitized to

make sure any of the used technologies cannot be attacked. The first security mechanism is

validateInput() function inside the DInterface class. The function check for the data type

first. Numbers and date types cannot contain any harmful characters, but string and text

types need to be sanitized. We have to consider that the value might appear inside R and

PHP code, from which system functions can be executed. Potentially harmful characters

like brackets, variable and control characters are removed in this step. Second, special

characters inside the input value are escaped by backslashes. Most of the SQL queries are

executed through PDO extension, which sanitize input again.

Protection against an authenticated user is more difficult. Components execute cus-

tomized R, PHP and SQL code allowing the user to access most of the files and programs

on the server. This is a reason why Joggler should run on a dedicated server.

3.6 Verification

Unit tests are based on PHPUnit [10], which is standard for unit testing in PHP projects.

Test driven development was used for some parts of the application. For example, database

cache component keeps track of stored date intervals in separate table. These intervals

cannot overlap each other, so application has to extend or merge them. There are many

cases, it is not feasible to run manual testing.

The other tests are verifying basic functions, such as conversions, data type guessing,

component creation process (since it is composed from several objects in database) and

NOAA data source access.

14

Unit test unfortunately cannot run controller actions and are limited for white box

testing only. They are still useful, but also functional tests should be included for more

complete verification.

3.7 Deployment

Joggler runs on Apache server with PHP5 support. There is no operating system require-

ment. PostgreSQL database used for application should be at least version 8.1 and can be

local or remote. Data storage database is separated and can be any supported database by

PHP Data Object (PDO) extension. R software needs to be installed on server and should

be accessible for user account running the Apache server. The reason is that R scripts might

need to install additional libraries. More information about deployment is available in docu-

mentation for developers (http://irpsrvgis47.utep.edu/documentation-developers.

pdf/). Development version is installed on http://irpsrvgis47.utep.edu/.

15

http://irpsrvgis47.utep.edu/documentation-developers.pdf/
http://irpsrvgis47.utep.edu/documentation-developers.pdf/
http://irpsrvgis47.utep.edu/

Figure 3.4: Database Schema - Application namespace

16

Chapter 4

The Joggler User Interface

This section walks through Joggler user interface. The section also include several screens

from the application and a procedure showing how to turn excel sheet into web-service.

Figure 4.1: User interface - main menu

4.1 Menu Structure

The following list shows complete menu structure from Figure 4.

• Chain

– list – view all the chains (web service accessible data)

– view – view components inside the chain and connections to the other chains

– update – add additional tags; tags are displayed in the main menu

17

• Component

– attributes – manage input attributes coming into the component. Attributes

are linked between each other and have data type, which is important for web

services

– configure – configuration of the component, which is not updated on runtime.

For example, SQL and R code, as well as URL to data source is stored here.

– test – run the component on provided input. Output is rendered into HTML

table

• Data Upload

– list – view all user uploaded tables

– create – create new table based on structure of uploaded CSV file

– upload – add data to exisiting table

– view data – display uploaded data for one table

– view table – display the table structure and all data uploads into this table

• Users

– create – Create new user. Email is used as an user name, password is automat-

ically generated

– profile – View profile of current user and change password screen

• Help

– create article – Add new article to help structure. Articles are stored into cat-

egories based on tags. The section contains articles related to web services, R

and SQL.

– list – view all articles or filter them by category. The list is also accessible from

component configuration.

18

4.2 Data Upload

This feature allows users to upload processed data into database and publish them im-

mediately through a web-service. First Upload of file creates new database table and

consequential uploads of updated data are only adding records to this table.

The data is loaded from the database on backend when the client application request

them. It can be also downloaded in CSV format from front-end.

Figure 4.2: View uploaded data and tables

Figure 4.3: Select data file and target

19

Figure 4.4:
Select source name, database table name and mapping between file
and database. Primary key for the new table should be a measurement
date from the source file. Primary key will ensure that the same data
uploaded multiple times are stored only once.

20

Figure 4.5:
New chain will have database query component inside. The default
query will load all the data from the table, so we should add WHERE
clause and specify input parameters in the next step. Web-service will
return the same output as this query.

21

4.3 Other Screens

Figure 4.6:
Test interface for database query component. SQL query is using place-
holders, which are replaced by input value when the query is executed.

22

Figure 4.7:
The R code is stored in component configuration. Input values, as well
as data produced by other components in a chain, are available inside
the code.

23

Chapter 5

Conclusions

The main contribution of Joggler is its capability to make data from variety of sources

available thorough web-services. Data might be in the form of flat files, Excel spreadsheets

or various databases, and it can be made available to visualisation applications in a matter

of minutes.

With Joggler, the application developer configures data processing components to create

customized output for web services. Joggler offers components with an extendible data

collecting interface for retrieving data from various sources which may be cached in a

database or pushed directly into web services.

Joggler has been demonstrated on two projects at UTEP. The most important is the

visualization of data collected at the Jornada experimental site. At the Jornada, there are

many sensors placed on a tower and a tramline. The data from all the sensors will be

eventually stored into centralized database and visualized in GIS Flex-based application.

The data will be rendered into various graphs, which might need to be rendered by R

software.

The second Joggler application is for the collection of climate data for the Systems

Ecology Laboratory at UTEP. Joggler is able to collect and process climate data from two

servers and offers an interface to easily incorporate another data sources. Joggler was used

to incorporated weather data into a Flex mapping application providing historical temper-

ature data in the USA. The Flex application displays weather stations and temperatures

on a map for a given day. This prototype shows that Joggler can be easily connected with

the client applications. Incorporating R in a web-service processing chain opens new doors

for using spatial data visualization on a map. Historical and current weather will be useful

24

for students and scientists working on climate research.

5.1 Future Work

The tool might be very useful for automatic data harvesting from various sensors at the

Jornada experimental site. The project is still in development and has a simple prototype

front end available. Central data management is not ready yet.

Some of the datasets coming from the Jornada site are created by Matlab software,

which can be also included in processing chain. This Matlab component, in combination

with live data collecting from a server, would allow full automation of data processing and

near-real-time visualization in Flex based GIS application.

Another useful extension would be support for an OPEnDAP server to create easy

integration with many scientific tools. The OPEnDAP protocol makes scientific data ac-

cessible in many applications and visualization packages. A PHP OPEnDAP extension

already exists, so we just need to implement it.

Grid interpolation of geo-spatial data might be useful to produce temperature and

anomaly maps from the collected climate data. There are many R visualization packages

operating on gridded data.

25

References

[1] “Weather Underground.” Internet: http://www.wunderground.com/, [May 5, 2011]

[2] “National Oceanic and Atmospheric Administration.”

Internet: http://www.noaa.gov/, [May 5, 2011]

[3] “Cyber-ShARE.” Internet: http://cybershare.utep.edu/, [May 1, 2011]

[4] “Jornada Research Site.”

Internet: http://en.wikipedia.org/wiki/Jornada_Basin_LTER, [May 3, 2011]

[5] “NOAA historical weather data archive.”

Internet: ftp://ftp.ncdc.noaa.gov/pub/data/gsod/, [May 1, 2011]

[6] “PHP.” Internet: http://php.net, [May 5, 2011]

[7] “Yii Framework.” Internet: http://www.yiiframework.com/, [May 5, 2011]

[8] “Zend Framework.” Internet: http://framework.zend.com/, [May 5, 2011]

[9] “CakePHP.” Internet: http://cakephp.org/, [May 5, 2011]

[10] “PHPUnit.” Internet:

https://github.com/sebastianbergmann/phpunit/, [May 5, 2011]

[11] “The R Project for Statistical Computing.” Internet: http://www.r-project.org/,

[May 5, 2011]

[12] “PostgreSQL: The world’s most advanced open source database.” Internet:

http://www.postgresql.org/, [May 5, 2011]

[13] “Flex: Open source framework, web application software development.” Internet:

http://www.adobe.com/products/flex/, [May 4, 2011]

26

http://www.wunderground.com/
http://www.noaa.gov/
http://cybershare.utep.edu/
http://en.wikipedia.org/wiki/Jornada_Basin_LTER
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
http://php.net
http://www.yiiframework.com/
http://framework.zend.com/
http://cakephp.org/
https://github.com/sebastianbergmann/phpunit/
http://www.r-project.org/
http://www.postgresql.org/
http://www.adobe.com/products/flex/

[14] “SOAP Tutorial.” Internet:

http://www.w3schools.com/soap/default.asp, [May 5, 2011]

[15] José A. Guijarro. “Package climatol” R packages. [On-line].

Internet: http://cran.r-project.org/web/packages/climatol/climatol.pdf,

Jan. 27 2011 [Mar. 20, 2011]

27

http://www.w3schools.com/soap/default.asp
 http://cran.r-project.org/web/packages/climatol/climatol.pdf

	Abstract
	Table of Contents
	Introduction
	Problem
	General Approach
	Results

	Background
	Yii Framework
	R statistical software
	PostgreSQL
	Web-services
	Flex

	Joggler
	Architecture
	R software integration
	Classes and their Responsibilities
	Database
	Security
	Verification
	Deployment

	The Joggler User Interface
	Menu Structure
	Data Upload
	Other Screens

	Conclusions
	Future Work

	References

