Towards Optimal Knowledge Processing: From
Centralization Through Cyberinsfrastructure To
Cloud Computing

Octavio Lermal!, Eric Gutierrez?,

Chris Kiekintveld?, and Vladik Kreinovich®?

!Computational Sciences Program
2Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
lolerma@episd.org, ejgutierrezQminers.utep.edu,
cdkiekintveld@Qutep.edu, vladik@utep.edu

Abstract
One of the most efficient way to store and process data is cloud comput-
ing, when we store the data so as to minimize the expenses and increase
the efficiency. In this paper, we provide an analytical solution to the
corresponding optimization problem.

1 Cloud Computing: Why We Need It and How
Can We Make It Most Efficient

Why cloud computing. In many application areas (bioinformatics, geo-
sciences, etc.) we need to process large amounts of data, which requires fast
computers and fast communication. Historically, there have been limits on the
amount of the information that can be transmitted at a high speed, and these
limits affected information processing.

A few decades ago, we could only send the results of data processing fast. As
a result, the best strategy to speed up computations was to move all the data
into a central location, close to the high performance computers for processing
this data.

In the last decades, it became equally fast to move big portions of databases
needed to answer a certain query. This enabled the users to switch to a cyberin-
frastructure paradigm, when there is no longer need for time-consuming moving
of data to a central location: the data is stored where it was generated, and

when needed, the corresponding data is moved to processing computers; see,
e.g., [2, 3, 6, 7, 8] and references therein.

Nowadays, moving the whole databases becomes almost as fast, so there is
no longer need to store the data where it was produced — it is possible to store
the data where it will be best for future data processing. This idea underlies
the paradigm of cloud computing.

What is the most efficient way of cloud computing. The main advantage
of cloud computing is that we can make computations more efficient by finding
optimal placement of the servers that store and/or process the corresponding
data. So, in developing cloud computing schemes, it is important to be able to
solve this optimization problem. In this paper, we consider the corresponding
problem of optimal data storage in cloud computing.

Comment. This server placement problem is very similar to the type of prob-
lems faced by Akamai and other companies that do web acceleration via caching;
we therefore hope that our solution can be of help in web acceleration as well.

2 Towards a Precise Formulation of the Prob-
lem: First Approximation

What we want and what we need. We usually know the geographic den-
sity p.(z) describing possible users of this particular database (e.g., a database
containing geophysical data), and we know the number of duplicates D that we
can afford to store. We need to determine the storage density ps(z), i.e., number
of copies per geographic region, so as to minimize the average communication
delay.

First approximation model: main assumption. In the first approxima-
tion, we can measure the travel delay by the average travel distance.

Derivation of the corresponding model. How can we describe this dis-
tance in terms of the density ps(z)? When the density is constant, we want
to place the servers in such a way that the largest distance r to a sensor is as
small as possible. (Alternatively, if r is fixed, we want to minimize the number
of servers for which every point is at a distance < r from one of the servers. In
geometric terms, this means that every point on a plane belongs to a circle of
radius r centered on one the sensors — and thus, the whole plane is covered by
such circles. Out of all such coverings, we want to find the covering with the
smallest possible number of sensors.

It is known that the smallest such number is provided by an equilateral
triangle grid, i.e., a grid formed by equilateral triangles; see, e.g., [4, 5].

Let us assume that we have already selected the server density function
ps(x). Within a small region of area A, we have A - pg(x) servers. Thus, if we,

e.g., place these servers on a grid with distance h between the two neighboring
ones in each direction, we have:

ﬁ

For this placement, the set of all the points which are closest to a given
detector forms a hexagonal area:

WSAVA

This hexagonal area consists of 6 equilateral triangles with height h/2:

In each triangle, the height h/2 is related to the size s by the formula

h 3
5= s cos(60°) = s - g,
hence

S = — =

V3
Thus, the area A; of each triangle is equal to
L b1 V31, V3
3

Azf- - —_ = — f
LT 99 Ty D 12

h V3
h-~=.
3

-k
So, the area Ay of the whole set is equal to 6 times the triangle area:

A5:6~At:§-h2.

Each point from the region is the closest to one of the points from the server
grid, so the region of area A is thus divided into A - ps(z) (practically) disjoint

3
sets of area g - h2. So, the area of the region is equal to the sum of the areas

Dividing both sides of this equality by A, we conclude that

of these sets:
- hZ.

1= p, h?,
ps(@) - =
and hence, that
€o
h = ,
Ps (x)
where we denote
def 2
Co = —

The average distance p is proportional to r — since when we re-scale the pic-
ture, all the distances —including the average distance — increase proportionally.
Since the distance 7 is proportional to (p,(z)) /2, the average distance near the
location z is thus also proportional to this same value: p(x) = const-(p,(x))~ /2
for some constant.

S

At each location x, we have ~ p,(z) users. Thus, the total average distance
— the value that we would like to minimize — is equal to [p(x) - p, () dz and is,
thus, proportional to

ot (o) o

So, minimizing the average distance is equivalent to minimizing the value of the
above integral.

We want to find the server placement p,(z) that minimizes this integral under
the constraint that the total number of server is D, i.e., that [ps(z) = D.

Resulting constraint optimization problem. Thus, we arrive at the fol-
lowing optimization problem:

e We know the density p,(x) and an integer D;

e under all possible functions ps(x) for which [ps(x)dz = D, we must find
a function that minimizes the integral [(ps(z))~™Y/2 - p,(z)dx.

3 Towards Optimal Server Placement in Cloud
Computing: First Approximation

Solving the constraint optimization problem. A standard way to solve
a constraint optimization problem of optimizing a function f(X) under the
constraint g(X) = 0 is to use the Lagrange multiplier method, i.e., to apply
unconstrained optimization to an auxiliary function f(X)+ A- g(X), where the
parameter A (called Lagrange multiplier) is selected in such a way so as to satisfy
the constraint g(X) = 0.

With respect to our constraint optimization problem, this means that we
need to select a density ps(x) that optimizes the following auxiliary expression:

Jwan2 putrao - ([pwras -).

Having an unknown function ps(z) means, in effect, that we have infinitely
many unknown values p(z) corresponding to different locations . Optimum
is attained when the derivative with respect to each variable is equal to 0.
Differentiating the above expression with respect to each variable pg(x), and
equating the result to 0, we get the equation

@) pue) + A =0,

2
hence ps(x) = ¢ - (pu(z))?/? for some constant c.
The constant ¢ can be determined from the constraint [ps(z)dx = D, i.e.,
that

[e tou@)do=c- [(pu(@)**dz =D,

Thus,
D

J(pul(@))?/® dz”

and we arrive at the following solution.

C =

Solution to the problem. Once we know the user density p,(z) and the
total number of servers D that we can afford, the optimal server density ps(x)

is equal to
(pu(@))*®

po(a) = D L)
’ J(pu(y))?/3 dy

Discussion. In line with common sense, the optimal server density increases
when the user density increases, i.e.:

e in locations where there are more users, we place more servers, and
e in locations where there are fewer users, we place fewer servers.

However, when the user density decreases, the server density decreases slower —
because otherwise, if we took the server density simply proportional to the user
density, the delays in areas with few users would have been huge.

Comment. From the mathematical viewpoint, this analysis is similar to the
analysis of a security-related optimization problem, in which, instead of placing
servers, we need to place sensors; see [5].

4 Towards A More Realistic Model

First idea. In the above first approximation, we only took into account the
time that it takes to move the data to the user. This would be all if the database
was not changing. In real life, databases need to be periodically updated. Up-
dating also takes time. Thus, when we find the optimal placement of servers,
we need to take into account not only expenses on moving the data to the users,
but also the expenses of updating the information.

Towards a precise formulation of this idea. How do we estimate these
expenses? In a small area, where the user distribution is approximately uniform,
the servers are also uniformly distributed, i.e., they form a grid with distance
h = 2r between the two neighboring servers [4, 5]. Within a unit area, there
are ~ 1/r% servers, and reaching each of them from one of its neighbors requires
time proportional to the distance ~ r. The overall effort of updating all the
servers can be obtained by multiplying the number of servers by an effort needed
to update each server, and is thus proportional to 1/r%-r ~ 1/r. We already
know that r ~ (ps(x))~%/2, thus, the cost of updating all the servers in the
vicinity of a location x is proportional to (ps(z))'/2. The overall update cost

can thus be obtained by integrating this value over the whole area. Thus, we
arrive at the following problem.

Resulting optimization problem:

e We know the density p,(x), an integer D, and a constant C' that is deter-
mined by the relative frequency of updates in comparison with frequency
of normal use of the database;

e under all possible functions ps(x) for which [ps(x)dz = D, we must find
a function that minimizes the expression

/(Ps(r))*l/”pu(x)dﬁfc. (ps())"/? da.

Solving the problem. To solve the new optimization problem, we can simi-
larly form the Lagrange multiplier expression

Juta) 7 purdo+ [€ (o)) 2o+ 2 ([petayda - D) 7

differentiate it with respect to each unknown p,(z), and equate the resulting
derivative to 0. As a result, we get an equation

5 (0a@) 2 pula) 4 5O (pufa)) 2+ A =0
This is a cubic equation in terms of (ps(z))~/2, so while it is easy to solve
numerically, there is no simple analytical expression as in the first approximation
case.

The resulting solution ps(z) depends on the choice of the Lagrange multiplier
A, i.e., in effect, we have ps(z) = ps(z, A). The value A can be determined from
the condition that [ps(z,\)dz = D.

Second idea. The second idea is that usually, a service provides a time guar-
antee, so we should require that no matter where a user is located, the time for
this user to get the desired information from the database should not exceed a
certain value. In our model, this means that a distance r from the user to the
nearest server should not exceed a certain given value rq. Since r ~ (p,(z)) /2,
this means, in turn, that the server density should not decrease below a certain
threshold pg.

This is an additional constraint that we impose on ps(z). In the first ap-
proximation model, it means that instead of the formula p,(z) = ¢ - (p,(x))?/3
— which could potentially lead to server densities below py — we should have
pu(@) = max(c- (pu (@))%, po).

The parameter ¢ can be determined from the constraint

[peta)dn = [maxte: (pu(a))**) dz = D.

Since the integral is an increasing function of ¢, we can easily find the solution
¢ of this equation by bisection (see, e.g., [1]).

Combining both ideas. If we take both ideas into account, then we need to
consider only those roots of the above cubic equation which are larger than or
equal to pg; if all the roots are < pg, we take ps(z) = p.

The resulting solution ps(x) depends on the choice of the Lagrange multiplier
A, L.e., in effect, we have ps(x) = ps(z,A). The corresponding value A can also
be similarly determined from the equation [ps(z,\)dx = D.

Acknowledgments

This work was supported in part by the National Center for Border Security
and Immigration, by the National Science Foundation grants HRD-0734825 and
DUE-0926721, and by Grant 1 T36 GM078000-01 from the National Institutes
of Health.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[2] A. Gates, V. Kreinovich, L. Longpré, P. Pinheiro da Silva, and G. R. Keller,
“Towards secure cyberinfrastructure for sharing border information”, In:
Proceedings of the Lineae Terrarum: International Border Conference, El
Paso, Las Cruces, and Cd. Juarez, March 27-30, 2006.

[3] G. R. Keller, T. G. Hildenbrand, R. Kucks, M. Webring, A. Briesacher,
K. Rujawitz, A. M. Hittleman, D. J. Roman, D. Winester, R. Aldouri, J.
Seeley, J. Rasillo, T. Torres, W. J. Hinze, A. Gates, V. Kreinovich, and
L. Salayandia, “A community effort to construct a gravity database for
the United States and an associated Web portal”, In: A. K. Sinha (ed),
Geoinformatics: Data to Knowledge, Geological Society of America Publ.,
Boulder, Colorado, 2006, pp. 21-34.

[4] R. Kershner, “The number of circles covering a set”, American Journal of
Mathematics, 1939, Vol. 61, No. 3, pp. 665-671.

[5] C. Kiekintveld and O. Lerma, “Towards optimal placement of bio-weapon
detectors”, Proceedings of the 30th Annual Conference of the North Amer-
ican Fuzzy Information Processing Society NAFIPS’2011, El Paso, Texas,
March 18-20, 2011.

[6] L. Longpré and V. Kreinovich, “How to Efficiently Process Uncertainty
within a Cyberinfrastructure without Sacrificing Privacy and Confidential-
ity”, In: N. Nedjah, A. Abraham, and L. de Macedo Mourelle (Eds.), Com-
putational Intelligence in Information Assurance and Security, Springer-

Verlag, 2007, pp. 155-173.

[7] P. Pinheiro da Silva, A, Velasco, M. Ceberio, C. Servin, M. G. Averill,

N. Del Rio, L. Longpré, and V. Kreinovich, “Propagation and Provenance
of Probabilistic and Interval Uncertainty in Cyberinfrastructure-Related
Data Processing and Data Fusion”, In: R. L. Muhanna and R. L. Mullen
(eds.), Proceedings of the International Workshop on Reliable Engineering
Computing REC’08, Savannah, Georgia, February 20-22, 2008, pp. 199-
234.

A. K. Sinha (ed), Geoinformatics: Data to Knowledge, Geological Society
of America Publ., Boulder, Colorado, 2006.

