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Abstract In this paper, we describe how checking whether a given property F is
true for a product A1 ×A2 of partially ordered spaces can be reduced to checking
several related properties of the original spaces Ai.

This result can be useful in the analysis of properties of intervals [a, b]
def
=

{x : a ≤ x ≤ b} over general partially ordered spaces – such as the space of all
vectors with component-wise order or the set of all functions with component-wise
ordering f ≤ g ⇔ ∀x (f(x) ≤ g(x)). When we consider sets of pairs of such objects
A1 × A2, it is natural to define the order on this set in terms of orders in A1 and
A2 – this is, e.g., how ordering and intervals are defined on the set IR2 of all 2-D
vectors.

This result can also be useful in the analysis of ordered spaces describing
different degrees of certainty in expert knowledge.
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1 Formulation of the Main Problem

Interval uncertainty for numbers, vectors, functions, etc. In many practical
situations, we do not know the exact value x of a physical quantity, we only know
the lower bound x and the upper bound x. In this case, the only information that
we have about the unknown value x is that x belongs to the interval {x : x ≤ x ≤ x}.

For example, if we have a measurement result x̃ and an upper bound ∆ on the

measurement error ∆x
def
= x̃− x, then we can conclude that the actual (unknown)

value x belongs to the interval [x, x] = [x̃−∆, x̃+∆]; see, e.g., [3,11,17].

If we are interested in the values of two different quantities x1 and x2, then,
to describe the actual values of these two quantities, we need a tuple x = (x1, x2).
In practice, we usually do not know the exact value of x. Instead, we have a tuple
x = (x1, x2) which is a “lower bound” for the actual tuple x and a tuple x =
(x1, x2) which is a “upper bound” for the actual tuple x. This informal description
of bounds can be formalized if we introduce a natural component-wise ordering
relation between tuples:

(x1, x2) ≤ (x′1, x
′
2) ⇔ ((x1 ≤ x′1)& (x2 ≤ x′2)).

In terms of this ordering, the set of all possible tuples x can also be described as
an interval {x : x ≤ x ≤ x}.

In this case, we started with the ordering relations of two different sets – the
set X1 of possible values of x1 and the set X2 of possible values of x2 – and we
defined the corresponding ordering relation on the set X1×X2 of all possible pairs
(x1, x2). In the above case, X1 and X2 were sets of real numbers with usual linear
order, but a same construction can be useful in more complex cases as well.

For example, when both x1 and x2 are vectors, the ordering relation on each
set Xi is a partial order, so we need to analyze the product of partial orders.

When we are interested in the function f(x) – e.g., the function that describes
the dependence of one physical quantity on another one – we rarely know the
exact function, we usually know some lower and upper bounds f(x) and f(x). If
we consider a pair of functions, or a pair consisting of a function and a number,
then we need to define an appropriate ordering relation on the set of all possible
pairs.

In the above examples, we had a component-wise order, but in principle, we
could have a more complex ordering relation on the product set X1 ×X2.

Need to analyze properties of products of partially ordered spaces. The
above examples show that we need to consider ordering relations on the product
X1×X2 of two partially ordered sets. It is therefore desirable to analyze when this
new ordering relation satisfies certain property: e.g., when it is linearly ordered,
when it is a lattice, etc.

What we do in this paper. In this paper, we provide a general algorithm that
reduces the question whether a certain property is satisfied for a product to several
properties of component spaces.
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2 Other Situations in Which Similar Problems Emerge

Fuzzy modeling and fuzzy techniques: an area of AI where interval methods

help. Interval techniques originated from situations in which the interval uncer-
tainty comes from the bounds on measurement errors. However, the same tech-
niques are useful in more general situations. For example, it is known that interval
techniques can be very helpful in analyzing expert information, in so-called fuzzy

logic (see, e.g., [4,15]). In this technique, to describe informal expert statements
like “x is small”, we assign, to each value x, a number µ(x) from the interval [0, 1]
that describes the expert’s confidence that this particular value x is small.

From the computational viewpoint, it is often convenient to describe the cor-
responding function µ(x) (called membership function) by the sets

x(α) = {x : µ(x) ≥ α}

called α-cuts. When we increase α, the α-cut decreases: if α < α′, then x(α) ⊇ x(α′).
Thus, in this representation, expert knowledge is described by “nested” sets x(α)
each of which is the set of all the values which are, according to the expert, possible
with the degree ≥ α. In many cases, e.g., for terms like “medium”, “approximately
0.3”, the expert’s degree of confidence first grows with x then decreases; in such
situations, each α-cut is an interval.

Operations with expert knowledge can be naturally reformulated in terms of
the α-cuts. In particular, we have a problem similar to interval computations:
we have expert knowledge about the quantities x1, . . . , xn, we know the relation
y = f(x1, . . . , xn) between xi and y, and we want to make conclusions about y.
In this case, a usual fuzzy way of finding the membership function for y can be
equivalently described in terms of α-cuts as

y(α) = f(x1(α), . . . ,xn(α))
def
= {f(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.

Thus, processing fuzzy data can be reduced (and is often reduced) to processing
interval data – i.e., to solving interval computation problems corresponding to
several possible values of α; see, e.g., [2,4,12,13,15].

Since the value α describes the expert’s degree of confidence, it is not known
with any high accuracy: e.g., hardly anyone can say that his or her degree of
confidence is some statement is 0.71 but not 0.72. So, it is sufficient to take only
values α = 0, 0.1, . . . , 0.9, 1.0.

Degrees of certainty: from [0, 1] to general partially ordered sets. Tradi-
tionally, fuzzy logic uses values from the interval [0, 1] to describe uncertainty. In
this interval, the order is total (linear) in the sense that for every two elements
a, a′ ∈ [0, 1], either a ≤ a′ or a′ ≤ a. Often, partial orders provide a more adequate
description of the expert’s degree of confidence. For example, since an expert can-
not describe her degree of certainty by an exact number, it makes sense to describe
this degree by an interval [d, d] of possible numbers (see, e.g., [9,14]) – and inter-
vals are only partially ordered; e.g., the intervals [0.5, 0.5] and [0, 1] are not easy
to compare.

More complex sets of possible degrees are also sometimes useful. Not to miss
any new options, in this paper, we consider general partially ordered spaces.
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Need for product operations. Often, two (or more) experts evaluate a statement
S. Then, our certainty in S is described by a pair (a1, a2), where ai ∈ Ai is the
i-th expert’s degree of certainty. To compare such pairs, we must therefore define
a partial order on the set A1 ×A2 of all such pairs.

First example of a product operation: Cartesian product. One example of a
partial order on A1 ×A2 is a Cartesian product:

(a1, a2) ≤ (a′1, a
′
2) ⇔ ((a1 ≤ a′1)& (a2 ≤ a′2)).

Logical meaning of Cartesian product. This product corresponds to a cautious

approach, when our confidence in S′ is higher than in S if and only if it is higher
for both experts.

Second example of a product operation: lexicographic product. Another ex-
ample is a lexicographic product:

(a1, a2) ≤ (a′1, a
′
2) ⇔ ((a1 ≤ a′1)& a1 ̸= a′1) ∨ ((a1 = a′1)& (a2 ≤ a′2))).

Logical meaning of lexicographic product. This product corresponds to the
case when we have the absolute confidence in the first expert; then, we only use
the opinion of the second expert when, to the first expert, the degrees of certainty
are indistinguishable.

We can have other product operations in which the relation between the pairs
(a1, a2) and (a′1, a

′
2) is defined in terms of the relations between the elements

a1, a
′
1 ∈ A1 and between the elements a2, a

′
2 ∈ A2.

A natural question. Once a product is defined, it is reasonable to ask when
the resulting partially ordered set A1 × A2 it satisfies a certain property: is it
a total order? is it a lattice order? etc. It is desirable to have some criteria that
would transform the question about the product space into questions about related
properties of component spaces.

Some such criteria are known (see, e.g., [19,20] and references therein). For
example:

– A Cartesian product is a total order if and only if one of the components is a
total order, and the other consists of a single element.

– A lexicographic product is a total order if and only if both components are
totally ordered.

Applications beyond logic. Similar questions arise in other applications of or-
dered sets, e.g., in space-time geometry where the causality ordering relation a ≤ b

means that an event a can influence the event b; see, e.g., [1,5–8,10,16,18].

Applications beyond orders. Our algorithm does not use the fact that the orig-
inal relations are orders (i.e., transitive antisymmetric relations). Thus, our algo-
rithm is applicable to a general case when we have an arbitrary binary relation
– equivalence, similarity, etc. Moreover, this algorithm can be applied to the case
when we have a space with several binary relations – e.g., an order relation and a
similarity relation.
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3 Definitions and the Main Result

In the following text, we fix a positive integer m; this integer will be called a number

of binary relations. Our main case is m = 1, when we consider a single binary
relation, and this binary relation is an order. However, our result is applicable to
an arbitrary finite set of binary relations.

Definition 1. By a space, we mean a set A with m binary relations P1(a, a
′), . . . ,

Pm(a, a′).

Clarification. In this definition and in the following definitions, we only consider
crisp relations – such as an order between the traditional fuzzy degrees of belief,
i.e., between the numbers from the interval [0, 1].

Terminological comment. Strictly speaking, a space is thus defined as a tuple
(A,P1, . . . , Pm). Following the usual mathematical practice, we will, however, usu-
ally simplify our notations and simply talk about a space A – implicitly meaning
the relations as well.

Definition 2. By a first order property (or simply property, for short), we mean a

(closed) formula F which is obtained from formulas Pi(x, x
′) by using logical connec-

tives ∨, &, ¬, and →, and quantifiers ∃x and ∀x.

Comment. Most properties in which we may be interested are first order properties.
For example, the property to be a total order has the form

∀a∀a′ ((a ≤ a′) ∨ (a′ ≤ a)).

The property to be a lattice L means that for every two elements a and a′ there
is a least upper bound and a greatest lower bound: L ⇔ L&L, where

L ⇔ ∀a∀a′∃a+ ((a ≤ a+)& (a′ ≤ a+)& ∀a′′(((a ≤ a′′)& (a′ ≤ a′′)) → a+ ≤ a′′)),

and

L ⇔ ∀a∀a′∃a− ((a− ≤ a)& (a− ≤ a′)& ∀a′′(((a′′ ≤ a)& (a′′ ≤ a′)) → a′′ ≤ a−)).

Notations. When a property F is true for a space X, we will denote it by F (X).

Definition 3. By a product operation, we mean a collection of m proposi-

tional formulas that describe the relation Pi((a1, a2), (a
′
1, a

′
2)) between the elements

(a1, a2), (a
′
1, a

′
2) ∈ A1 × A2 in terms of the relations between the components a1, a

′
1 ∈

A1 and a2, a
′
2 ∈ A2 of these elements, i.e., in terms of the relations P1(a1, a

′
1), . . . ,

Pm(a1, a
′
1), P1(a

′
1, a1), . . . , Pm(a′1, a1), P1(a2, a

′
2), . . . , Pm(a2, a

′
2), P1(a

′
2, a2), . . . ,

Pm(a′2, a2).

Comment. The above formulas that define Cartesian and lexicographic products
of partially ordered sets show that these two product operations are examples of
product operations in the sense of Definition 3.

Notational comment. For each operation, the space of all the elements is the set
of all pairs A1 × A2; so, in line with the above terminological comment, we will
simply talk about the space A1 ×A2.
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Main result. There exists an algorithm that, given a product operation and a property

F , generates a finite list of properties F11, F12, F21, F22, . . . , Fp1, Fp2, such that

F (A1 ×A2) ⇔ ((F11(A1)&F12(A2)) ∨ . . . ∨ (Fp1(A1)&Fp2(A2))).

Comment. The above examples of checking when a Cartesian or a lexicographic
products are total orders are examples of such equivalences. For example, for the
Cartesian product, we have p = 2,

– F11(A1) meaning that A1 is a total order,
– F12(A2) meaning that A2 is a one-element set,
– F21(A1) meaning that A1 is a one-element set, and
– F22(A2) meaning that A2 is a total order.

Generalizations. As we will see from the proof, a similar algorithm can be formu-
lated for a product of three or more spaces, and for the case when we allow ternary
and higher order operations in the definition of a space.

4 Proof

1◦. Let us start with the desired property F . This property uses basic relations
Pi(a, a

′) between elements a, a′ ∈ A1 ×A2 and quantifiers ∀a and ∃a over elements
a ∈ A1 ×A2.

2◦. Every element a ∈ A1 × A2 is, by definition, a pair (a1, a2) in which a1 is an
element of the set A1 and a2 is an element of the set A2.

Let us explicitly replace each variable with such a pair.

3◦. By definition of a product operation, each relation Pi(a, a
′) – i.e., each relation

Pi((a1, a2), (a
′
1, a

′
2)) – can be replaced by a propositional combination of relations

between elements a1, a
′
1 ∈ A1 and between elements a2, a

′
2 ∈ A2.

Let us perform this replacement.

4◦. Each quantifier can also be replaced by two quantifiers corresponding to com-
ponents:

– ∀(a1, a2) is equivalent to ∀a1∀a2, and
– ∃(a1, a2) is equivalent to ∃a1∃a2.

Let us perform this replacement as well.

5◦. As a result, we get an equivalent reformulation of the original formula F in
which elementary formulas are relations between elements of A1 or between A2

and quantifiers are over A1 or over A2.
We want to reduce this formula to the desired form

((F11(A1)&F12(A2)) ∨ . . . ∨ (Fp1(A1)&Fp2(A2))). (1)

We will reduce this by induction. Elementary formulas are already of the desired
form – provided, of course, that we allow free variables.
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We will show that if we apply a propositional connective or a quantifier to a
formula of this type, then we can reduce the result again to the formula of this
type.

6◦. When we apply propositional connectives to formulas of type (1), we thus get
a propositional combination of the formulas of the type Fij(Aj). It is known that
an arbitrary propositional combination can be described in a Disjunctive Normal
Form (DNF), i.e., as a disjunction of conjunctions. Each conjunction combines
properties related to A1 and properties related to A2, i.e., has the form

G1(A1)& . . . &Gp(A1)&Gp+1(A2)& . . . &Gq(A2).

Thus, each conjunction has the from G(A1)&G′(A2), where

G(A1) ⇔ (G1(A1)& . . . &Gp(A1))

and
G′(A2) ⇔ (Gp+1(A2)& . . . &Gq(A2)).

Thus, the disjunction of such properties has the desired form (1).

7◦. When we apply an existential quantifier, e.g., ∃a1, then we get a formula

∃a1 ((F11(A1)&F12(A2)) ∨ . . . ∨ (Fp1(A1)&Fp2(A2))).

It is known that ∃a (A ∨B) is equivalent to ∃aA ∨ ∃aB. Thus, the above formula
is equivalent to a disjunction

∃a1 (F11(A1)&F12(A2)) ∨ . . . ∨ ∃a1 (Fp1(A1)&Fp2(A2)).

If we prove that each term in this disjunction can be transformed into the desired
form (1), then, by using the Part 6 of this proof, we will be able to conclude that
the entire disjunction has the desired form. Thus, it is sufficient to prove that each
formula

∃a1 (Fi1(A1)&Fi2(A2)) (2)

has the desired form. The term Fi2(A2) does not depend on a1 at all, it is all about
elements of A2. Thus, the formula (2) is equivalent to

(∃a1 Fi1(A1))&Fi2(A2),

i.e., to the formula
F ′
i1(A1)&Fi2(A2),

where
F ′
i1 ⇔ ∃a1 Fi1(A1)

is a formula depending only on the space A1.
The reduction is proven.

8◦. When we apply a universal quantifier, e.g., ∀a1, then we can use the fact that
∀a1 F is equivalent to ¬∃a1 ¬F . We have assumed that the formula F is of the
desired type (1). Thus,

– by using Part 6 of this proof, we can conclude that the formula ¬F can be
reduced to the desired type;
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– now, by applying Part 7 of this proof, we can conclude that the formula
∃a1 (¬F ) can also be reduced to the desired type;

– finally, by using Part 6 again, we conclude that the formula ¬(∃a1 ¬F ) can be
reduced to the desired type.

9◦. By induction, we can now conclude that the original formula can be reduced
to the desired type. The main result is proven.

5 Example

To clarify our algorithm, let us apply it to the above simple case of checking
whether a Cartesian product is totally ordered. In this case, the formula F that
we want to check has the form

∀a∀a′ ((a ≤ a′) ∨ (a′ ≤ a)).

According to our algorithm, we first explicitly replace each variable a, a′ ∈ A1×A2

with the corresponding pair. As a result, we get the following formula:

∀(a1, a2)∀(a′1, a′2) (((a1, a2) ≤ (a′1, a
′
2)) ∨ ((a′1, a

′
2) ≤ (a1, a2))).

Replacing the ordering relation on the Cartesian product with its definition, we
get

∀(a1, a2)∀(a′1, a′2) ((a1 ≤ a′1 & a2 ≤ a′2)) ∨ ((a′1 ≤ a1 & a′2 ≤ a2))).

Replacing quantifiers over pairs with individual quantifiers, we get

∀a1∀a2∀a′1∀a′2 ((a1 ≤ a′1 & a2 ≤ a′2)) ∨ ((a′1 ≤ a1 & a′2 ≤ a2))).

By using the relation ∀ ⇔ ¬∃¬, we get an equivalent form

¬∃a1∃a2∃a′1∃a′2 ¬((a1 ≤ a′1 & a2 ≤ a′2) ∨ (a′1 ≤ a1 & a′2 ≤ a2))).

Moving negation inside the propositional formula, we get

¬∃a1∃a2∃a′1∃a′2 ((a1 ̸≤ a′1 ∨ a2 ̸≤ a′2)& (a′1 ̸≤ a1 ∨ a′2 ≤ a2))).

The propositional formula

(a1 ̸≤ a′1 ∨ a2 ̸≤ a′2))& (a′1 ̸≤ a1 ∨ a′2 ̸≤ a2)

must now be transformed into a DNF form. The result is

(a1 ̸≤ a′1 & a′1 ̸≤ a1)∨(a1 ̸≤ a′1 & a′2 ̸≤ a2)∨(a2 ̸≤ a′2 & a′1 ̸≤ a1)∨(a2 ̸≤ a′2 & a′2 ̸≤ a2).

Thus, the formula

∃a1∃a2∃a′1∃a′2 ¬((a1 ≤ a′1 & a2 ≤ a′2) ∨ (a′1 ≤ a1 & a′2 ≤ a2)))

is equivalent to

F1 ∨ F2 ∨ F3 ∨ F4,
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where

F1 ⇔ ∃a1∃a2∃a′1∃a′2 (a1 ̸≤ a′1 & a′1 ̸≤ a1), F2 ⇔ ∃a1∃a2∃a′1∃a′2 (a1 ̸≤ a′1 & a′2 ̸≤ a2),

F3 ⇔ ∃a1∃a2∃a′1∃a′2 (a2 ̸≤ a′2 & a′1 ̸≤ a1), F4 ⇔ ∃a1∃a2∃a′1∃a′2 (a2 ̸≤ a′2 & a′2 ̸≤ a2).

By applying the quantifiers to the corresponding parts of the formulas, we get

F1 ⇔ ∃a1∃a′1 (a1 ̸≤ a′1 & a′1 ̸≤ a1), F2 ⇔ (∃a1∃a′1 a1 ̸≤ a′1)& (∃a2∃a′2 a′2 ̸≤ a2),

F3 ⇔ (∃a1∃a′1 a′1 ̸≤ a1)& (∃a2∃a′2 a2 ̸≤ a′2), F4 ⇔ ∃a2∃a′2 (a2 ̸≤ a′2 & a′2 ̸≤ a2).

Then, we again reduce
¬(F1 ∨ F2 ∨ F3 ∨ F4)

to DNF.
The result is more complex than the above criterion – because our algorithm

does not use the fact that ≤ is an order relation.
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Appendix: Auxiliary Result

Formulation of the auxiliary result. Let us prove that for partial orders, the
only product operations that always leads to a partial order on A1 ×A2 for which

(a1 ≤1 a′1 & a2 ≤2 a′2) → (a1, a2) ≤ (a′1, a
′
2)

are Cartesian and lexicographic products.

Proof.

1◦. According to the definition, whether (a1, a2) ≤ (a′1, a
′
2) depends on the two

relation: the relation between a1 and a′1 and on the relation between a2 and a′2.
For each pair ai and a′i, we have four possible relations:

– the relation ai <i a
′
i; we will denote this case by +;

– the relation a′i <i ai; we will denote this case by −;
– the relation ai = a′i; we will denote this relation by =; and
– the relation ai ̸≤i a

′
i and a′i ̸≤i ai; we will denote this relation by ∥.

The case when we have relation R1 for a1 and a′1 and relation R2 for a2 and a′2
will be denoted by R1R2. So, we have 16 possible pairs of relations: ++, +−, + =,
+ ∥, −+, −−, etc. To describe the product, it is sufficient to describe which of
these 16 pairs correspond to (a1, a2) ≤ (a′1, a

′
2).

Due to the consistency requirement, pairs ++, + =, = +, and == always
result in ≤, so it is sufficient to classify the remaining 12 pairs. If only these four
pairs result in ≤, then we have the Cartesian product. So, to prove our theorem,
it is sufficient to prove that if at least one other pair leads to ≤, then we get a
lexicographic product. To prove this, let us consider the remaining 12 pairs one
by one.

2◦. Let us first consider pairs that contain −.

2.1◦. Let us prove that the pair −− cannot lead to ≤. Indeed, when both A1 and
A2 are real lines IR with the usual order, due to the fact that ++ leads to ≤, we
get (0, 0) ≤ (1, 1), while due to the fact that −− leads to ≤, we get (1, 1) ≤ (0, 0).
Hence, we have (0, 0) ≤ (1, 1) and (1, 1) ≤ (0, 0) but (0, 0) ̸= (1, 1) – a contradiction
to antisymmetry.
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2.2◦. Similarly, the pair − = cannot lead to ≤ because otherwise, for the same
example A1 = A2 = IR, we would get (0, 0) ≤ (1, 0) and (1, 0) ≤ (0, 0) but (0, 0) ̸=
(1, 0) – also a contradiction to antisymmetry.

2.3◦. Let us now consider the pair − ∥.

To prove that it cannot lead to ≤, we consider A1 = IR and A2 = IR × IR with
Cartesian order. In this case, (0, 0) ∥2 (1,−2) and (1,−2) ∥2 (−1,−1). Thus, if − ∥
leads to ≤, we have (0, (0, 0)) ≤ (−1, (1,−2)) and (−1, (1,−2)) ≤ (−2, (−1,−1)).
Thus, due to transitivity of ≤, we get (0, (0, 0)) ≤ (−2, (−1,−1)). On the other
hand, due to consistency, from −2 ≤1 0 and (−1,−1) ≤2 (0, 0), we conclude that
(−2, (−1,−1)) ≤ (0, (0, 0)) – a contradiction with antisymmetry.

2.4◦. Similarly, pairs = − and ∥ − cannot lead to ≤. Thus, the only pais containing
− that can potentially lead to ≤ are pairs containing a +.

3◦. Let us prove a similar property for pairs containing ∥. We already know that
pairs ∥ − and − ∥ cannot lead to ≤, so it is sufficient to consider pairs ∥=, =∥,
and ∥∥.

3.1◦. To prove that the pair =∥ cannot lead to ≤, let us consider the same case A1 =
IR and A2 = IR× IR. In this case, due to (0, 0) ∥2 (1,−2) and (1,−2) ∥2 (−1,−1),
if =∥ leads to ≤, we have (0, (0, 0)) ≤ (0, (1,−2)) and (0, (1,−2)) ≤ (0, (−1,−1)).
Thus, due to transitivity of ≤, we get

(0, (0, 0)) ≤ (0, (−1,−1)).

On the other hand, due to consistency, from 0 ≤1 0 and (−1,−1) ≤2 (0, 0), we
conclude that (0, (−1,−1)) ≤ (0, (0, 0)) – a contradiction with antisymmetry.

3.2◦. Similarly, it is possible to prove that the pair ∥= cannot lead to ≤.

3.3◦. To prove that the pair ∥∥ cannot lead to ≤, let us consider the case when
A1 = A2 = IR× IR. In this case, due to (0, 0) ∥i (1,−2) and (1,−2) ∥i (−1,−1), if
∥∥ leads to ≤, we have ((0, 0), (0, 0)) ≤ ((1,−2), (1,−2)) and ((1,−2), (1,−2)) ≤
((−1,−1), (−1,−1)). Thus, due to transitivity of ≤, we get ((0, 0), (0, 0)) ≤
((−1,−1), (−1,−1)). On the other hand, due to consistency, from (−1,−1) ≤i

(0, 0), we conclude that ((−1,−1), (−1,−1)) ≤ ((0, 0), (0, 0)) – a contradiction with
antisymmetry.

4◦. Thus, due to Part 2 and 3 of this proof, the only additional pairs that can, in
principle, lead to ≤ are pairs containing +, i.e., pairs +−, + ∥, −+, and − ∥.

5◦. Let us prove that the pair +− leads to ≤ if and only if the pair + ∥ leads to
≤.

5.1◦. Let us first prove that if the pair +− leads to ≤, then the pair + ∥ also leads
to ≤.

Indeed, let us consider the case when A1 = IR and A2 = IR × IR. If +− leads
to ≤, then 0 <1 1 and (−1,−1) <2 (0, 0) imply (0, (0, 0)) ≤ (1, (−1,−1)). Due to
consistency, 1 ≤1 1 and (−1,−1) ≤2 (−1, 1) lead to (1, (−1,−1)) ≤ (1, (−1, 1)).
Due to transitivity of ≤, we get (0, (0, 0)) ≤ (1, (−1, 1)). In this case, ≤ holds for
a pair for which 0 <1 1 and (0, 0) ∥2 (−1, 1), i.e., for a pair of type + ∥. By our
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definition of an order on the product, this means that ≤ must hold for all pairs of
this type, i.e., that the pair + ∥ indeed leads to ≤.

5.2◦. Let us now prove that if the pair + ∥ leads to ≤, then the pair +− also leads
to ≤.

Let us consider the same case A1 = IR and A2 = IR×IR. If + ∥ leads to ≤, then
0 <1 1 and and (1,−2) ∥2 (−1,−1) imply (0, (0, 0)) ≤ (1, (1,−2)), and 1 <1 2 and
(0, 0) ∥2 (1,−2) imply and (1, (1,−2)) ≤ (2, (−1,−1)). Due to transitivity of ≤, we
get (0, (0, 0)) ≤ (2, (−1,−1)). In this case, ≤ holds for a pair for which 0 <1 2 and
(−1,−1) <2 (0, 0), i.e., for a pair of type +−. By our definition of an order on the
product, this means that ≤ must hold for all pairs of this type, i.e., that the pair
+− indeed leads to ≤.

6◦. Similarly, we can prove that the pair −+ leads to ≤ if and only if the pair
∥ + leads to ≤. Thus, adding +− is equivalent to adding + ∥, and adding −+ is
equivalent to adding ∥ +.

If we add +− (and hence + ∥), we get the lexicographic product A1 × A2. If
we add −+ (and hence ∥ +), we get the lexicographic product A2 × A1. Thus, to
complete the proof, it is sufficient to show that we cannot simultaneously add +−
and −+.

7◦. Let us prove that +− and −+ cannot simultaneously lead to ≤.

We will prove this by contradiction. Let us assume that adding both +− and −+
always leads to a consistent partial order. In this case, let us take A1 = A2 = IR.
Since +− leads to ≤, the conditions 0 <1 1 and −2 <2 0 lead to (0, 0) ≤ (1,−2).
Similarly, since −+ leads to ≤, from −1 <1 1 and −2 <2 −1,
we conclude that (1,−2) ≤ (−1,−1). By transitivity of ≤, we can now conclude that
(0, 0) ≤ (−1,−1). However, due to consistency, (−1,−1) ≤ (0, 0) – a contradiction
to anti-symmetry.

The statement is proven, and so is the main result of this Appendix.


