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Abstract

The causality relation of special relativity is based on the assumption
that the speed of all physical processes is limited by the speed of light. As
a result, an event (¢, z) occurring at moment ¢ at location x can influence

an event (y, s) if and only if s > ¢+ M We can simplify this formula

if we use units of time and distance in thich c=1 (e.g., by using a light
second as a unit of distance). In this case, the above causality relation
takes the form s > t+d(z,y). Since the actual space can be non-Euclidean,
H. Busemann generalized this ordering relation to the case when points
x, y, etc. are taken from an arbitrary metric space X. A natural question
is: when is the resulting ordered space — called a Busemann product —
a lattice? In this paper, we provide a necessary and sufficient condition
for it being a lattice: it is a lattice if and only if X is a real tree, i.e., a
metric space in which every two points are connected by exactly one arc,
and this arc is geodesic (i.e., metrically isomorphic to an interval on a real
line).

1 Formulation of the Problem

Special relativity: brief reminder. To uniquely describe an event, we need
to describe the moment of time ¢ at which it occurs and its spatial location x.
In other words, an event can be characterized by a pair (¢, x), where ¢t € IR is



a real number and z is an element of the metric space X describing the proper
physical space.

Such pairs form a space-time IR x X. How can we describe the causality
relation < on this space-time, i.e., the relation a < b meaning that an event a
can causally influence the event b7

According to the special relativity theory, the speed of all processes is limited
by the speed of light ¢. So, an event (¢,z) can influenced an event (s,y) if t < s
and if it is possible for a signal from = to reach y in time s — ¢. During this
time, the signal can cover at most the distance ¢ - (s — t), so this condition can
be expressed as (t,z) < (s,y) < d(z,y) - c- (s — ).

This condition can be simplified even further if, instead of using different
units for measuring space and time, we use the same units for both, i.e., if we
use, as a unit of distance, the distance ¢ that the light covers in one second. In
these new units, the numerical value of the speed of light is 1, so the causality
relation takes the following simplified form:

(s,y) > (t,x) & s —t > d(z,y). (1)

Busemann product. In the special relativity theory, the proper space X is
a usual Euclidean space. Starting with general relativity, however, physicists
realized that the actual space-time is curved. Thus, it is reasonable to consider
space-time models IR x X with non-Euclidean metric spaces X and causality
relation (1). Such models were first considered by H. Busemann [2] and are thus
called Busemann products of the real line IR and the metric space X (see also
3, 4)).

A natural question: when is the Busemann product IR x X a lat-
tice? From the viewpoint of ordered space, a natural question is: when is the
Busemann product a lattice?

In the simplest case of a 1-D Euclidean space (and thus, 2-D space-time) it
is a lattice. Indeed, in this case, d(x,y) = | —y| and since |z| = max(z, —z), the
relation s —t > d(z,y) = | —y| = max(x —y,y —z) is equivalent to s—¢t > x —y
and s —t >y — x. By moving terms ¢ and x related to the event (¢,z) to one
side of each of these inequalities, and terms s and y related to the event (s,y)
to another side, we get an equivalent form: s+y >t¢t+x and s—y >t —z. So,
if instead of the original coordinates ¢ and x, we use new coordinates u =t + x
and v = t — x, the ordering relation between two events (u,v) and (u’,v") takes
the form

(W) = (,0) & (0 > u) & (0 > v)).

One can easily check that for this relation, every two elements (u,v) and (u’,v")
have the greatest lower bound (meet) (u,v) A (v/,v") = (min(u, u’), min(v,v"))
and least upper bound (join) (u,v) V (v/,v") = (max(u,u’), max(v,v")) — i.e.,
that it is indeed a lattice.

On the other hand, for the 3-D Euclidean space, the Busemann product —
i.e., the causality relation of the Special Relativity theory — is not a lattice.



Indeed, for a lattice, the intersection of two future cones a™ = {b: b > a} and
(/)T ={b:b>d'} is also a future cone: namely, the future cone of the join
a V a'. For special relativity, the future cone is, from the geometric viewpoint,
an actual cone

(57y1ay27y3) Z (t,l’l,l‘Q,.’L‘g) <~ (S - t) Z d(‘ray) <~
(s>t&(s—1)* > d*(2,y) = (v1 —y1)> + (z2 — y2)* + (23 — y3)*) &

(s > t&(s —1)° = (21— y1)* — (22 = 12)* = (23— y3)* > 0).

It is also easy to see that the intersection of two geometric cones is, in general,
not a cone — and thus, this ordered space is not a lattice.

It is therefore reasonable to ask: when is a Busemann product a lattice? The
definition of a lattice means that for every two elements, we have a meet and a
join. If for every two elements, we have a meet, this is called a lower semi-lattice;
if for every two elements, we have a join, this is called an upper semi-lattice.
A lattice is thus an ordered space which is at the same time a lower and an
upper semi-lattice. We can therefore also ask: when is a Busemann product a
lower semi-lattice? an upper semi-lattice? In this paper, we provide a necessary
and sufficient condition for the Busemann product to be a lattice, a lower semi-
lattice, and/or an upper semi-lattice.

2 Main Result

The answer comes in terms of real trees (R-trees), i.e., metric spaces in which
every two points x and y are connected by exactly one arc — a homeomorphic
embedding of an interval into this space, and this arc is geodesic, i.e., is formed
by points z, a € [0,d(x,y)] for which d(zq,x5) = |a — f]; see, e.g., [1].

An example of a real tree is a hedgehog set — a collection of several inter-
vals with a common starting point O, in which the distance on each interval

is Euclidean, between two points x and y on different intervals is defined as
d(z,y) = d(z,0) +d(0,y).

Definition 1. Let X be a metric space with distance d. A set IR, x X with an
ordering relation (s,y) > (t,x) < s —t > d(z,y) is called a Busemann product.

Theorem. For each metrics space X, the following conditions are equivalent
to each other:

e the Busemann product IR X X is a lattice;
e the Busemann product IR x X is a lower semi-lattice;
e the Busemann product IR X X is an upper semi-lattice;

e the space X 1is a real tree.



Proof.

1°. In this proof, we will use the following equivalent characterization of real
trees: a metric space X is a real tree if and only if the following two conditions
are satisfied:

e every two points z and y can be connected by a geodesic arc, and

e for every point x, on the geodesic arc connecting x and y, and for every
other point z, either z, lies on a geodesic arc connecting x and z, or x4
lies on a geodesic arc connecting y and z.

These conditions are intuitively clear: when we go from x to z in a tree, we may
follow the path from x to z for a while, but there is a branching point at which
the paths deviate.

e If this branching point is after x,, then x, is on the geodesic path from x
to y.

e If the branching happens before z,, then the geodesic path from z to y
should go pass x, — otherwise, the paths from x to y, from y to z, and
from x to z would form a loop, which cannot happen in a tree.

2°. First, let us prove that if IR x X is a lower semi-lattice, then X is a real
tree. For the upper semi-lattice, the proof is similar.

3°. Let us first prove that for every two points z,y € X, and for every a €
(0,d(z,y)), there exists a point x, for which d(z,z,) = a and d(z4,y) =
d(z,y) — a.

Indeed, let us consider the following four points: («, ), (d(z,y) —,y), (—a, ),
and (a —d(z,y),y). By using the definition of the Busemann product order, we
can easily check that each of the first two points follows each of the second two
points:

(a,x) 2 (_aa J)), (O(,.’II) > (a - d(x,y),y),

(d(m,y) - a,y) > (—Oé,l‘), (d(l‘,y) - aay) > (Oé - d(x7y)7y)'

Since the Busemann product IR x X is a lower semi-lattice, the first two points
def

(o, ) and (d(z,y)—a, y) have a meet, i.e., a point (s,2) = (o, 2)A(d(z,y)—a,y)
which precedes both of them and which follows both of the points (—c,z) and
(Oé - d(ﬂ?, y)a y)

(a,z) > (s,2), (d(z,y) —a,y) > (s,2),

(S,Z) > (_O‘7x)7 (S,Z) > (a - d(xay)7y)'

These orders mean that the following four inequalities are satisfied:
a—s>dz); dz,y) —a—s=dy,z)

s+a>d(rz); s+d(x,y)—a>dy,z).



Adding the first and the third inequalities and dividing the sum by two, we
conclude that o > d(x,z). Similarly, by adding the second and the fourth
inequalities and dividing the sum by two, we conclude that d(z,y) —a > d(y, 2).

We cannot have strict inequality in any of these two inequalities, because if,
e.g., a > d(z, z), then by adding it to d(z,y) — « > d(y, z), we could conclude
that d(z,y) > d(x,z) + d(y, z) — which contradicts to the triangle inequality.
Thus, we must have equality, i.e., we must have d(z,z) = « and d(y,z) =
d(x,y) — a. The statement is proven: the point z is our desired point z.

In this case, from d(z,z) = « and o — s > d(z, z), we conclude that s < 0.
Similarly, from d(z,2) = @ and a + s > d(z, z), we conclude that s > 0. Since
s <0and s >0, we have s = 0. Thus, (o, z) A (d(z,y) — a,y) = (0, 2).

4°. Let us now prove that for every two points x,y € X, and for every a €
(0,d(x,y)), there exists only one point x,, for which d(x, z,) = o and d(z4,y) =
d(z,y) — a.

Indeed, we have already shown that one such point exists — the point x, for
which (o, z) A (d(z,y) — «,y) = (0,2,). Let us assume that for some point
xl, # x4, we have d(z,z)) = a and d(z,,,y) = d(z,y) — a. Then, by definition
of the Busemann product order, we have («, z) > (0,2,) and (d(z,y) — a,y) >
(0,2,,). By the definition of a meet, we then conclude that (0,z,) > (0,z.).
By definition of the Busemann product order, this means that 0 > d(z4, ),
i.e., that d(z4,z,) =0 and x, = x},. Uniqueness is proven.

5°. Now, we can conclude that every two points z,y € X are connected by a
geodesic arc.

We have already shown that for every «, there exists a unique point x,, for which
d(z,24) = a and d(z4,y) = d(z,y) — . We want to prove that these points x,
form a geodesic arc, i.e., that for every o < 3, we have d(z4,x3) = f—a. Indeed,
due to Part 1 of this proof, if we take points z, and y with d(x4,y) = d(z, y)—«,
then there exists a point @ for which d(74,7}) = 8 — a and

(g, y) = d(xa,y) — (B —a) = (d(z,y) —a) = (B —a) =d(z,y) - 5.
Due to the triangle inequality,
d(z,x5) < d(z,74) + d(Ta,25) < a+ (B —a) = B,

so d(z, ;) < . We cannot have d(, 33}3) < f3, since then we would have

d(z,y) < d(z,2j) + d(xj,y) < B+ (d(z,y) — B) < d(z,y),

ie., d(z,y) < d(w,y), a contradiction. Thus, we have d(z,z};) = S and d(z},y) =
d(z,y) — B. Due to Part 2 of our proof, this means that z3 = z5. Thus,
d(z, m’ﬁ) = 8 — o implies that d(z.,2z3) = 8 — a. The statement is proven.

6°. Let us now prove that for every z,y € X, for every o € (0,d(z,y)), and
for every point z € X, we have either d(z, z) = d(x,x,) + d(zq, 2) or d(y,z) =



d(y,z4) + d(2a, ). In other words, x, either lies on a geodesic arc connecting
x and z or on a geodesic arc connecting y and z. This would mean that X is a
real tree.

Indeed, we know that (o, ) A (d(z,y) — o, y) = (0,2,). Let us find s for which
(a,z) > (—s,2) and (d(z,y) — a,y) > (—s,2). The first desired relation means
that a + s > d(z, 2), i.e., that

s>d(z,z) —a=d(z,z) —d(z,za).
The second relation means that d(z,y) — a + s > d(y, z), i.e., that
s 2 d(y, z) — (d(z,y) — o) = d(y, z) — d(y, za)
So, if we take
s = max(d(z, z) — d(x, xa), d(y, 2) — d(y, xa)),

both inequalities will be satisfied and thus, we will have (o, z) > (—s,2) and
(d(.T, y) -, y) > (_8’ Z)

By definition of the meet, this means that (0,z,) > (—s,2), i.e., that s >
d(xq,z). The value s is defined as the largest of the two expressions, so it is
equal to one of them.

If s is equal to the first expression s = d(z,z) — d(x,x,), then the above
inequality s > d(xq, z) takes the form d(x,z) — d(z,z4) > d(xq, 2), i.e., equiv-
alently, d(x,z) > d(x,2,) + d(x4, z). Since by the triangle inequality, we have
d(z, z) < d(z,zq)+d(za, 2), we thus conclude that d(z, z) = d(x, x4) +d(x4, 2).

If s is equal to the second expression s = d(y, z) — d(y, x,), then the above
inequality s > d(z,, z) takes the form d(y, z) — d(y,z) > d(za, 2), i.e., equiv-
alently, d(y,z) > d(y,z4) + d(zq, z). Since by the triangle inequality, we have
d(y,z) < d(y,zq)+d(x4, 2), we thus conclude that d(y, z) = d(y, o) + d(x4, 2).

The statement is proven.

7°. To complete our proof, we need to show that if X is a real tree, then the
Busemann product is a lattice.

Let us assume that the metric space X is a real tree, and let us consider two
points (¢,x) and (s,z) in the Busemann product IR x X. Let us show that the
meet of these points exists (for the join, the proof is similar).

7.1°. If t — s > d(x,y), then (t,x) > (s,y), so the smallest point (s,y) is the
desired meet.

7.2°. If s —t > d(x,y), then (s,y) > (¢, ), so the smallest point (¢,z) is the
desired meet.

7.3°. Let us now consider the remaining case when d(z,y) > |t — s|. In this
case, —d(x,y) <t —s < d(x,y) hence 0 < t — s+ d(x,y) < 2d(z,y) and thus,

def T — 8+d($,y)

0 < a <d(z,y), where we denoted o = 5 . We will prove that in



. . . t+s—d(z,
this case, the desired meet is the element (o, ), where tg def 7(2»

and z,, is a point on the geodesic arc connecting « and y for which d(z, z,) = a.
Note that indeed (¢,x) > (to, o) and (s,y) > (to, Za)-

We need to prove that for every ¢ and z, if (¢,z) > (g, z) and (s,y) > (g, z) then
(to, o) > (g, 2). By the property of a real tree,

e either z, lies on a geodesic arc connecting x and z,
e or x, lies on a geodesic arc connecting y and z.

Without losing generality, let us consider the first case, in which d(x,z) =
d(z,x4) + d(Ta, z). We know that (t,z) > (¢,2) and (s,y) > (g, 2), i.e., that
t—q >d(z,z) and s — ¢ > d(y,z). We need to prove that (to,z4) > (g, 2),

i.e., that tg — ¢ > d(zq, 2). Since we are in the first case, we have d(zq,2) =
d(x,z) —d(z,24) = d(x, z) — . By definition of «, this means that

t—s+d
d(za,z) =d(z,2) — %(x,y)
Substituting this expression for d(x,, z) and the definition of ¢y into the desired

inequality tg — ¢ > d(z4, 2), we get an equivalent inequality

t+s—d(z,y)
2

g d(n ) — t—s+d(z,y) ) + s—t—d(w,y).
2 2

By canceling identical terms s/2 and —d(z,y)/2 on both sides, and by moving

t/2 into the left-hand side of this inequality, we get an equivalent inequality

t —q > d(x, z) which we assumed to be true. The statement is proven, and so

is the theorem.

3 Open Questions

Case of quasimetrics. In the main text, we only considered metric spaces
X, in which d(z,y) = d(y, x), but a similar construction of a Busemann product
order can be described for a quasimetric, i.e., a function which is not necessarily
symmetric; see, e.g., [4]. It is desirable to extend our results to such quasimet-
rics.

More general Busemann products. The space R x X is not just a ordered
space: similarly to the case of special relativity, it can be equipped by a function
describing proper time [2]:

T((t,$)7 (Svy)) = Vmax((s - t)a - d"‘(m,y),O).

This function — called kinematic metric — satisfies the following two conditions:

e if 7(a,b) > 0 then a > b, and



e the anti-triangle inequality: if a > b > ¢, then 7(a,¢) > 7(a,b) + 7(b, ¢).

For each ordered space E with a function 7 that satisfies these two conditions,
and for each metric space X, we can define a Busemann product as the following
ordering relation of £ x X:

(t,z) > (s,y) < 7(t,8) > d(x,y).

It is desirable to analyze when this order is a lattice.
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