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Abstract In many practical situations, the values of the known measured quantity
depend on the values of the desired quantities, on the values of known auxiliary
quantities (e.g., measurement parameters that we ourselves set up), and on the
values of the unknown auxiliary quantities.

For example, when we observe a distant quasar by using Very Large Base
Interferometry, the measured time delay depends both on the actual coordinates
of this quasar and on the parameters that describe the radiointerferometer itself:
e.g., on the distance and direction between the antennas, and on the time shift
between the clocks located at these antennas.

In practice, we often only have an approximate model for the dependence. In
this case, a natural idea is to find the values of the unknowns for which the largest
of model inaccuracies is minimal.

In the linearizable case, finding such values becomes a linear programming
problem.

In the paper, we describe the application of the resulting techniques to a bench-
mark thermal problem presented at the Sandia Validation Challenge Workshop
(Albuquerque, New Mexico, May 2006).
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1 Measurement Under Exact Model: Example

To illustrate the class of problem that we will solve in this paper, let us start with
an example. Suppose that for some distant astronomical radio-source, we want to
find the exact direction from which the corresponding radio waves are coming. In
precise terms, we need to find a unit vector ek in the direction to the source.

One of the most accurate methods of finding the unit vector ek in the direc-
tion to a distant astronomical radio-source is Very Large Baseline Interferometry
(VLBI); see, e.g., [3,4,13,15]. In VLBI, we measure the time delay τi,j,k between
the signal observed by antennas i and j. From the simple geometric arguments,
we can conclude that

τi,j,k = c−1 · (bi − bj) · ek +∆ti −∆tj ,

where:

– bi is the location of the i-th antenna, and
– ∆ti is its clock bias on the i−th antenna, i.e., the difference between the reading

of this clock and the actual (unknown) time on this antenna.

In the ideal case, if we knew bi and ∆ti with high accuracy, the above equation
becomes linear in terms of the unknown components of ek. By solving this system
of equations, we could then easily find ek.

In practice, we only know bi and ∆ti approximately, and moreover, we know
these values with much lower (relative) accuracy than the measured time de-
lays τi,j,k.

2 Measurement Under Exact Model

General case: description. In general (see, e.g., [12]),

– we have the measured values z1, . . . , zn (τi,j,k in the VLBI example), and
– we need to find the desired values x1, . . . , xm (ek in the VLBI example).

The values zj depend not only on x1, . . . , xn, they also depend:

– on the values s1, . . . , sp of known auxiliary quantities (e.g., time of the experi-
ment), and

– on the values y1, . . . , yq of the auxiliary quantities which are only approximately
known (in the VLBI example, values bj and ∆ti).

VLBI example. In the VLBI example, we know the exact dependence z =
f(x, y, s), i.e.,

zj = fj (x1, . . . , xm, y1, . . . , yq, s1, . . . , sp) .

In such situations, we can determine all the unknowns (i.e., x1, . . . , xm and
y1, . . . , yq) if we perform measurements for each of several (M) different objects

x(α) =
(
x
(α)
1 , . . . , x

(α)
m

)
, 1 ≤ α ≤ M in

– several (Q) different settings y(β) =
(
y
(β)
1 , . . . , y

(β)
q

)
, 1 ≤ β ≤ Q, and

– several (P ) different settings s(γ) =
(
s
(γ)
1 , . . . , s

(γ)
p

)
, 1 ≤ γ ≤ P .
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How to solve the problem. As a result of each measurement, we get n different

values z
(α,β,γ)
1 , . . . , z

(α,β,γ)
n . Thus, as a result of the measurements, we thus get

n ·M · P ·Q equations

z
(α,β,γ)
j = fj

(
x
(α)
1 , . . . , x

(α)
m , y

(β)
1 , . . . , y

(β)
q , s

(γ)
1 , . . . , s

(γ)
p

)
,

1 ≤ j ≤ n, to determine N ·m+Q · q unknown (to be more exact, approximately

known) values x
(α)
1 , . . . , x

(α)
m (1 ≤ α ≤ M) and y

(β)
1 , . . . , y

(β)
q (1 ≤ β ≤ Q).

When the values M and Q are large, the number of equations n · M · P · Q
exceeds the number of unknowns N ·m+Q · q. Thus, in general, we we can solve
this system, and find the x values for all the objects and and y values for all the
settings; see, e.g., [10].

Approximate values of x and y are usually known. Usually, we know approxi-

mate values x̃
(α)
i and ỹ

(β)
k of the quantities x

(α)
i and y

β)
k , and we know the upper

bounds ∆
(α)
x,i and ∆

(β)
y,k on the approximation errors ∆x

(α)
i

def
= x̃

(α)
i − x

(α)
i and

∆y
(β)
k

def
= ỹ

(β)
k − y

(β)
k :

∣∣∣∆x
(α)
i

∣∣∣ ≤ ∆
(α)
x,i and

∣∣∣∆y
(β)
k

∣∣∣ ≤ ∆
(β)
y,k . see, e.g., [12]. In this

case, we know that the actual values x
(α)
i and y

(β)
k belong to the corresponding

intervals
[
x̃
(α)
i −∆

(α)
x,i , x̃

(α)
i +∆

(α)
x,i

]
and

[
ỹ
(β)
k −∆

(β)
y,k , ỹ

(β)
k +∆

(β)
y,k

]
.

Linearizable case. Often, the approximation errors are small, so we can safely
ignore terms which are quadratic in these errors and linearize the corresponding
system z = f(x, s, y). In such situations, we need to solve the resulting system of

linear equations in terms of the unknowns ∆x
(α)
i and ∆y

(β)
j :

z
(α,β,γ)
j = fj

(
x̃ (α), ỹ (β), s(γ)

)
+

n∑
i=1

∂f

∂xi
·∆x

(α)
i +

q∑
k=1

∂f

∂yj
·∆y

(β)
j .

3 Case of Approximate Model: Model Validation

Need for model validation. In practice, we often only have an approximate model
f(x, s, y) for the dependence of z on x, s, and y. In such situations, it is desirable to
validate this model, i.e., to supplement the expression f(x, s, y) with a guaranteed
accuracy ε > 0 of this approximate model.

Model validation: precise formulation of the problem. In precise terms, we
need to find the smallest possible ε > 0 for which there exist values

x
(α)
i ∈

[
x̃
(α)
i −∆

(α)
x,i , x̃

(α)
i +∆

(α)
x,i

]
and y

(β)
k ∈

[
ỹ
(β)
k −∆

(β)
y,k , ỹ

(β)
k +∆

(β)
y,k

]
such that for every j, α, β, and γ, we have

z
(α,β,γ)
j ∈

[
fj

(
x(α), y(β), s(γ)

)
− ε, fj

(
x(α), y(β), s(γ)

)
+ ε

]
.
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Linearizable case. In the linearizable case, when the expression fj
(
x(α), y(β), s(γ)

)
can be approximated by the above formula linear in terms of ∆x

(α)
i and ∆y

(β)
j ,

this problem takes the following form:
Minimize ε under the constraints that

z
(α,β,γ)
j − ε ≤ fj

(
x̃ (α), ỹ (β), s(γ)

)
+

n∑
i=1

∂f

∂xi
·∆x

(α)
i +

q∑
k=1

∂f

∂yj
·∆y

(β)
j ≤ z

(α,β,γ)
j + ε;

−∆
(α)
x,i ≤ ∆

(α)
i ≤ ∆

(α)
x,i ; −∆

(β)
y,k ≤ ∆

(β)
k ≤ ∆

(β)
y,k .

Both the objective function and the constraints (inequalities) are linear in

terms of the unknown ε, ∆x
(α)
i , and ∆y

(β)
j ; so, this optimization problem is a

particular case of the general class of linear programming problems – a class for
which efficient algorithms are known; see, e.g., [14].

Linearizable case: making the result more adequate. The value ε obtained from
solving this linear programming problem is based on linearization approximation.
In critical situations, when we need to guarantee the accuracy for all measure-
ments, we should take, as the model accuracy, the largest of the differences be-
tween the observed values and the values predicted by the original (non-linearized)

approximate model with the newly determined parameters x
(α)
i = x̃

(α)
i − ∆x

(α)
i

and y
(β)
j = ỹ

(β)
j −∆y

(β)
j , i.e., the value

ε̃
def
= max

j,α,β,γ

∣∣∣z(α,β,γ)j − fj

(
x(α), y(β), s(γ)

)∣∣∣ .
Need for general case. Linearization is based on the assumption that the mea-

surement errors ∆x
(α)
i and ∆y

(β)
j are small so that terms quadratic in these errors

can be safely ignored. In practice, sometimes, these errors are not that small, so
quadratic terms must be take into account.

General case: idea. The idea for handling a general case comes from Newton’s
method for solving an equation F (x) = 0, method that is based on several lin-
earizations. In Newton’s method,

– we pick an initial approximation x(0);
– then, for p = 0, 1, . . ., once we have x(p), solve the linearized problem, with

x = x(p) +∆x:

F
(
x(p)

)
+

∂F

∂x

(
x(p)

)
·∆x = 0;

– we use the solution x(p) +∆x as the next approximation x(p+1).

We iterate until |∆x| is small enough. For example, we can iterate until the max-
imum value of |∆x| on the current iteration decreased by less than 10% in com-
parison with the previous iteration.

A similar idea can be applied to our case as well.

General case: algorithm.

– We start with the initial approximations x
(α,0)
i = x̃

(α)
i and y

(β,0)
j = ỹ

(β)
j .
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– Then, for p = 0, 1, . . ., we solve the corresponding linear programming problem
ε → min under the constraints

z
(α,β,γ)
j −ε ≤ fj

(
x(α,p), y(β,p), s(γ)

)
+

n∑
i=1

∂f

∂xi
·∆x

(α)
i +

q∑
k=1

∂f

∂yj
·∆y

(β)
j ≤ z

(α,β,γ)
j +ε;

x̃
(α)
i −∆

(α)
x,i ≤ x

(α,p)
i +∆x

(α)
i ≤ x̃

(α)
i +∆

(α)
x,i ;

ỹ
(β)
j −∆

(β)
y,j ≤ y

(β,p)
j +∆y

(β)
j ≤ ỹ

(β)
j +∆

(β)
y,j .

We iterate until the values the values ∆x
(α)
i and ∆y

(β)
j are small enough. For

example, we can iterate until the maximum value of
∣∣∣∆x

(α)
i

∣∣∣ and ∣∣∣∆y
(β)
j

∣∣∣ on the

current iteration decreased by less than 10% in comparison with the previous
iteration.

Then, we estimate the model’s accuracy as

ε̃
def
= max

j,α,β,γ

∣∣∣z(α,β,γ)j − fj

(
x(α,p+1), y(β,p+1), s(γ)

)∣∣∣ .
4 Case Study: The Thermal Challenge Problem

In the paper, we illustrate the above ideas on the example of a benchmark thermal
problem presented at the 2006 Sandia Validation Challenge Workshop [2,5–7,9,
11]. In this problem, we need to analyze temperature response T (x, t) of a safety-
critical device to a heat flux.

Specifically, a slab of metal (or other material) of thickness L = 1.90 cm is
exposed to a heat flux q = 3500 W/m2. We know:

– thermal conductivity k,
– volumetric heat capacity of the material ρCp,
– the initial temperature Ti = 25 C, and
– an approximate model:

T (x, t) = Ti +
q · L
k

·
[
(k/ρCp) · t

L2
+

1

3
− x

L
+

1

2
·
(
x

L

)2

−

2

π2
·

6∑
n=1

1

n2
· exp

(
−n2 · π2 · (k/ρCp) · t

L2

)
· cos

(
n · π · x

L

)]
.

We do not know how accurate is the approximate model. The main task is to
estimate the model’s accuracy ε.

A natural way to estimate this accuracy is to compare the model’s predictions
with the measurement results. As a result of this comparison, we conclude that the
accuracy of the model is low: ≈ 25◦. This low accuracy makes predictions based
on this model inaccurate.
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5 Thermal Challenge Problem: Interval-Related Approach

Idea. In the computations that lead to low (25 degrees) accuracy, it is assumed
that the given values of k and ρCp are exact. In practice, these values are only
approximately known; they may change from sample to sample. So, a natural idea
is not to assume any specific value of these quantities, just assume that for each
sample, there are some values.

How this problem fits our general framework? In this case:

– we have only one measured quantity z: the temperature z = T ; we know the
measured values z(k) corresponding to different moments of time;

– we have one exactly known auxiliary quantity: time s1 = t; we know the mo-
ments of time s(k) at which measurements were performed;

– unknown auxiliary quantities are y1 = k and y2 = ρCp; we know the approxi-
mate values ỹ1 and ỹ2;

– we also know the approximate dependence z1 ≈ f(y1, y2, s1).

In this case, we know the value z(k) = T for different moments t = s(k). We need
to find the values y1 and y2 for which ε → min, where:∣∣∣z(k) − f

(
y1, y2, s

(k)
1

)∣∣∣ ≤ ε for all k.

Comment. In this case, the accuracies of measuring y1 and y2 are not known, so
we do not need the corresponding constraints.

Resulting algorithm.

– We start with the first approximation y
(0)
1 = ỹ1 and y

(0)
2 = ỹ2.

– Then, for p = 0, 1, . . ., we find ∆y1 and ∆y2 by solving the following linear
programming problem: ε → min under the constraints

−ε ≤ z(k)−f
(
y
(p)
1 , y

(p)
2 , s(k)

)
− ∂f

∂y1

(
y
(p)
1 , y

(p)
2

)
·∆y1−

∂f

∂y2

(
y
(p)
1 , y

(p)
2

)
·∆y2 ≤ ε,

and take y
(p+1)
1 = y

(p)
1 +∆y1 and y

(p+1)
2 = y

(p)
2 +∆y2.

We iterate until the maximum value of |∆y1| and |∆y2| on the current iteration
decreased by less than 10% in comparison with the previous iteration.

After that, we estimate the model’s accuracy as

ε̃ = max
k

∣∣∣z(k) − f
(
y
(p+1)
1 , y

(p+1)
2 , s

(k)
1

)∣∣∣ .
Comment. Instead of the original model, in our computations, we used its simplified
equivalent form; see Appendix for details.

Results are given in Table 5; the resulting model accuracy has gone down from
25 to 5 degrees:
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6 Conclusions and Future Work

Conclusion. The original approach assumed that the parameters k and ρCp are
known. This led to predictions with accuracy 25◦.

The new approach takes into account that we only know the values k and ρCp

with uncertainty. This leads to predictions with a much higher accuracy 5◦.

Future work: on the example of our case study. On the example of our case
study, we illustrate three directions in which our results can be further improved.
In all three cases, it is easy to see how the corresponding idea can be extended to
the general case.

Combining with probabilistic knowledge. The original problem, as formulated
in [2,5–7,9,11], also included the probabilistic task: find z0 such that for given s,
y1, and y2, we have z ≤ z0 with probability ≥ 1− p0 (=0.99). In our analysis, we
found the accuracy ε̃ of the given approximate model, and we found the values
y1 = k and y2 = ρCp for which this accuracy is attained. Since |z − f (y1, y2, s)| ≤ ε̃,
to guarantee that z ≤ z0, it is sufficient to guarantee that f (y1, y2, s) ≤ z0 − ε̃.
So, the original probabilistic task can be now reformulated as follows: find y0 for
which

P0
def
= Prob (f (y1, y2, s) ≤ z0 − ε̃) ≥ 1− p0.

Following [2,5–7,9,11], we can assume that y1 and y2 are independent normally
distributed random variables. We can thus find their means and standard devi-
ations from given data. Then, for each z0, we can find the desired probability
Prob (f (y1, y2, s) ≤ z0 − ε̃), e.g., by using linearization (since z is also normal) or
by using Monte-Carlo simulations.

Towards a more accurate description of the model’s accuracy. In general, for some
values of the parameters s, measurements are easier; for some, they are more
difficult. In the thermal challenge problem, this parameter is the thermal flow
s2 = q. We have more data for easier-to-measure values, and thus, the model is
more accurate for easier-to-measure values of the parameters.

To take this fact into account, instead of a single measure ε of the model’s
accuracy ε, it is desirable to explicitly consider the dependence ε(s2, . . .).

time measured prediction: prediction:
(in sec) temperature original interval

approach approach

100 105.5 97.3 105.5
200 139.3 127.4 138.8
300 165.5 150.9 165.2
400 188.7 172.1 188.7
500 210.6 192.2 211.1
600 231.9 211.9 233.1
700 253.0 231.4 254.9
800 273.9 250.8 276.6
900 294.9 270.3 298.3

1000 315.8 289.7 319.9

Table 1 Prediction quality: original approach vs. interval-related approach
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In our case, which model for the dependence ε(q) shall we choose? From the
physical viewpoint, the problem is invariant w.r.t. changing measuring units q → λ·
q (i.e., in mathematical terms, scale-invariant). So it is reasonable to select a space-
invariant dependence, i.e., a dependence for which, for each re-scaling q → λ ·q, the
dependence has the same form if we appropriate change the units for measuring
ε, i.e., that for every λ > 0, there exists a C(λ) for which ε(λ · q) = C(λ) · ε(q).
It is known (see, e.g., [1]) that the only monotonic solutions to this functional
equations have the form ε(q) = ε0 · qα for some ε0 and α.

So, for each experimentally tested q, based on all samples with given q, we find
ε(q), and then find ε0 and α for which ε(q) ≈ ε0 · qα, i.e., equivalently, ln(ε(q)) ≈
ln(ε0) + α · ln(q). This is a system of linear equations with unknowns ln(ε0) and
α, so we can use the Least Squares method to solve it. Once we find the solution,
we can predict the model’s accuracy as ε(q) ≈ ε0 · qα.

From validating a model to improving a model. The formula assumes that y1 = k

and y2 = ρCp are constants. However, by estimating these values based on samples
with different temperatures t, we conclude that the average value k̄ of y1 = k grows
with temperature T ; see Table 6. It is therefore natural to conclude that y1 is a
function of T . For example, a linear function y1 ≈ a + b · T . Applying the Least
Square method to this data, we get a ≈ 0.63 and b ≈ 0.24 · 10−3. We hope that
this formula will lead to an even better fit.

T 20 250 500 750 1000
k̄ 0.49 0.59 0.63 0.69 0.75

Table 2 Dependence of k̄ on T
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A How to Simplify Computations

Our main formula has the form

T (x, t) = Ti +
q · L
k

·
[
(k/ρCp) · t

L2
+

1

3
−

x

L
+

1

2
·
(
x

L

)2

−

2

π2
·

6∑
n=1

1

n2
· exp

(
−n2 · π2 ·

(k/ρCp) · t
L2

)
· cos

(
n · π ·

x

L

)]
.

In this formula, the parameter ρCp always appears in a ratio
k/ρCp

L2
. It is therefore reasonable,

instead of the original variables y1 = k and y2 = ρCp, to use new auxiliary variables Y1 =
q · L
k

and Y2 =
k/ρCp

L2
. As a result, we get the following simplified formula:

T (x, t) = Ti + Y1 ·
[
Y2 · t+

1

3
− x0 +

1

2
· x2

0−

2

π2
·

6∑
n=1

1

n2
· exp(−n2 · π2 · Y2 · t) · cos (n · π · x0)

]
,

where x0
def
=

x

L
. In this case,

∂T

∂Y1
= Y2 · t+

1

3
− x0 +

1

2
· x2

0 −
2

π2
·

6∑
n=1

1

n2
· exp(−n2 · π2 · Y2 · t) · cos (n · π · x0) ;

∂T

∂Y2
= t ·

[
Y1 − 2 ·

6∑
n=1

· exp(−n2 · π2 · Y2 · t) · cos (n · π · x0)

]
.


