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Abstract Most physical models are approximate. It is therefore important to
find out how accurate are the predictions of a given model. This can be done
by validating the model, i.e., by comparing its predictions with the experimental
data. In some practical situations, it is difficult to directly compare the predictions
with the experimental data, since models usually contain (physically meaningful)
parameters, and the exact values of these parameters are often not known. One way
to overcome this difficulty is to get a statistical distribution of the corresponding
parameters. Once we substitute these distributions into a model, we get statistical
predictions – and we can compare the resulting probability distribution with the
actual distribution of measurement results. In this approach, we combine all the
measurement results, and thus, we are ignoring the information that some of these
results correspond to the same values of the parameters – e.g., they come from
measuring the same specimen under different conditions. In this paper, we propose
an interval approach that takes into account this important information. This
approach is illustrated on the example of a benchmark thermal problem presented
at the Sandia Validation Challenge Workshop (Albuquerque, New Mexico, May
2006).
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1 Formulation of the Problem

Need for model validation. Most physical models are approximate. It is therefore
necessary to estimate the model accuracy by comparing the model’s predictions
with the experimental data. This estimation of the model accuracy is known as
model validation.

Case study: the thermal challenge problem. As the main case study, we con-
sider a benchmark thermal problem presented at the 2006 Sandia Validation Chal-
lenge Workshop [2,5–7,9,11]. In this problem, we need to analyze temperature
response T (x, t) of a safety-critical device to a heat flux.

Specifically, a slab of metal (or other material) of a given thickness L is exposed
to a given heat flux q. We know:

– the initial temperature Ti = 25 C, and
– an approximate model:

T (x, t) = Ti +
q · L
k

·
[
(k/ρCp) · t

L2
+

1

3
− x

L
+

1

2
·
(
x

L

)2

−

2

π2
·

6∑
n=1

1

n2
· exp

(
−n2 · π2 · (k/ρCp) · t

L2

)
· cos

(
n · π · x

L

)]
.

We do not know a priori how accurate is the approximate model.
As for the thermal conductivity k and the volumetric heat capacity of the

material ρCp, we know their nominal values, and we have measured values of k

and ρCp for different specimens.
We also have the results of measuring temperature for several different spec-

imens (which are, in general, different from the specimens for which we measure
k and ρCp). Specifically, for each specimen, we measure temperature at different
moments of time.

Let us start with a simplified problem. To better describe our idea, let us
start with a simplified version of this problem, in which we assume that for each
specimen, the values of all parameters – including the thermal conductivity k and
the volumetric heat capacity of the material ρCp – are known exactly. We also
assume that the actual temperatures are known exactly, i.e., that the temperature
measurements are reasonably accurate – so that the measurement uncertainty can
be safely ignored.

In this simplified situation, the predicted value T (x, t) of the temperature is
well defined for all x and t; the only reason why the measured values are different
from the model’s predictions is that the model itself is only approximate. So, to
estimate the accuracy (or inaccuracy) in a model, we can simply compare these
predictions T (x, t) with the actual measurement results T̃ (x, t).

The largest possible difference max
x,t

∣∣∣T̃ (x, t)− T (x, t)
∣∣∣ between the measured

values and the theory’s prediction can be used as a reasonable measure of the
model’s accuracy.

For example, if in all the measurements, the measured values differ from the
theory’s prediction by no more than 10 degrees, we conclude that the model’s
prediction are accurate with the accuracy ±10 degrees.
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How to take variability into account: the probabilistic approach. In real
life, the values of the parameters k and ρCp are only approximately known. It is
known that these values differ from one specimen to another. How can we take
this variability into account when we estimate the accuracy of the given model?

A probabilistic approach to solving this problem is described in [5]. This ap-
proach is motivated by the fact that while we do not know the individual values of
the parameters k and ρCp corresponding to different specimens, we do have a sam-

ple of values k and ρCp corresponding to different specimens. Thus, we can estimate
the probability distribution of k and ρCp among the given class of specimens.

In the resulting description, k and ρCp are random variables with known dis-
tributions. Since the model’s parameters k and ρCp are random, for each x and t,
the resulting temperature T (x, t) also becomes a random variable. By running sim-
ulations, we can find, for each x and t, the probability distribution of this random
value T (x, t) – the probability distribution that would be observed if the model
T (x, t) was absolutely accurate.

Since the model is only approximately true, for every x and t, the actual (empir-
ical) probability distribution of the measured temperatures T̃ (x, t) is, in general,
different from the simulated distribution of the model’s predictions. The differ-
ence between these two probability distributions – the distribution predicted by
the model and the distribution observed in measurements – can be thus viewed as
a measure of how accurate is our model.

Limitation of the probabilistic approach: description and need to overcome

these limitations. In the probabilistic approach, to describe an empirical dis-
tribution, we, in effect, combine (“pool”) the temperatures measured for all the
specimens into a single sample. As a result, we ignore an important part of the
available information about the measurement results – namely, the information
that some measurements correspond to the same specimen and some measure-
ments correspond to different specimens. To get more convincing estimates of the
model, it is therefore desirable to take this additional information into account.

In this paper, we describe how this additional information can be used. We
illustrate our approach on the example of the main case study. After that, we
describe this approach in general terms, and provide another application example
– Very Large Baseline Interferometry (VLBI).

Comment. In this paper, we gauge the model’s accuracy by coming up with a guar-
anteed upper bound for the difference between the model’s prediction and actual
values. This approach is similar to using overall error bound ∆ as a description of
the measurement inaccuracy – i.e., the difference between the measurement result
x̃ and the actual value x; see, e.g., [12]. In measurements, once we have the mea-
surement result x̃ and the bound ∆ for which |x̃− x| ≤ ∆, the only information
that we have about the actual (unknown) values x is that x belongs to the interval
[x̃ − ∆, x̃ + ∆]; see, e.g., [8]. Because of this similarity, we will call our approach
interval approach.

2 Interval Techniques for Model Validation: Main Idea

What we know about each specimen: an example. Instead of pooling all the
measured temperature values corresponding to different specimens into a single
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sample, we would like to consider each specimen individually. For each specimen,
we have temperatures measured at different moments of time.

For example, according to [2], we have several specimens corresponding to
Configuration 1, in which the thickness L is equal to 1.27 cm (half an inch), and
the heat flux is equal to q = 1000 W/m2. We have the measurement results for
four specimens corresponding to this configuration. These measurement results
correspond to x = 0. The results of measuring the temperature T (x, t) = T (0, t)
for specimen i are known as Experiment i. In particular, the measurement results
corresponding to specimen 1 (i.e., to Experiment 1) are as follows:

time measured
(in sec) temperature

100 105.5
200 139.3
300 165.5
400 188.7
500 210.6
600 231.9
700 253.0
800 273.9
900 294.9

1000 315.8

Table 1 Measurement results

Ideal case: exact model, exactly known parameters k and ρCp. For each speci-
men, if the model was absolutely accurate (and if the measurement inaccuracy was
negligible), the measured values T̃ (x, t) would take the form T̃ (x, t) = T (x, t, k, ρCp)
for an appropriate values k and ρCp; here, T (x, t, k, ρCp) means that we explicitly
take into account the dependence on the parameters k and ρCp in the above for-
mula.

In this ideal situation, if we know the exact values of k and ρCp, to check the
model’s correctness, we can simply compare the measured values T̃ (x, t) with the
predicted values T (x, t, k, ρCp). In this case, the largest possible difference between

the measured and predicted values is 0: max
t

∣∣∣T̃ (x, t)− T (x, t, k, ρCp)
∣∣∣ = 0. Vice

versa, if this largest difference is equal to 0, this means that all the differences are
equal to 0, i.e., that the model is indeed absolute accurate.

Case when the model is exact, but the parameters k and ρCp are only

approximately known. In reality, we do not know the exact values of k of ρCp,
so we can only conclude that this largest difference is equal to 0 for some values
k and ρCp. In other words, we conclude that the smallest possible value of this
largest difference – smallest over all possible combinations of the parameters k and
ρCp – is equal to 0:

min
k,ρCp

max
t

∣∣∣T̃ (x, t)− T (x, t, k, ρCp)
∣∣∣ = 0.
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Vice versa, if this smallest value is equal to 0, this means that for some k and ρCp,

the largest error max
t

∣∣∣T̃ (x, t)− T (x, t, k, ρCp)
∣∣∣ is equal to 0 and so, the model is

absolutely accurate.

General case, when we take into account that the model is approximate.

In practice, the model is approximate. This means that no matter which values k

and ρCp we use for this specimen, the measured values will be different from the

model’s prediction: max
t

∣∣∣T̃ (x, t)− T (x, t, k, ρCp)
∣∣∣ > 0.

For example, if the model differs from the observations by some value ε > 0,

then even for the actual values of k and ρCp, we will get
∣∣∣T̃ (x, t)− T (x, t, k, ρCp)

∣∣∣ =
ε > 0 and therefore, max

t

∣∣∣T̃ (x, t)− T (x, t, k, ρCp)
∣∣∣ = ε > 0. Moreover, even when

the model differs from the actual values at a single moment t, we will still have∣∣∣T̃ (x, t)− T (x, t, k, ρCp)
∣∣∣ = ε > 0

for this moment of time t and therefore, max
t

∣∣∣T̃ (x, t)− T (x, t, k, ρCp)
∣∣∣ = ε > 0.

To gauge the accuracy of the model, it is therefore reasonable to use the dif-
ference corresponding to the best possible values k and ρCp, i.e., the value

a
def
= min

k,ρCp

max
t

∣∣∣T̃ (x, t)− T (x, t, k, ρCp)
∣∣∣ .

Comment. This difference a is observed when we use the exact values of the param-
eters k and ρCp. If, for prediction, we use approximate values k̃ and ρ̃Cp, then, in
addition to the inaccuracy ε of the model, we also have an additional inaccuracy
caused by the inaccuracy in k and ρCp. In this case, it is reasonable to expect that
the worst-case difference between the observed and the predicted values will be
even larger than a:

max
t

∣∣∣T̃ (x, t)− T (x, t, k̃, ρ̃Cp)
∣∣∣ > a.

Resulting estimation of the model’s accuracy: from the analysis of a sin-

gle specimen to the analysis of all measurement results. For each specimen
s, based on the observed values T̃s(x, t) corresponding to this specimen, we can
estimate the model’s accuracy as in describing this specimen as

as = min
k,ρCp

max
t

∣∣∣T̃s(x, t)− Ts(x, t, k, ρCp)
∣∣∣ .

A model may have different accuracy for different specimens: e.g., a model may be
more accurate for smaller values of the thermal flux q and less accurate for larger
values of q. We are interested in guaranteed estimates of the model’s accuracy,
estimates which are applicable to all the specimens. Thus, as a reasonable estimate
for the model’s accuracy, we can take the largest value of as corresponding to
different specimens:

a = max
s

as = max
s

min
k,ρCp

max
t

∣∣∣T̃s(x, t)− Ts(x, t, k, ρCp)
∣∣∣ .
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Comment. The resulting formula for model’s accuracy looks somewhat complicated,
this is why we provided a detailed explanation of why we believe that this formula
is adequate for model validation.

3 Interval Techniques for Model Validation: Preliminary Results

Estimating as as a constrained optimization problem. The above formula for
as means that we need to find the values k and ρCp for which the difference∣∣∣T̃s(x, t)− Ts(x, t, k, ρCp)

∣∣∣ is the smallest possible. In other words, for each speci-

men s, we want to minimize as under the constraints that

T̃s(x, t)− as ≤ Ts(x, t, k, ρCp) ≤ T̃s(x, t) + as

for all the measurement results T̃s(x, t) obtained for this specimen.

Linearization as a first approximation to this constrained optimization prob-

lem. The dependence of the model prediction Ts(x, t, k, ρCp) on the model predic-
tion is non-linear. As a result, we get a difficult-to-solve non-linear optimization
problem.

In practice, this problem can be simplified, because we know the nominal values
k̃ and ρ̃Cp of the parameters k and ρCp, and we also know – from measurements
– that the actual values of these parameters do not deviate too much from the
nominal values: the differences ∆k = k̃ − k and ∆(ρCp) = ρ̃Cp − ρCp are small.
Thus, we can use the nominal values as the starting (0-th) approximations to k

and ρCp: k
(0) = k̃ and ρC

(0)
p = ρ̃Cp.

In the first approximation, we can only keep terms which are linear in ∆k and
∆(ρCp) in the expansion of the dependence

Ts(x, t, k, ρCp) = Ts

(
x, t, k(0) −∆k, ρC

(0)
p −∆(ρCp)

)
:

Ts(x, t, k, ρCp) = Ts

(
x, t, k(0), ρC

(0)
p

)
− c

(0)
k ·∆k − c

(0)
ρCp

·∆(ρCp),

where

c
(0)
k

def
=

∂T

∂k
, c

(0)
ρCp

def
=

∂T

∂(ρCp)
,

and the derivatives are taken for k = k(0) and ρCp = ρC
(0)
p . In this linear approx-

imation, the above optimization problem takes the following form: minimize as
under the constraints that

T̃s(x, t)− as ≤ Ts

(
x, t, k(0), ρC

(0)
p

)
− c

(0)
k ·∆k − c

(0)
ρCp

·∆(ρCp) ≤ T̃s(x, t) + as.

In this linearized problem, both the objective function and the constraints are
linear in terms of unknowns, so we can use known (and efficient) algorithms of
linear programming to solve this problem; see, e.g., [14].

Once we solve this problem, we get the values ∆k(1) and ∆(ρCp)
(1) which

are optimal in the first approximation. Based on these values, we can get a first

approximation k(1) and ρC
(1)
p to the actual optimal values of k and ρCp as k(1) =

k(0) −∆k(1) and ρC
(1)
p = ρC

(0)
p −∆(ρCp)

(1).
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From a linearized solution to a general solution. To get a more accurate so-

lution, we can use the “approximately optimal” values ∆k(1) and ∆ρC
(1)
p as a

new first approximation, and use linearization around these values. As a result,
we come up with the following iterative algorithm:

– we start with the values k(0) = k̃ and ρC
(0)
p = ρ̃Cp;

– on each iteration q, once we have the values k(q−1) and ρC
(q−1)
p , we use linear

programming to solve the following optimization problem: minimize as under
the constraints that

T̃s(x, t)−as ≤ Ts

(
x, t, k(q−1), ρC

(q−1)
p

)
−c

(q−1)
k ·∆k−c

(q−1)
ρCp

·∆(ρCp) ≤ T̃s(x, t)+as,

where

c
(q−1)
k

def
=

∂T

∂k
, c

(q−1)
ρCp

def
=

∂T

∂(ρCp)
,

and the derivatives are taken for k = k(q−1) and ρCp = ρC
(q−1)
p ;

– once we solve this linear programming problem and get the optimal values
∆k(q) and ∆(ρCp)

(q), we compute the next approximations to parameters as

k(q) = k(q−1) −∆k(q) and ρC
(q)
p = ρC

(q−1)
p −∆(ρCp)

(q).

Iterations continue until the process converges – or until we exhaust the compu-
tation time that was allocated for these computations. We then take the latest
values of k and ρCp and estimate the model’s accuracy as max

g
ãg, where

ãg = max
x,t

∣∣∣T̃s(x, t)− Ts(x, t, k, ρCp)
∣∣∣ .

Numerical results. For the above specimen 1, the iterative process converges after
the 1st iteration (i.e., the 2nd iteration leads to very small changes). The resulting
values of k and ρCp lead to the predictions listed in the following Table:

time measured prediction:
(in sec) temperature interval

approach

100 105.5 105.5
200 139.3 138.8
300 165.5 165.2
400 188.7 188.7
500 210.6 211.1
600 231.9 233.1
700 253.0 254.9
800 273.9 276.6
900 294.9 298.3

1000 315.8 319.9

Table 2 Prediction accuracy: interval approach

The largest difference between the measured and predicted values is about 5
degrees. For other specimens, we got a similar difference of ≤ 5 degrees, so we
conclude that the original model is accurate with accuracy ±5 degrees.
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Computational comment. To simplify computations, we used an equivalent refor-
mulation of the original thermal model; see Appendix.

Comments: how to get better accuracy estimates. The above model assumes that for
each specimen, the values k and ρCp remain the same. Measurement results show,
however, that these values slightly change with temperature. This can be seen,
e.g., if we plot the average value kav of k measured for a given temperature as a
function of temperature T ; see Table 3.

T 20 250 500 750 1000
kav 0.49 0.59 0.63 0.69 0.75

Table 3 Dependence of kav on T

In the probabilistic approach, this dependence is taken into account by allow-
ing correlation between the model and k; see, e.g., [5]. Linear correlation means,
in effect, that instead of considering k as an independent random variables, we
consider a dependence k = k0 + k1 · T , where k0 is independent on T and k1 is a
parameter to be determined. In the interval approach, for each specimen, we can
similarly “plug in” the expressions k = k0 + k1 · T and ρCp = ρCp,0 + ρCp,1 · T
into the above model and use the parameters k0, k1, ρCp,0, and ρCp,1 as the new
unknowns in the similar constrained optimization approach.

Another possible improvement is related to the fact that we get slightly dif-
ferent values as depending on the thermal flow q: the higher q, the larger as. The
objective is to predict how the system will react to thermal flows which may be
even higher than in any of the experiments. So instead of taking the value a(q0)
that corresponds to the current thermal flows q0, we can estimate the dependence
of a(q) on q and extrapolate this dependence to the desired high thermal flow.

In our case, which model for the dependence a(q) shall we choose? From the
physical viewpoint, the problem is invariant w.r.t. changing measuring units
q → λ · q (i.e., in mathematical terms, scale-invariant). So it is reasonable to
select a space-invariant dependence, i.e., a dependence for which, for each re-
scaling q → λ · q, the dependence has the same form if we appropriate change the
units for measuring a, i.e., that for every λ > 0, there exists a C(λ) for which
a(λ · q) = C(λ) · a(q). It is known (see, e.g., [1]) that the only monotonic solutions
to this functional equations have the form a(q) = a0 · qα for some a0 and α.

So, for each experimentally tested q, based on all samples with given q, we find
a(q), and then find a0 and α for which a(q) ≈ a0 · qα, i.e., equivalently, ln(a(q)) ≈
ln(a0) + α · ln(q). This is a system of linear equations with unknowns ln(a0) and
α, so we can use the Least Squares method to solve it. Once we find the solution,
we can predict the model’s accuracy as a(q) ≈ a0 · qα.

4 Interval Approach to Model Validation: General Description

Problem: general description. In general, we have a model z =
f(x1, . . . , xn, y1, . . . , ym) that predicts the value z of the desired quantity as a func-
tion of known quantities x1, . . . , xn and unknown quantities y1, . . . , ym; see, e.g.,
[10]. To be more precise, we usually know some crude approximate values ỹi, but
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the accuracy of these approximate values is orders of magnitude lower than the
accuracy with which we know the measured values xi and z.

Measurements are divided into groups with each of which we know that the
values yj are the same; the values yj may differ from group to group.

Comment. In the thermal problem example, n = 2, x1 = x, x2 = t, m = 2, y1 = k,
and y2 = ρCp. Groups correspond to specimens.

How to estimate the model’s accuracy: general definition. In the general case,
as an estimate for the model’s accuracy, we propose to use the value

a = max
g

min
y1,...,ym

max
x1,...,xm

∣∣∣f̃g(x1, . . . , xn)− fg(x1, . . . , xn, y1, . . . , ym)
∣∣∣ ,

where g indicates different groups, and f̃g are measurement results corresponding
to the g-th group.

In other words, as a desired value a, we take max
g

ag, where each ag is the

solution to the following optimization problem: minimize ag under the constraints
that

f̃g(x1, . . . , xn)− ag ≤ fg(x1, . . . , xn, y1, . . . , ym) ≤ f̃g(x1, . . . , xn) + ag.

How to estimate the model’s accuracy: general algorithm. By applying a
similar linearization approach, we get the following algorithm:

– we start with the values z
(0)
i = z̃i;

– on each iteration q, once we have the values z
(q−1)
i , we use linear programming

to solve the following optimization problem: minimize ag under the constraints
that

f̃g(x1, . . . , xn)− as ≤ fg

(
x1, . . . , xn, y

(q−1)
1 , y

(q−1)
m

)
−

m∑
j=1

c
(q−1)
j ·∆yj ≤

f̃g(x1, . . . , xn)− as,

where c
(q−1)
j

def
=

∂f

∂j
, and the derivatives are taken for yj = y

(q−1)
j ;

– once we solve this linear programming problem and get the optimal values

∆y
(q)
j , we compute the next approximations to parameters as

y
(q)
j = y

(q−1)
j −∆y

(q)
j .

Iterations continue until the process converges – or until we exhaust the compu-
tation time that was allocated for these computations. We then take the latest
values of yj and estimate the model’s accuracy as max

g
ãg, where

ãg = max
x1,...,xn

∣∣∣f̃g(x1, . . . , xn)− fg(x1, . . . , xn, y1, . . . , ym)
∣∣∣ .
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Very Large Baseline Interferometry (VLBI): another example of the general

approach. To get a better idea of the general problem, let us give another example
of the general approach. For each distant astronomical radio-source, we want to
find the exact direction from which the corresponding radio waves are coming. In
precise terms, we need to find a unit vector ek in the direction to the source.

One of the most accurate methods of finding the unit vector ek in the direc-
tion to a distant astronomical radio-source is Very Large Baseline Interferometry
(VLBI); see, e.g., [3,4,13,15]. In VLBI, we measure the time delay τi,j,k between
the signal observed by antennas i and j. The corresponding model comes the simple
geometric arguments, according to which

τi,j,k = c−1 · (bi − bj) · ek +∆ti −∆tj ,

where:

– bi is the location of the i-th antenna, and
– ∆ti is its clock bias on the i-th antenna, i.e., the difference between the reading

of this clock and the actual (unknown) time on this antenna.

In this model, the locations bi and the clock biases are unknown (to be more
precise, we know approximate values of the locations and biases, but these ap-
proximate values are orders of magnitude less accurate that the time delays).

We assume that the directions ek do not change during the measurements; this
assumption make sense since the sources are distant ones, and even if they move
with a speed v close to the speed of light, their angular speed v/R, where R is the
distance, can be safely ignored. We also assume that the biases and the antenna
locations do not change during one short group of measurements. In this case, z
is the time delay, and y1, . . . , ym are directions ek, locations bi, and clock biases
∆ti. When we performed sufficiently many measurements in each group g, we
have more measured values than the unknowns yj and thus, we can meaningfully
estimate the model’s accuracy; for details, see [3,4].

An even more accurate description emerges when take into account that the
Earth-bound antennas rotate with the Earth; to take rotation into account, we
must take into account time between different consequent measurements within
the same group, and this time can be measured very accurately – thus serving
as xi.

5 Closing Remarks

Amodel of real-life phenomena needs to be validated: we must compare the model’s
predictions with the experimental data and, based on this comparison, conclude
how accurate is the model. This comparison becomes difficult if the model contains,
as parameters, values of some auxiliary physical quantities – quantities which
are usually not measured in the corresponding experiments. In such situations,
we can use the results of previous measurements of these quantities in similar
situations, results based on which we can determine the probabilities of different
values of these auxiliary quantities. In the traditional probabilistic approach to
model validation, we plug in the resulting random auxiliary variables into the
model, and compare the distribution of the results with the observed distribution
of the experimental data. In this approach, however, we do use the important
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information that some measurement results correspond to the same specimen –
and thus, correspond to the same values of the auxiliary quantities. To take this
information into account, we propose a new approach, in which, for each specimen,
we, in effect, first estimate the values of the auxiliary quantities based on the
measurement results, then plug these estimated values back into the model – and
use the resulting formula to gauge how accuracy the original model is on this
specimen. We illustrate this approach on the example of a benchmark thermal
problem.
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A How to Simplify Computations

Our main formula has the form

T (x, t) = Ti +
q · L
k

·
[
(k/ρCp) · t

L2
+

1

3
−

x

L
+

1

2
·
(
x

L

)2

−
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2

π2
·

6∑
n=1

1

n2
· exp

(
−n2 · π2 ·

(k/ρCp) · t
L2

)
· cos

(
n · π ·

x

L

)]
.

In this formula, the parameter ρCp always appears in a ratio
k/ρCp

L2
. It is therefore reasonable,

instead of the original variables y1 = k and y2 = ρCp, to use new auxiliary variables Y1 =
q · L
k

and Y2 =
k/ρCp

L2
. As a result, we get the following simplified formula:

T (x, t) = Ti + Y1 ·
[
Y2 · t+

1

3
− x0 +

1

2
· x2

0−

2

π2
·

6∑
n=1

1

n2
· exp(−n2 · π2 · Y2 · t) · cos (n · π · x0)

]
,

where x0
def
=

x

L
. In this case,

∂T

∂Y1
= Y2 · t+

1

3
− x0 +

1

2
· x2

0 −
2

π2
·

6∑
n=1

1

n2
· exp(−n2 · π2 · Y2 · t) · cos (n · π · x0) ;

∂T

∂Y2
= t ·

[
Y1 − 2 ·

6∑
n=1

· exp(−n2 · π2 · Y2 · t) · cos (n · π · x0)

]
.


