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Abstract

In the traditional (static) fuzzy logic approach, we select an “and”-operation (t-
norm) and an “or”-operation (t-conorm). The result of applying these selected op-
erations may be somewhat different from the actual expert’s degrees of belief in the
corresponding logical combinations A&B and A∨B of the original statements – since
these degrees depend not only on the expert’s degrees of belief in statements A and B,
but also in the extent to which the statements A and B are dependent. We show that
dynamic fuzzy logic enables us to automatically take this dependence into account –
and thus, leads to more adequate “and”- and “or”-operations.

1 Formulation of the Problem

“And” and “or” operations in fuzzy logic. In many practical applications, expert
rules are formulated by using imprecise (“fuzzy”) words from natural language, like “small”,
“medium size”, or “large”. For example, medical recommendations about a tumor depend on
whether the tumor is small, medium size, or large. Similarly, expert advise on how to avoid
collision with a car in front depend on whether the distance to this car is small, medium, or
large. To describe such words, Lotfi Zadeh proposed fuzzy logic. In fuzzy logic, to describe
each imprecise (“fuzzy”) property P like “small”, we assign, to each possible value x of the
corresponding quantity (e.g., the size of a tumor), the degree µP (x) ∈ [0, 1] to which experts
believe that this value satisfies the given property; see, e.g., [3, 5].

This number can come, e.g., as a proportion of the experts who believe that x satisfies
the given property, or as a subjective probability.

As a result, for each specific object of size x, we have a degree µP (x) to which this object
satisfies the given property and to which, thus, the corresponding expert rule is applicable.

Often, an expert rule contains several conditions: e.g., we can say that if an obstacle
is close and the car is going fast, then we need to break fast; if a skin tumor is large or
bleeding or has irregular shape, then we need to operate on it. From the description of
the corresponding terms, we know the expert’s degrees of confidence in the corresponding
component statements: e.g., that the obstacle is close and that the car is going fast. To find
the degree to which the rule as a whole is applicable, we need to combine there degrees into a
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single degree that describes to what extent the corresponding “and” and “or” statements are
satisfies. An algorithm f&(a, b) that transforms degree of confidence a and b in statements
A and B into the degree of confidence in the composite statement A&B is called an “and”-
operation or a t-norm. Similarly, an algorithm f∨(a, b) that transforms degree of confidence
a and b in statements A and B into the degree of confidence in the composite statement
A ∨B is called an “or”-operation or a t-conorm.

Variety of t-norms and t-conorms. In fuzzy logic, there are numerous t-norms and
t-conorms. Which one to apply depends on the relation between the statements A and B.
This dependence can be illustrated in the probabilistic approaches, when degree a represents
the probability that A is true (or the probability that a randomly selected expert considers
A to be true).

If A and B are independent, then the probability f&(a, b) of A&B is equal to the product
a ·b = P (A) ·P (B) of the corresponding probabilities. In this case, the most adequate t-norm
is a product f&(a, b) = a · b.

Of the other hand, if we know that A and B are strongly correlated, then a t-norm
f&(a, b) = min(a, b) which leads to P (A&B) = P (A) = P (B) if A = B is more adequate.

The problem is that in many cases, we do not know whether A and B are correlated or
not. In such cases, we select some t-norm. The selected t-norm may not necessarily coincide
with the ideal one; hence, the resulting recommendations may not be always adequate.
This “truth-functionality”, the fact that the degree of confidence in A&B depends only on
the degrees of confidence in A and B – without fully adequately taking into account the
possibility of different correlations – if often cited as one of the main limitations of fuzzy
techniques.

Dynamic fuzzy logic. The traditional fuzzy logic assumes that the expert’s degrees of
confidence do not change. In reality, the expert’s opinions often change with time. Thus,
to get a more adequate description of the expert opinions and rules, it is necessary to take
these changes into account, i.e., to take into account that the expert’s degree of confidence
in each statement A changes with time. In other words, to describe the expert’s opinion
about a statement A, instead of a single value a ∈ [0, 1], we need to use a function a(t) that
describes how this degree changes with time t. Such dynamic fuzzy logic was proposed in
[2, 6, 7, 8].

What we do in this paper. In this paper, we show that, if we take this dynamics into
consideration, then we can get a more adequate description of “and” and “or” operations, a
description in which it is possible to distinguish between the cases when the statements are
independent and when they are strongly dependent.

This possibility will be illustrated on the example when the fuzzy degrees have a proba-
bilistic meaning.
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2 Main Idea

Relation between correlation and the probabilities P (A&B) and P (A ∨ B): re-
minder. In statistics, the most frequent way to describe correlation between two random
variables x and y is to use the correlation coefficient

ρ =
E[x · y]− E[x] · E[y]√

V [x] · V [y]
,

where E[x] denote the mean (expected value) of the variable x and the variance V [x] is
defined as

V [x]
def
= E[(x− E[x])2] = E[x2]− (E[x])2;

see, e.g., [9].
A statement A which is true with probability a and false with the remaining probability

1− a can be viewed as a random variable that takes the value 1 (= “true”) with probability
a and 0 (= “false”) with probability 1− a. For this variable,

E[A] = 1 · a+ 0 · (1− a) = a

and similarly, E[B] = b. Similarly, E[A&B] = P (A&B).
Here, A = 0 or A = 1, hence A2 = A, E[A2] = E[A] and thus, V [A] = E[A2]− (E[A])2 =

a− a2 = a · (1− a). Similarly, we can conclude that V [B] = b · (1− b).
For true and false statements, “and” is simply a product, so A&B = A · B and thus,

E[A&B] = P (A&B) = E[A · B]. Thus, the above formula for the correlation takes the
following form:

ρ =
P (A&B)− a · b√

a · (1− a) · b · (1− b)
.

Once we know the probabilities P (A) = a and P (B) = b and the correlation
coefficient, we can uniquely reconstruct the probabilities P (A&B) and P (A∨B).
From the above formula, we can conclude that

P (&B) = a · b+ ρ ·
√
a · (1− a) · b · (1− b). (1)

The expression for P (A ∨B) can be found if we take into account the known property

P (A&B) + P (A ∨B) = P (A) + P (B),

from which we conclude that

P (A ∨B) = P (A) + P (B)− P (A&B) = a+ b− P (A&B),

i.e.,

P (&B) = a+ b− a · b− ρ ·
√
a · (1− a) · b · (1− b). (2)
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How do we find the correlation coefficient? In the dynamic case, we now only know
the current expert’s degrees of confidence a and b in statements A and B, we also know the
past degrees a(t) and b(t) which were, in general, different from a and b.

When the statement A and B are strongly correlated, then it is reasonable to expect
that the corresponding changes a(t) and b(t) are also correlated. If the statements A and
B are independent, then it is reasonable to expect that the changes a(t) and b(t) are also
independent. In general, to find the correlation coefficient between A and B, we can use,
as random variables, the values a(t) and b(t) corresponding to T known moments of time.
Under this idea,

E[A] =
1

T
·
∑
t

a(t), E[B] =
1

T
·
∑
t

b(t),

V [A] =
1

T
·
∑
t

a2(t)−
(
1

T
·
∑
t

a(t)

)2

, V [B] =
1

T
·
∑
t

b2(t)−
(
1

T
·
∑
t

b(t)

)2

,

E[A ·B] =
1

T
·
∑
t

a(t) · b(t),

and thus,

ρ =

1

T
·
∑
t

a(t) · b(t)−
(
1

T
·
∑
t

a(t)

)
·
(
1

T
·
∑
t

b(t)

)
√√√√√
 1

T
·
∑
t

a2(t)−
(
1

T
·
∑
t

a(t)

)2
 ·

 1

T
·
∑
t

b2(t)−
(
1

T
·
∑
t

b(t)

)2

.

Substituting this value ρ into (1) and (2), we get the desired estimates for P (A&B) and
P (A ∨B).

Mathematical comment. In producing these estimates, we implicitly assumed that for the
desired statistical characteristic (in our case, correlation), averaging over time leads to the
same result as averaging over a sample. This property is called ergodicity; it is often assumed
and/or proved in statistical physics and in statistical data analysis; see, e.g., [1, 10].

Computational comment. In the above formulas, we implicitly assumed that the correlation
between different expert estimates does not change in time. In reality, just like the expert
degrees change with time, the correlation between these degrees may also change. It is
therefore necessary to take this change into account when estimating correlation. One way
to do that is to consider the recent values with a higher weight, and the past values with a
lower weight. In other words, to each of T moments of time, we assign a weight w(t) ≥ 0
such that

∑
t
w(t) = 1, and then consider the modified formulas

E[A] =
∑
t

w(t) · a(t), E[B] =
∑
t

w(t) · b(t),

V [A] =
∑
t

w(t) · a2(t)−
(∑

t

w(t) · a(t)
)2

,
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V [B] =
∑
t

w(t) · b2(t)−
(∑

t

w(t) · b(t)
)2

,

E[A ·B] =
∑
t

w(t) · a(t) · b(t).

The above case corresponds to w(t) =
1

T
. A usual selection of “discount” weights is w(t) =

C · qt for some q < 1. In this case, the sum
∑

w(t) =
∑

C · qt is the sum of a geometric
progression:

T∑
t=1

C · qt = C ·
T∑
t=1

qt = C · 1− qT+1

1− q
.

Thus, once q is selected, the value C is determined from the condition that
∑
t
w(t) = 1, as

C =
1− q

1− qT+1
.

3 Limitations: Computational Complexity and Non-

Associativity

What are the limitations of this approach?

Computational complexity: description. An obvious limitation is that to find the
degree of confidence in A&B or in A ∨ B, we now need to perform a large number of
computations – instead of simply applying a t-norm or a t-conorm to two numbers.

Computational complexity is unavoidable. This limitation is unavoidable: in the
dynamic fuzzy logic, we have more values for representing the expert’s degree of confidence
in each statement, so processing these degrees takes more computation time.

Non-associativity: description. Another limitation is that, in contrast to the usual
(static) fuzzy logic, dynamic logic operations are not necessarily associative, i.e., the esti-
mates for (A ∨B) ∨ C and for A ∨ (B ∨ C) are, in general, different.

Non-associativity is unavoidable. Let us show that this non-associativity is also a
limitation not of a specific method of extending “and”- and “or”-operations to dynamic
fuzzy logic, but a limitation of the very dynamic character of these logics.

Let us show that non-associativity occurs even if we restrict ourselves to linear operations.
This possibility comes from the fact that one of the most frequently used probability-related
fuzzy “or”-operation f∨(a, b) = a + b − a · b is approximately linear for small a and b, and
that it is isomorphic to a + b is we appropriately re-scale the values from the interval [0, 1]
to the set IR+

0 of all non-negative numbers.
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Definitions.

• For every integer t, by a dynamical fuzzy value corresponding to time t, we mean a
sequence of values a = {as}s≤t, where each value as belongs to the set IR+

0 .

• For every integer t0 and for each dynamic fuzzy value a, by a shift St0(a), we mean a
sequence a′ = {a′s}s≤t+t0 for which a′s = as−t0.

• By a aggregation operation, we mean an operation f that transforms two sequences
a = {as}s≤t and b = {bs}s≤t into a value ct ∈ IR+

0 .

• An operation f is called shift-invariant if for every a, b, and t, if it transforms a and b
into a value ct, then it transforms shifted values St0(a) and St0(b) into the same value
ct+t0.

• We say that an aggregation operation f is linear if it is a linear function of all its
variables as and bs, i.e.,

ct = Zt +
∑
s≤t

At,s · as +
∑
s≤t

Bt,s · bs.

• For any aggregation operation f , by the result c = {cs}s≤t = f(a, b) of applying this
operation to sequences a = {as}s≤t and b = {bs}s≤t we mean a sequence for which, for
every s ≤ t, cs = f({au}u≤s, {bu}u≤s).

• We say that an operation is commutative if f(a, b) = f(b, a) for all a and b, and
associative if f(f(a, b), c) = f(a, f(b, c)).

Proposition. If c = f(a, b) is a shift-invariant linear commutative and associative opera-
tion, then the value ct depends only on at and bt and does not depend on the values as and
bs for s < t.

Comment. In other words, any commutative linear operation that takes into account pre-
vious fuzzy estimates is not associative.

Proof.

1◦. Let us first use the fact that our linear aggregation operation is shift-invariance.

By definition, shift-invariance means that for every two sequences a and b, if

ct = Zt +
∑
s≤t

At,s · as +
∑
s≤t

Bt,s · bs,

and then combine the shifted sequences a′ = St0(a) and b′ = St0(b):

c′t+t0
= Zt+t0 +

∑
s≤t+t0

At+t0,s · a′s +
∑
s≤t

Bt+t0,s · b′s,
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then we should get the same result: ct = c′t+t0
. Substituting a′s = as−t0 and b′s = bs−t0 into

the formula for c′t+t0
, we conclude that

c′t+t0
= Zt+t0 +

∑
s≤t+t0

At+t0,s · as−t0 +
∑
s≤t

Bt+t0,s · bs−t0 .

Introducing a new variable s′
def
= s− t0 for which s = s′ + t0, we get

c′t+t0
= Zt+t0 +

∑
s′≤t

At+t0,s′+t0 · as′ +
∑
s≤t

Bt+t0,s′+t0 · bs′ .

For the following arguments, it is convenient to rename s′ into s, as a result, we conclude
that

c′t+t0
= Zt+t0 +

∑
s≤t

At+t0,s+t0 · as +
∑
s≤t

Bt+t0,s+t0 · bs.

The fact that ct and c′t+t0
are equal means that the following equality holds for all possible

sequences a and b:
Zt +

∑
s≤t

At,s · as +
∑
s≤t

Bt,s · bs =

Zt+t0 +
∑
s≤t

At+t0,s+t0 · as +
∑
s≤t

Bt+t0,s+t0 · bs.

Two linear functions coincide if and only if all their coefficients coincide. Thus, for every t
and t0, we have Zt = Zt+t0 , At,s = At+t0,s+t0 , and Bt,s = Bt+t0,s+t0 .

1.1◦. Let us first use the first equality Zt = Zt+t0 .

For every two values t and t′, we can take t0 = t′ − t, then t+ t0 = t′ hence Zt = Zt′ . Thus,
every two values Zt coincide, so the value Zt does not depend on t. We will denote this
common value by Z.

1.2◦. From At,s = At+t0,s+t0 , by taking t0 = −s, we conclude that At,s = At−s,0. By denoting

At
def
= At,0, we can describe this as At,s = At−s.

1.3◦. Similarly, we conclude that Bt,s = Bt−s.

Thus, a shift-invariant linear operation has the form

ct = Z +
∑
s≤t

At−s · as +
∑
s≤t

Bt−s · bs.

2◦. Let us now use commutativity.

Commutativity means that the result of applying this operation to a and b is the same as
the result of applying it to b and a, i.e., that

Z +
∑
s≤t

At−s · as +
∑
s≤t

Bt−s · bs = Z +
∑
s≤t

At−s · bs +
∑
s≤t

Bt−s · as.
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Here again, the fact that the two linear functions coincide means that all their coefficients
must coincide, i.e., that At = Bt for all t. Thus, the above formula for ct takes the form

ct =
∑
s≤t

At−s · (as + bs).

3◦. Let us now use associativity f(f(a, b), c) = f(a, f(b, c)).

Associativity means that the two aggregation expressions f(f(a, b), c) and f(a, f(b, c)) coin-
cide.

3.1◦. In the expression f(f(a, b), c), we first combine sequences a and b into a new sequence
d = f(a, b), and then combine d and c into a new sequence e = f(d, c). For the t-th
component of these two new sequences d and e, if we keep track only of the dependence on
at, bt, and ct, we get dt = A0 · (at + bt) + . . . and thus,

et = A0 · (dt + ct) + . . . = A2
0 · (at + bt) + A0 · ct + . . .

A similar expression for f(a, f(b, c)) takes the form

A2
0 · (bt + ct) + A0 · at + . . .

The fact that the two expression coincide means that for all possible values at, bt, and ct, we
have

A2
0 · (at + bt) + A0 · ct = A2

0 · (bt + ct) + A0 · at.
Since the two linear functions coincide, their coefficients must coincide, i.e., we must have
A0 = A2

0. Thus, we have A0 = 0 or A0 = 1.

3.2◦. Let us show that in both cases A0 = 0 and A0 = 1, we have A1 = A2 = . . . = 0, i.e.,
the value ct depends only on at and bt and does not depend on the previous values as and
bs.

In both cases, we will prove it by contradiction. Indeed, let us assume that Aj ̸= 0 for some
j ≥ 1; let k denote the smallest index k ≥ 0 for which Ak ̸= 0.

3.2.1◦. When A0 = 0, this means that the aggregation operation f(a, b) leads to

dt = Z + Ak · (at−k + bt−k) + . . .

and
et = Z + Ak · (dt−k + ct−k) + . . .

Here,
dt−k = Z + Ak · (at−2k + bt−2k) + . . .

Thus, we have
et = Z + Ak · Z + A2

k · (at−2k + bt−2k) + Ak · ct−k + . . .

Similarly, the second expression f(a, f(b, c)) leads to

et = Z + Ak · Z + A2
k · (bt−2k + ct−2k) + Ak · at−k + . . . ,
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thus
Z + Ak · Z + A2

k · (at−2k + bt−2k) + Ak · ct−k + . . . =

Z + Ak · Z + A2
k · (bt−2k + ct−2k) + Ak · at−k + . . .

The left-hand side of this equality does not depend on the value at−k, it only depends on the
previous values, while the right-hand side explicitly depends on at−k: this term enters with
a coefficient Ak ̸= 0.

Thus, the equality is indeed impossible.

3.2.2◦. When A0 = 1, the aggregation operation f(a, b) leads to

dt = Z + at + bt + Ak · (at−k + bt−k) + . . .

and
et = Z + dt + ck + Ak · (dt−k + ct−k) + . . .

Here,
dt−k = Z + at−k + bt−k + . . .

Thus, we have
et = Z + (Z + at + bt + Ak · (at−k + bt−k) + . . .) + ct+

Ak · ((Z + at−k + bt−k + . . .) + ct−k) + . . . =

2Z + at + bt + ct + Ak · (2at−k + 2bt−k + ct−k) + . . .

Similarly, the second expression f(a, f(b, c)) leads to

et = 2Z + at + bt + ct + Ak · (2bt−k + 2ct−k + at−k) + . . . ,

thus
2Z + at + bt + ct + Ak · (2at−k + 2bt−k + ct−k) + . . . =

2Z + at + bt + ct + Ak · (2bt−k + 2ct−k + at−k) + . . .

Since the two linear functions coincide, all corresponding coefficients must coincide. The
left-hand side of this equality contains at−k with a coefficient 2Ak, while the right-hand side
has this variable with a different coefficient Ak ̸= 2Ak.

Thus, the equality is impossible in this case as well.

The proposition is proven.

Comment. The fact that not all algebraic properties can be satisfied in the dynamical
case is known in other similar situations: e.g., in [4], it is proven that if we formula natural
requirements for a reasonable next step in a bargaining process, then every function satisfying
these requirements does not depend on the bargaining pre-history.
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