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Abstract. On several examples from interval and fuzzy computations
and from related areas, we show that when the results of data processing
are unusually good, their computation is unusually complex. This makes
us think that there should be an analog of Heisenberg’s uncertainty prin-
ciple well known in quantum mechanics: when we an unusually beneficial
situation in terms of results, it is not as perfect in terms of computations
leading to these results. In short, nothing is perfect.

1 First Case Study: Interval Computations

Need for data processing. In science and engineering, we want to understand how
the world works, we want to predict the results of the world processes, and we
want to design a way to control and change these processes so that the results
will be most beneficial for the humankind.

For example, in meteorology, we want to know the weather now, we want to
predict the future weather, and – if, e.g., floods are expected, we want to develop
strategies that would help us minimize the flood damage.

Usually, we know the equations that describe how these systems change in
time. Based on these equations, engineers and scientists have developed algo-
rithms that enable them to predict the values of the desired quantities – and
find the best values of the control parameters. As input, these algorithms take
the current and past values of the corresponding quantities.

For example, if we want to predict the trajectory of the spaceship, we need
to find its current location and velocity, the current position of the Earth and
of the celestial bodies, then we can use Newton’s equations to find the future
locations of the spaceship.

In many situations – e.g., in weather prediction – the corresponding compu-
tations require a large amount of input data and a large amount of computations
steps. Such computations (data processing) are the main reason why computers
were invented in the first place – to be able to perform these computations in
reasonable time.



Need to take input uncertainty into account. In all the data processing tasks, we
start with the current and past values x1, . . . , xn of some quantities, and we use
a known algorithm f(x1, . . . , xn) to produce the desired result y = f(x1, . . . , xn).

The values xi come from measurements, and measurements are never abso-
lutely accurate: the value x̃i that we obtained from measurement is, in general,
different from the actual (unknown) value xi of the corresponding quantity. For
example, if the clock shows 12:20, it does not mean that the time is exactly 12
hours, 20 minutes and 00.0000 seconds: it may be a little earlier or a little later
than that.

As a result, in practice, we apply the algorithm f not to the actual values
xi, but to the approximate values x̃i that come from measurements:

-

· · ·

-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

So, instead of the ideal value y = f(x1, . . . , xn), we get an approximate
value ỹ = f(x̃1, . . . , x̃n). A natural question is: how do approximation errors

∆xi
def
= x̃i − xi affect the resulting error ∆y

def
= ỹ − y? Or, in plain words, how

to take input uncertainty into account in data processing?

From probabilistic to interval uncertainty. [18] Manufacturers of the measuring
instruments provide us with bounds ∆i on the (absolute value of the) measure-
ment errors: |∆xi| ≤ ∆i. If now such upper bound is known, then the device is
not a measuring instrument.

For example, a street thermometer may show temperature that is slightly
different from the actual one. Usually, it is OK if the actual temperature is +24
but the thermometer shows +22 – as long as the difference does not exceed some
reasonable value ∆. But if the actual temperature is +24 but the thermometer
shows −5, any reasonable person would return it to the store and request a
replacement.

Once we know the measurement result x̃i, and we know the upper bound ∆i

on the measurement error, we can conclude that the actual (unknown) value xi

belongs to the interval [x̃i −∆i, x̃i +∆i]. For example, if the measured temper-
ature is x̃i = 22, and the manufacturer guarantees the accuracy ∆i = 3, this
means that the actual temperature is somewhere between x̃i−∆i = 22− 3 = 19
and x̃i +∆i = 22 + 3 = 25.

Often, in addition to these bounds, we also know the probabilities of different
possible values ∆xi within the corresponding interval [−∆i,∆i]. This is how



uncertainty is usually handled in engineering and science – we assume that we
know the probability distributions for the measurement errors ∆xi (in most
cases, we assume that this distribution is normal), and we use this information
to describe the probabilities of different values of ∆y. However, there are two
important situations when we do not know these probabilities:

– cutting-edge measurements, and
– cutting-cost manufacturing.

Indeed, how do we determine the probabilities? Usually, to find the probabili-
ties of different values of the measurement error ∆xi = x̃i − xi, we bring our
measuring instrument to a lab that has a “standard” (much more accurate)
instrument, and compare the results of measuring the same quantity with two
different instruments: ours and a standard one. Since the standard instrument
is much more accurate, we can ignore its measurement error and assume that
the value Xi that it measures is the actual value: Xi ≈ xi. Thus, the difference
x̃i − Xi between the two measurement results is practically equal to the mea-
surement error ∆xi = x̃i − xi. So, when we repeat this process several times,
we get a histogram from which we can find the probability distribution of the
measurement errors.

However, in the above two situations, this is not done. In the case of cutting-
edge measurements, this is easy to explain. For example, if we want to estimate
the measurement errors of the measurement performed by a Hubble space tele-
scope (or by the newly built CERN particle collider), it would be nice to have a
“standard”, five times more accurate telescope floating nearby – but Hubble is
the best we have. In manufacturing, in principle, we can bring every single sensor
to the National Institute of Standards and determine its probability distribution
– but this would cost a lot of money: most sensors are very cheap, and their “cal-
ibration” using the expensive super-precise “standard” measuring instruments
would cost several orders of magnitude more. So, unless there is a strong need
for such calibration – e.g., if we manufacture a spaceship – it is sufficient to just
use the upper bound on the measurement error.

In both situations, after the measurements, the only information that we have
about the actual value of xi is that this value belongs to the interval [xi, xi] =
[x̃i −∆i, x̃i +∆i].

Different possible values xi from the corresponding intervals lead, in general,
to different values of y = f(x1, . . . , xn). It is therefore desirable to find the range
of all possible values of y, i.e., the set

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , [xn, xn]}.

(Since the function f(x1, . . . , xn) is usually continuous, its range is the interval.)
Thus, we arrive at the same interval computations problem; see, e.g., [6, 7, 15].



The main problem. We are given:

– an integer n;
– n intervals x1 = [x1, x1], . . . , xn = [xn, xn], and
– an algorithm f(x1, . . . , xn) which transforms n real numbers into a real num-

ber y = f(x1, . . . , xn).

We need to compute the endpoints y and y of the interval

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , [xn, xn]}.

-

. . .

-

-

xn

x2

x1

-yf

In general, the interval computations problem is NP-hard. It is known that
in general, the problem of computing the exact range y is NP-hard; see, e.g.,
[13]. Moreover, it is NP-hard even if we restrict ourselves to quadratic functions
f(x1, . . . , xn) – even to the case when we only consider a very simple quadratic
function: a sample variance [2, 3]:

f(x1, . . . , xn) =
1

n
·

n∑
i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

.

NP-hard means, crudely speaking, that it is not possible to have an algorithm
that would always compute the exact range in reasonable time.

Case of small measurement errors. In many practical situations, the measure-
ment errors are relatively small, i.e., we can safely ignore terms which are
quadratic or higher order in terms of these errors. For example, if the mea-
surement error is 10%, its square is 1% which is much smaller than 10%. In such
situations, it is possible to have an efficient algorithm for computing the desired
range.

Indeed, in such situations, we can simplify the expression for the desired error

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn)



if we expand the function f in Taylor series around the point (x̃1, . . . , x̃n) and
restrict ourselves only to linear terms in this expansion. As a result, we get the
expression

∆y = c1 ·∆x1 + . . .+ cn ·∆xn,

where by ci, we denoted the value of the partial derivative ∂f/∂xi at the point
(x̃1, . . . , x̃n):

ci =
∂f

∂xi |(x̃1,...,x̃n)
.

In the case of interval uncertainty, we do not know the probability of different
errors ∆xi; instead, we only know that |∆xi| ≤ ∆i. In this case, the above sum
attains its largest possible value if each term ci · ∆xi in this sum attains the
largest possible value:

– If ci ≥ 0, then this term is a monotonically non-decreasing function of ∆xi,
so it attains its largest value at the largest possible value ∆xi = ∆i; the
corresponding largest value of this term is ci ·∆i.

– If ci < 0, then this term is a decreasing function of ∆xi, so it attains its
largest value at the smallest possible value ∆xi = −∆i; the corresponding
largest value of this term is −ci ·∆i = |ci| ·∆i.

In both cases, the largest possible value of this term is |ci| ·∆i, so, the largest
possible value of the sum ∆y is

∆ = |c1| ·∆1 + . . .+ |cn| ·∆n.

Similarly, the smallest possible value of ∆y is −∆.
Hence, the interval of possible values of ∆y is [−∆,∆], with ∆ defined by

the above formula.

How do we compute the derivatives? If the function f is given by its analytical
expression, then we can simply explicitly differentiate it, and get an explicit
expression for its derivatives. This is the case which is typically analyzed in
textbooks on measurement theory; see, e.g., [18].

In many practical cases, we do not have an explicit analytical expression, we
only have an algorithm for computing the function f(x1, . . . , xn), an algorithm
which is too complicated to be expressed as an analytical expression.

When this algorithm is presented in one of the standard programming lan-
guages such as Fortran or C, we can apply one of the existing analytical dif-
ferentiation tools (see, e.g., [5]), and automatically produce a program which
computes the partial derivatives ci. These tools analyze the code and produce
the differentiation code as they go.

In many other real-life applications, an algorithm for computing f(x1, . . . , xn)
may be written in a language for which an automatic differentiation tool is not
available, or a program is only available as an executable file, with no source
code at hand. In such situations, when we have no easy way to analyze the code,
the only thing we can do is to take this program as a black box: i.e., to apply it



to different inputs and use the results of this application to compute the desired
value ∆. Such black-box methods are based on the fact that, by definition, the
derivative is a limit:

ci =
∂f

∂xi
=

lim
h→0

f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− f(x̃1, . . . , x̃i−1, x̃i, x̃i+1, . . . , x̃n)

h
.

By definition, a limit means that when h is small, the right-hand side expression
is close to the derivative – and the smaller h, the closer this expression to the
desired derivative. Thus, to find the derivative, we can use this expression for
some small h:

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− f(x̃1, . . . , x̃i−1, x̃i, x̃i+1, . . . , x̃n)

h
.

To find all n partial derivatives ci, we need to call the algorithm for computing
the function f(x1, . . . , xn) n+ 1 times:

– one time to compute the original value f(x̃1, . . . , x̃i−1, x̃i, x̃i+1, . . . , x̃n) and
– n times to compute the perturbed values f(x̃1, . . . , x̃i−1, x̃i+h, x̃i+1, . . . , x̃n)

for i = 1, 2, . . . , n.

So:

– if the algorithm for computing the function f(x1, . . . , xn) is feasible, finishes
its computations in polynomial time Tf , i.e., in time which is bounded by a
polynomial of the size n of the input,

– then the overall time needed to compute all n derivatives ci is bounded by
(n+ 1) · Tf and is, thus, also polynomial – i.e., feasible.

Cases when the resulting error is unusually small. In general, the resulting ap-
proximation error ∆ is a linear function of the error bounds ∆1, . . . , ∆n on
individual (direct) measurements. In other words, the resulting approximation
error is of the same order as the original bounds ∆i. In this general case, the
above technique (or appropriate faster techniques; see, e.g., [9, 19]) provide a
good estimate for ∆, an estimate with an absolute accuracy of order ∆2

i and
thus, with a relative accuracy of order ∆i.

There are usually good cases, when all (or almost all) linear terms in the linear

expansion disappear: when the derivatives ci =
∂f

∂xi
are equal to 0 (or close to

0) at the point (x̃1, . . . , x̃n). In this case, to estimate ∆, we must consider next
terms in Taylor expansion, i.e., terms which are quadratic in ∆i:

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn) =

f(x̃1, . . . , x̃n)−

f(x̃1, . . . , x̃n) +
1

2
·

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
·∆xi ·∆xj + . . .

 =



−1

2
·

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
·∆xi ·∆xj + . . .

As a result, in such situations, the resulting approximation error is unusually
small – it is proportional to ∆2

i instead of ∆i. For example, when the measure-
ment accuracy is ∆i ≈ 10%, usually, we have ∆ of the same order 10%, but in
this unusually good case, the approximation accuracy is of order ∆2

i ≈ 1% – an
order of magnitude better.

When bounds are unusually good, their computation is unusually slow. In the
above case, estimating ∆ means solving an interval computations problem (of
computing the range of a given function on given intervals) for a quadratic
function f(x1, . . . , xn). We have already mentioned that, in contrast to the linear
case when we have an efficient algorithm, the interval computation problem for
quadratic functions is NP-hard. Thus, when bounds are unusually small, their
computation is an unusually difficult task.

Discussion. The above observation us think that there should be an analog of
Heisenberg’s uncertainty principle (well known in quantum mechanics):

– when we an unusually beneficial situation in terms of results,
– it is not as perfect in terms of computations leading to these results.

In short, nothing is perfect.

Comment. Other examples – given below – seem to confirm this conclusion.

2 Second Case Study: Fuzzy Computations

Need for fuzzy computations. In some cases, in addition to (and/or instead of)
measurement results xi, we have expert estimates for the corresponding quan-
tities. These estimates are usually formulated by using words from natural lan-
guage, like “about 10”. A natural way to describe such expert estimates is to use
fuzzy techniques (see, e.g., [8, 17]), i.e., to describe each such estimate as a fuzzy
number Xi – i.e., as a function µi(xi) that assigns, to each possible value xi, a
degree to which the expert is confident that this value is possible. This function
is called a membership function.

Fuzzy data processing. When each input xi is described by a fuzzy number Xi,
i.e., by a membership function µi(xi) that assigns, to every real number xi, a
degree to which this number is possible as a value of the i-th input, we want to
find the fuzzy number Y that describes f(x1, . . . , xn). A natural way to define the
corresponding membership function µ(y) leads to Zadeh’s extension principle:

µ(y) = sup{min(µ1(x1), . . . , µn(xn)) : f(x1, . . . , xn) = y}.



Fuzzy data processing can be reduced to interval computations. It is known that
from the computational viewpoint, the application of this formula can be reduced
to interval computations.

Specifically, for each fuzzy set with a membership function µ(x) and for each

α ∈ (0, 1], we can define this set’s α-cut as X (α)
def
= {x : µ(x) ≥ α}. Vice versa,

if we know the α-cuts for all α, we, for each x, can reconstruct the value µ(x) as
the largest value α for which x ∈ X (α). Thus, to describe a fuzzy number, it is
sufficient to find all its α-cuts.

It is known that when the inputs µi(xi) are fuzzy numbers, and the function
y = f(x1, . . . , xn) is continuous, then for each α, the α-cut Y(α) of y is equal to
the range of possible values of f(x1, . . . , xn) when xi ∈ Xi(α) for all i:

Y(α) = f(X1(α), . . . ,Xn(α)) = {f(x1, . . . , xn) : x1 ∈ X1(α), . . . , xn ∈ Xn};

see, e.g., [1, 8, 16, 17]. So, if we know how to solve our problem under interval
uncertainty, we can also solve it under fuzzy uncertainty – e.g., by repeating the
above interval computations for α = 0, 0.1, . . . , 0.9, 1.0.

When bounds are unusually good, their computation is unusually slow. Because
of the above reduction, the conclusion about interval computations can be ex-
tended to fuzzy computations:

– when the resulting bounds are unusually good,
– their computation is unusually difficult.

3 Third Case Study: When Computing Variance under
Interval Uncertainty Is NP-Hard

Computing the range of variance under interval uncertainty is NP-hard: re-
minder. The above two examples are based on the result that computing the
range of a quadratic function under interval uncertainty is NP-hard. Actu-
ally, as we have mentioned, even computing the range [V , V ] of the variance
V (x1, . . . , xn) on given intervals x1, . . . , xn is NP-hard [2, 3]. Specifically, it
turns out that while the lower endpoint V can be computed in polynomial time,
computing the upper endpoint V is NP-hard.

Let us move analysis deeper. Let us check when we should expect the most
beneficial situation – with small V – and let us show that in this case, computing
V is the most difficult task.

When we can expect the variance to be small. By definition, the variance V =

1

n
·

n∑
i=1

(xi − E)2 describes the average deviation of its values from the mean

E =
1

n
·

n∑
i=1

xi. The smallest value of the variance V is attained when all the



values from the sample are equal to the mean E, i.e., when all the values in the
sample are equal x1 = . . . = xn.

In the case of interval uncertainty, it is thus natural to expect that the vari-
ance is small if it is possible that all values xi are equal, i.e., if all n intervals x1,
. . . , xn have a common point.

In situations when we expect small variance, its computation is unusually slow.
Interestingly, NP-hardness is proven, in [2, 3], exactly on the example of n inter-
vals that all have a common intersection – i.e., on the example when we should
expect the small variance.

Moreover, if the input intervals do not have a common non-empty intersection
– e.g., if there is a value C for which every collection of C intervals have an empty
intersection – then it is possible to have a feasible algorithm for computing the
range of the variance [2–4, 10–12].

Discussion. Thus, we arrive at the same conclusion as in the above cases:

– when we an unusually beneficial situation in terms of results,
– it is not as perfect in terms of computations leading to these results.

4 Fourth Case Study: Kolmogorov Complexity

Need for Kolmogorov complexity. In many application areas, we need to compress
data (e.g., an image). The original data can be, in general, described as a string x
of symbols. What does it mean to compress a sequence? It means that instead of
storing the original sequence, we store a compressed data string and a program
describing how to un-compress the data. The pair consisting of the data and
the un-compression program can be viewed as a single program p which, when
run, generates the original string x. Thus, the quality of a compression can be
described as the length of the shortest program p that generates x. This shortest
length is known as Kolmogorov complexity K(x) of the string x; see, e.g., [14]:

K(x)
def
= min{len(p) : p generates x}.

In unusually good situations, computations are unusually complex. The smaller
the Kolmogorov complexity K(x), the more we can compress the original se-
quence x. It turns out (see, e.g., [14]) that, for most strings, the Kolmogorov
complexity K(x) is approximately equal to their length – and can, thus, be effi-
ciently computed (as long as we are interested in the approximate value of K(x),
of course). These strings are what physicists would call random.

However, there are strings which are not random, strings which can be dras-
tically compressed. It turns out that computing K(x) for such strings is difficult:
there is no algorithm that would, given such a string x, compute its Kolmogorov
complexity (even approximately) [14]. This result confirms our general conclu-
sion that:

– when situations are unusually good,
– computations are unusually complex.
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