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Abstract

In many application areas, it is important to study “generic” properties, i.e., properties which hold
for “typical” examples. For example, if we know the probabilities of different events, we can consider
a “random” object – i.e., an object that, crudely speaking, does not belong to any class of “unusual”
events (i.e., to any class with a small probability). In other cases, “typical” may mean not belonging
to an “unusual” subset which is small in some other sense – e.g., a subset of a smaller dimension. The
corresponding notion of “typicalness” has been formalized for several cases, including the case of random
events. In this case, the known Kolmogorov-Martin-Löf definition of randomness captures the idea that
properties with probability 0 are impossible. In our previous papers, we modified this definition to take
into account that from a practical viewpoint, properties with very small probabilities are often considered
impossible as well. In this paper, we extend this definition to a general notion of “generic”.
c⃝2012 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Need for studying generic properties. Let us show that in many application areas, it is important to
study “generic” properties, i.e., properties which hold for “typical” examples.

Need for studying random objects. For example, in situations in which we know the probabilities of
different events, it is usually assumed that the actually observed event should be “random” – in sense that it
should not satisfy any property whose probability is 0 (or even whose probability is very small). When we flip
a fair coin, we do not expect this process to result in an infinite sequence consisting only of heads – because
the probability of this event is 0. We also do not expect that we will observe a sequence consisting of a 1,000
heads – because, in essence, the probability of this event is extremely low: it is equal to 2−1000.

Similarly, from the purely mathematical viewpoint, it is theoretically possible that the random heat-related
motions of all the molecules in an object accidentally go in the same direction – and this object will simply
float away. However, the probability of this event happening is so low that any physicist will consider this
event to be practically impossible.

Need for studying generic objects. In other applications, we similarly claim that a “typical” event does
not have a certain property, because the class C of all the events that satisfy this property is “small” in some
non-probabilistic sense: e.g., C is a subset of smaller dimension in the class of all possible events.

For example, in theoretical cosmology (see, e.g., [12]), it is usually believed that the actual space-time not
only satisfies the corresponding equations (namely, Einstein’s equations), but it is also believed that the metric
field corresponding to the space-time is generic among all such solutions – in this case, generic in the sense
that does not belong to any meager set. (For readers who are not familiar with this notion, the definition of a
meager set will be given later in this paper.) For example, when a cosmologist says that Einstein’s equations
imply that a cosmological solution must have a singularity, he or she does not mean that every such solution
has a singularity – some solutions actually don’t, it means that a theorem was proven that almost all solutions
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have a singularity, and that we can therefore conclude that the actual space-time has a singularity as well.
(This theorem was proven in the 1960s by S. Hawking and R. Penrose [2, 12].)

How randomness is described now: a brief reminder. The formal description of a generic object
started with a definition of a random object by Kolmogorov and Martin-Löf; see [11] for details. This
definition is based on the following idea: in statistics, if a sequence is considered to be random, then it must
satisfy all the laws of probability. For example, coin flipping can be naturally described as a (potentially
infinite) sequence of independent events in each of which we have Head or Tail with probability 1/2. For such
sequences, there is a Law of Large Numbers, according to which, with probability 1, for each sequence, the
ratio of Heads among the first n experiments tends to 1/2 as n → ∞. If this property is not satisfied, then
we can reasonably conclude that the corresponding sequence is not random (at least not random with respect
to this distribution). Similarly, there is a Central Limit Theorem, according to which, with probability 1, the
distribution of the actual ratio of Heads tends to normal (Gaussian) when n → ∞. This property must also
be satisfied for a random sequence. If a sequence does not satisfy this property, then we can safely conclude
that it is not random.

All known tests of randomness are based on laws like this. So, if a sequence survives all these tests, it is
reasonable to call it random.

A “law” is a property that is satisfied with probability 1. Thus, we can say that a sequence is random if it
satisfies all the properties which hold with probability 1. Equivalently, instead of checking whether a sequence
satisfies a property, we can check whether it satisfies the opposite property (e.g., in the example of coin flipping,
the property of ratios (frequencies) not tending to 1/2). For a property P (x) which is satisfied with probability
Prob(P (x) = 1, its opposite ¬P (x) is satisfied with probability Prob(¬P (x)) = 1− Prob(P (x)) = 1− 1 = 0.
Thus, we can say that a sequence is random if it does not satisfy any property which holds with probability
0.

Instead of properties, it is reasonable to talk about sets. Every property P (x) defines a set, namely, the
set {x : P (x)} of all the objects that satisfy this property. However, not all sets correspond to what we
intuitively mean by properties. Indeed, in statistics, properties must be well defined and well described in
an appropriate formal language. The corresponding sets are called definable. A set is definable if it can be
uniquely described by a formula in an appropriate language. Since there are more than continuum many sets
and only countably many formulas (and thus, only countably many definable sets), it follows easily that not
every set is definable.

In terms of sets, the Kolmogorov-Martin-Löf definition thus takes the following form:

Definition 1. Let (X,P ) be a probability space, i.e., a set X with a probability measure defined on its
subsets. An element x ∈ X is called random if it does not belong to any definable subset S ⊆ X of probability
measure 0 (i.e., to any definable set S for which P (S) = 0).

We can use different languages to describe properties, and, depending on the choice of a language, we will
have different versions of the notion of a random sequence [11].

Need for a more physically adequate notion of a random object. The above notion of a random
object captures the intuitive idea that events with probability 0 cannot happen, but it does not capture a
similar (and equally intuitive) idea that events with a very small probability cannot happen either – an idea
that is actively used in practical applications of statistics and in physical reasoning.

This idea cannot be simply captured by setting a probability threshold p0 below which all events are
impossible. Indeed, in this case, for a number N for which 2−N < p0, all sequences of Heads and Tails of
length N are impossible because they have the same probability 2−N . However, in reality, we can flip a coin
N times an get a random sequence. So, we have to come up with a more complex definition, where a threshold
depends on the complexity of the property.

Specifically, once we have a definable decreasing sequence of events A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . with the
decreasing probability p(An) → 0, then when N is large enough, the probability p(AN ) of the event AN

becomes so small that the event AN becomes impossible. Thus, we arrive at the following definition (see, e.g.,
[1, 5, 6, 7, 8, 9, 10]):
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Definition 2. Let (X,P ) be a probability space, i.e., X is a set with a probability measure P defined on its
subsets. A set R ⊆ X is called a set of random elements if it has the following property: for every definable
sequence of sets An for which A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . and p(An) → 0, there exists an integer N for which
AN ∩R = ∅.

Please note that the set R is not uniquely defined by the probability space (X,P ). For the same probability
space, we can have different sets R satisfying the above definition.

What if we do not know the probabilities? To take care of the cases when we do not have the probability
distributions, we proposed the following modification of this definition [1, 5, 6, 7, 8, 9, 10]:

Definition 3. Let X be a set. A set T ⊆ X is called a set of typical elements if it has the following property:
for every definable sequence of sets An for which A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . and

∩
n
An = ∅, there exists an

integer N for which AN ∩ T = ∅.

Similarly to the probabilistic case, for the same set X, we can have several different sets T satisfying this
property.

Relation between random objects and typical objects. There is a known relation between possible
sets of random elements R and possible sets of typical elements T :

Proposition. [5] Let (X,P ) be a probability space, i.e., X is a set with a probability measure P defined on
its subsets, and let RK be the set of all the elements of X which are random in the sense of Kolmogorov-
Martin-Löf.

• Every set of random elements R (in the sense of Definition 2) is also a set of typical elements (in the
sense of Definition 3).

• If T is a set of typical elements (in the sense of Definition 3), then the intersection T ∩RK is a set of
random elements (in the sense of Definition 2).

In other words, an element is random (in the sense of Definition 2) if and only if it is typical and KML-
random. So, random elements can be described as typical elements which are also random in the sense of
Kolmogorov-Martin-Löf. Thus, to describe all possible sets of random elements, it is sufficient to describe all
possible sets of typical elements.

Remaining problem. It is desirable to extend the above definitions from the probabilistic “smallness” to
other types of smallness.

What we do in this paper. In Sections 2 and 3, we give examples of different types of smallness; reader
familiar with these notions can skip these sections. In Section 4, we extend the above definition of “typicality”
to different types of smallness, and analyze the relation between the new definitions and the existing ones.

2 Examples of Other Notions of “Typicality”: Meager Sets

Intuitive idea. The notion of meager sets comes from mathematics, where it is often stated that some
properties are generic in the sense that they hold for “typical” examples.

Examples. In some cases, this notion is intuitively clear. For example, if we take two straight lines on a
plane, then, in general, these lines will not be parallel. There is a “degenerate” case when they are parallel,
but intuitively, the lines from a “generic” pair of straight lines are not parallel.

Another example: if we pick a number, there may be a case when this number is equal to 0, but intuitively,
a “generic” number should be different from 0. Similarly, a “generic” number should not be equal to 1, to π,
or to any other definable number.



4 A. Jalal-Kamali et al.: Towards a Generic Notion of Genericity

Comment. At first glance, this may sound like a contradiction, since a “generic” number cannot be equal to
any number that we can explicitly define. However, in reality, there is no contradiction: similarly to what we
said about definable sets, there are only countably many definable numbers; thus, since there are continuum
many real numbers, there are continuum many real numbers which are not definable.

Similarly, a generic polynomial f(x) does not have a root at x = 0 – because this would mean that the
value f(x) is equal to 0, and we have already argued that a generic number should not be equal to 0.

Another example is that a generic matrix A is invertible. Indeed, a matrix is invertible if and only if its
determinant det(A) is different from 0. A “typical” matrix A should have all its properties “typical”. In
principle, any real number can appear as a determinant of a matrix. Intuitively, for a “typical” matrix A, the
determinant should also be “typical” (generic). Indeed, if a determinant of a certain matrix is not “typical”,
if it is a special number, then this would make this matrix somewhat special – and not “typical” – too. Since
a generic real number is different from 0, we can therefore conclude that the determinant det(A) of a generic
matrix should also be different from 0 – i.e., that a generic matrix is invertible.

Similar intuitive statements can be made about typical functions, but these statements are often not that
easy to formalize.

Towards formalization. The notion of a meager set (also called Baire first category set, or a thin set) was
defined to formalize some of these statements. Originally, this definition was proposed for complete metric
spaces.

A metric space is a pair (X, d) consisting of a set X and a function d : X × X → IR (called a distance
function, or a metric) that satisfies the following properties for all x, y, and z:

• d(x, y) ≥ 0,

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x), and

• d(x, z) ≤ d(x, y) + d(y, z).

For every point x ∈ X and for every real number ε > 0, the open ball Bε(x) of radius ε centered in x is defined

as the set Bε(x)
def
= {y : d(x, y) < ε} of all the points y whose distance to x is smaller than ε.

In each metric space, we can define a limit x = lim
n

xn of a sequence xn in a usual way, expressing the

informal meaning that points xn get closer and closer to x as n increases. Formally, a sequence xn tends to
a limit x if for every ε > 0, there exists an N such that for every n ≥ N , we have d(xn, x) ≤ ε. A sequence
of elements xn ∈ X is called a Cauchy sequence if for every ε > 0 there exists an N such that for every
n, n′ ≥ N , we have d(xn, xn′) ≤ ε. A metric space is called complete if every Cauchy sequence has a limit.
For example, the set IR of all real numbers is complete, as well as the n-dimensional space IRn.

A set S ⊆ X is called closed if for every sequence {sn} ⊆ S that has a limit x, this limit x also belongs to
the set S. For every set S, the set consisting of all the limit points of all the sequences {xn} ⊆ S is called a
closure of the set S and denoted by S.

A set S ⊆ X is called open if for every point s from S, an entire open ball is contained in this set S, i.e.,
Bε(s) ⊆ S for some ε > 0.

Comment. It is known that a set S is open if and only if its complement −S is closed.

A set S ⊆ X is called nowhere dense if its closure does not contain any open balls at all.

Resulting definition. A set is called meager if it can be represented as a union of countably many nowhere
dense sets.

Properties of meager sets. The properties of meager sets are similar to properties of sets of measure 0;
for example:

• every subset of a meager set is meager;

• a union of countably many meager sets is meager.
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3 Examples of Other Notions of “Typicality”: Shy Sets

Main idea. For classes of functions, the above notion of a meager set often does not capture the intuitive
idea of “typical”. For such classes, a new notion of shy sets was proposed in [3, 4].

Metric linear spaces. This notion is defined for complete metric linear spaces, i.e., for complete metric
spaces X which are also linear spaces, i.e., spaces on which there is a fixed element called 0, and two operations
are defined:

• a binary operation x+ y called addition which has the following properties for all x, y, and z:

• x+ y = y + x (commutativity),

• x+ (y + z) = (x+ y) + z) (associativity), and

• x+ 0 = x;

• an operation λ·x with real numbers λ called multiplication by a real number for which 1·x = x and which
is distributive (λ ·(x+y) = λ ·x+λ ·y and (λ+µ) ·x = λ ·x+µ ·x) and associative (λ ·(µ ·x) = (λ ·µ) ·x).

For every two elements x, y ∈ X, the element x+ y is also called the result of shifting x by y. This notion
of shift can be naturally extended from elements x ∈ X to subsets S ⊆ X as follows: a shift S + y of the
set S by an element y is defined as the collection of the results s + y of shifting all elements s ∈ S by y:

S + y
def
= {s+ y : s ∈ S}.

The distance d(x, y) on a linear space should be consistent with addition and multiplication in the following
sense: d(x+ z, y + z) = d(x, y) and d(λ · x, λ · y) = |λ| · d(x, y) for all x, y, z, and λ.

For example, a usual vector space IRn consisting of all the tuples x = (x1, . . . , xn) with the usual
component-wise addition (x1, x2, . . .) + (y1, y2, . . .) = (x1 + y1, x2 + y2, . . .), component-wise multiplication
by a real number λ · (x1, x2, . . .) = (λ · x1, λ · x2, . . .), and the standard metric d((x1, x2, . . .), (y1, y2, . . .)) =√
(x1 − y1)2 + (x2 − y2)2 + . . . is a complete metric linear space.

Borel sets. On each such space X – just like in every other metric space (or every other topological space),
we can define Borel sets – as the smallest collection of sets that contains all open sets and that is closed under
complement and countable union. For example:

• every open set S is a Borel set;

• every complement to an open set S (i.e., every closed set) is a Borel set; we will denote the complement
to a set S by −S;

• every countable union
∪
n
Sn of open or closed sets Sn is a Borel set;

• every complement −
∪
n
Sn to such a union is a Borel set.

Measures: definition. A measure is usually defined as a mapping µ that maps every Borel set S into
either a non-negative real number or +∞ in such as way that µ(∅) = 0, µ(X) > 0, and µ is additive, i.e., if

we have a sequence of pairwise disjoint Borel sets Sn, then µ

(∪
n
Sn

)
=
∑
n
µ(Sn).

In particular, for a finite sequence of pairwise disjoint sets S1, . . . , Sn, we have µ(S1∪ . . .∪Sn) =
∑
n
µ(Sn).

Measure of a complement. For every set S, the space X can be represented as the union of two disjoint
sets: the set S itself and its complement −S. Thus, we have µ(X) = µ(S) + µ(−S). So, if the measure µ(X)
of the whole space X is finite, then we have µ(−S) = µ(X)− µ(S).

Measures: monotonicity. If S ⊆ S′, then we can represent the set S′ as S′ = S ∪ (S′−S), where the sets
S and S′ − s are mutually disjoint. Thus, µ(S′) = µ(S) + µ(S′ − S). Since the values of the mapping µ are
always non-negative, we have µ(S′ − S) ≥ 0 and thus, µ(S′) ≥ µ(S).
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Measures: subadditivity. In the following text, we will also need to describe the measure µ(U) of the

union U
def
= S1 ∪ . . . ∪ Sn in the general case, where the sets Sn are not necessarily disjoint. In this case, an

element s ∈ U can, in principle, belong to several of the sets Si. By definition of the union, each element
s ∈ U belongs to one of the sets Si. For each s ∈ U , among all indices i for which s ∈ Si, there is the smallest
index. We will denote this smallest index by f(s). Under this notation, f(s) = i means that s belongs to the
set Si and does not belong to any of the sets with smaller indices, i.e., s does not belong to S1, . . . , Si−1. In
other words, f(s) = i if and only if s ∈ Si − (S1 ∪ . . . ∪ Si−1). Every element s ∈ U has some value i = f(s),

so it belongs to one of the sets S′
i
def
= Si − (S1 ∪ . . . ∪ Si−1). Thus, U is a union of the sets S′

i.
For i ̸= j, the sets S′

i and S′
j are mutually disjoint, because for elements s ∈ S′

i, we have f(s) = i, while for
elements s ∈ S′

j , we have f(s) = j ̸= i. Thus, the union U can be represented as a union of pairwise disjoint

sets S′
i: U = S′

1 ∪ . . . ∪ S′
n. Due to additivity, we have µ(U) =

n∑
i=1

µ(S′
i). For each i, we have S′

i ⊆ Si hence

µ(S′
i) ≤ µ(Si), so

n∑
i=1

µ(S′
i) ≤

n∑
i=1

µ(Si). Thus,

µ(S1 ∪ . . . ∪ Sn) = µ(U) =
n∑

i=1

µ(S′
i) ≤

n∑
i=1

µ(Si),

i.e.,

µ(S1 ∪ . . . ∪ Sn) ≤
n∑

i=1

µ(Si).

A similar inequality can be similarly proven if we have an infinite sequence of sets:

µ

(∪
i

Si

)
≤

∞∑
i=1

µ(Si).

This inequality is called subadditivity.

Probability measures. Measures for which µ(X) = 1 are called probability measures. For such measures,
µ(S) is the probability of the event S. For probability measures, the meaning of additivity is as follows:

• If we have two exclusive events A and B, i.e., if A and B cannot occur at the same time, then the
probability that we have either A or B is equal to the sum of the probabilities of A and B. For example,
the probability that it is either raining or snowing is equal to the sum of the probability µ(A) that it is
raining and the probability µ(B) that it is snowing.

• Similarly, if we have a sequence of mutually exclusive events Sn, then the probability µ

(∪
n
Sn

)
that

one of these events occurs is equal to the sum of the probabilities µ(Sn) that one of them occurs.

Not all measures are probability measures: e.g., the area µ(S) of sets S in a plane S ⊆ IR2 and the volume
µ(S) of sets S in 3-D space S ⊆ IR3 are examples of non-probability measures, since in both cases, the area
(volume) of the whole space X = IRn is infinite: µ(X) = +∞.

Measures on non-Borel sets: an example. Measures (in particular, probability measures) can be defined
for non-Borel sets S as well. A standard example of a measure in a finite-dimensional space IRn is a Lebesgue
measure.

The Lebesgue measure on a unit cube X = [0, 1]n can be defined as follows. The measure µ(B) of a closed
box

B = [x1, x1]× . . .× [xn, xn] ⊆ [0, 1]n

is defined as its volume
µ(B) = (x1 − x1) · . . . (xn − xn).

In particular, for the space X itself, we have µ(X) = 1.
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For a union ∪Bn of the boxes, we have µ(
∪
Bn) ≤

∑
µ(Bn). For every set S which is contained in such

a union ∪Bn, we have µ(S) ≤ µ(
∪
Bn) and thus, µ(S)

∑
µ(Bn). Hence, the measure µ(S) of each set S is

bounded by the smallest of the sums
∑

µ(Bn) for all sequences of boxes {Bn} for which S ⊆ ∪Bn. This
smallest value is called the outer Lebesgue measure of the set S; it is denoted by µ∗(S). Formally,

µ∗(S)
def
= inf

{∑
µ(Bn) : S ⊆ ∪Bn

}
.

Thus, we always have µ(S) ≤ µ∗(S).

For a complement −S, we similarly have µ(−S) ≤ µ∗(−S). Since µ(−S) = µ(X) − µ(S) = 1 − µ(S), we
thus have 1−µ(S) ≤ 1−µ ∗ (−S), therefore µ(S) ≥ 1−µ∗(−S). The corresponding lower bound 1−µ∗(−S)

is called an inner Lebesgue measure of the set S. It is usually denoted by µ∗(S)
def
= 1− µ∗(−S).

A set S is called Lebesgue measurable if its inner and outer Lebesgue measures coincide µ∗(S) = µ∗(S).
This common value of inner and outer measures is called the Lebesgue measure µ(S) of the set S. It can be
shown that this definition indeed leads to an additive measure.

Compact sets. To define shy sets, we also need to define compact sets. A closed set S is called compact
if every time S is contained in a union of a family {Sα}α∈A of open sets S ⊆

∪
α∈A

Sα, there exist finitely

many open sets from this family whose union contain S: S ⊆ Sα1 ∪ . . . ∪ Sαn for some α1, . . . , αn ∈ A. For a
finite-dimensional space IRn with the usual metric, a closed set is compact if and only if it is bounded. For a
general linear space, not every bounded closed set is compact.

Shy sets. Finally, we are ready to define the notion of a shy set.

A subset S of a linear space is called shy if there exists a measure µ and a compact set U for which
µ(U) > 0 (and µ(U) < +∞) and for which µ(S + x) = 0 for all x ∈ X.

Comment. For X = IRn, a set is shy if and only if it has Lebesgue measure 0. Thus, the notion of shyness
is a natural extension of the “probability 0” notion to general linear spaces.

Properties of shy sets. The properties of shy sets are similar to properties of sets of measure 0 and meager
sets; for example:

• every subset of a shy set is shy;

• a union of countably many shy sets is shy.

Prevalent sets. A set is called prevalent if its complement is shy.

If some property holds on a prevalent set, it is a reasonable indication that this property is “almost always”
(or ”in general”) true. Examples of such properties are [3, 4]:

• a generic polynomial does not have a root at zero;

• a generic matrix is invertible;

• if f : M → N is a smooth function between smooth manifolds, then a generic point of N is not a critical
value of the function f .

4 Kolmogorov-Martin-Löf-Type Definition of a Generic Element

Main idea. The original Kolmogorov-Martin-Löf definition of a random sequence is as follows: a sequence
is random if and only if it does not belong to any definable set of measure 0. So, it is reasonable to extend it
to other notions of small sets (meager, shy, etc.) in the following way:



8 A. Jalal-Kamali et al.: Towards a Generic Notion of Genericity

Definition 4. Let X be a set. A non-empty definable family S of subsets of X is called a family of small
subsets of X if it satisfies the following two properties:

• if a set S belongs to the family S, then every subset S′ ⊆ S of the set S also belongs to this family;

• a countable union
∪
n
Sn of sets from the family S also belongs to the family S.

Sets from the family S will be called S-small.

Comment. Since the family S is non-empty, it contains some set S. An empty set is a subset of S and thus,
an empty set belongs to the class S. Thus, the empty set is S-small.

Definition 5. Let X be a set, and let S be a family of small subsets of X. An element x ∈ X is called
KML-S-generic if it does not belong to any definable set S ⊆ S.

Comment. In particular, if the class S consists of all sets of measure 0, then KML-S-generic elements are
exactly elements which are random in the sense of Kolmogorov-Martin-Löf.

Limitations. This definition has the same limitation as the original Kolmogorov-Martin-Löf notion of ran-
domness.

Indeed, according to the Kolmogorov-Martin-Löf definition, if a binary sequence ω1ω2 . . . is random, then
it remains Kolmogorov-Martin-Löf random if we add, in front of it, a large number N of zeros, i.e., consider
a new sequence 0 . . . 0ω1ω2 . . .

Mathematically, this may sound reasonable, but intuitively, “random” means something that can appear
in real tossing of a fair coin. From this viewpoint, a sequence that starts with one million zeros means that
we toss a fair coin million times and get tail every time – this is not right. The notion of randomness that
fully captures the intuitive understanding should take into account that, intuitively, not every finite sequence
ω1ω2 . . . ωn can appear as a beginning of truly “random” infinite sequence.

As we have mentioned, in some physical applications, the intuitive notion of “generic” is better captured
by meager sets, not by sets of measure 0. However, one can show that for all the above definitions of a family
S, if we add a large number of zeros at the beginning of an S-generic sequence, the resulting sequence will
still be S-generic.

In other words, no matter what are the first N bits of a sequence, this sequence may still turn out to be
Kolmogorov-Martin-Löf random, or generic, or KML-S-generic for some other concept S. So, if we stick to
the above definition, there is no way to detect a KML-random (or an KML-S-generic) sequence based on the
observations. To overcome this limitation, it is desirable to modify the above definition, so that we will be
able to detect generic elements based on the observations.

Discussion. We want to be able to detect genericity based on the observation. Maybe we do not detect
genericity based on a single observation because the measurement inaccuracy is too high, but as we increase the
measurement accuracy more and more, we should be eventually be able to detect genericity. Actual genericity
means not belonging to a definable small set S. We should be able to tell, based on some approximate
observation, that an element does not belong to S.

Let us assume that we have a sequence of observation procedures of higher and higher accuracy. Let An

denote the set of all the elements which, due to the inaccuracy of the n-th observation procedure, lead to the
same results as some elements from the set S.

For small n, when inaccuracy is large, we may have many elements that lead to the same observations
results as elements from the set S. The larger n, the more accurate the measurements are, so fewer elements
can lead to the same observation results as the elements of S. In mathematical terms, this means that
An ⊇ An+1 for every n.

By definition of the set S, every element of the set S belongs to the sets An for all n. Thus, every element
from the set S also belongs to the intersection ∩An:

S ⊆ ∩An.
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If an element s does not belong to the set S, then, when the accuracy is good enough, we should be able
to detect this fact. In other words, there should exists a level n for which s ̸∈ An. Thus, we conclude that if
an element s does not belong to the set S, then this element should not belong to the intersection ∩An:

−S ⊆ − ∩An.

From S ⊆ ∩An and −S ⊆ −∩An, we conclude that the intersection ∩An coincides with the set S: S = ∩An.
Our requirement is that we should be able to tell whether an element is generic based on some sufficiently

accurate observation. In other words, the set G of “truly generic” sequences must satisfy the following
property. Let us take an arbitrary definable non-generic property S ∈ S. As we have mentioned, this means
that we have a definable sequence An for which An ⊇ An+1 and S = ∩An ∈ S. The meaning of An is that An

consists of all the objects which, based on the first n observations, are indistinguishable from objects s ∈ S.
Our claim is that that there should be an observation level N on which we should be able to detect this
non-genericity. In other words, there should be a level N for which none of the truly generic objects s ∈ G
will display the same results as elements of S. Objects which display the same results as elements of S form
the set AN ; thus, the above property takes the form AN ∩G = ∅.

Thus, we arrive at the following definition.

Definition 6. Let X be a set, and let S be a family of small subsets of X. A set G ⊆ X is called a
set of S-generic elements if it has the following property: for every definable sequence of sets An for which
A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . and

∩
n
An ∈ S, there exists an integer N for which AN ∩G = ∅.

Let us now describe the relation between this definition and the notion of set of typical elements.

Theorem. Let X be a set, let S be a family of small subsets of X, and let GK denote the set of all KML-
S-generic elements of X. Then:

• Every set of S-generic elements T (in the sense of Definition 6) is also a set of typical elements (in the
sense of Definition 3).

• If T is a set of typical elements (in the sense of Definition 3), then the intersection T ∩GK is a set of
S-generic elements (in the sense of Definition 6).

In other words, an element is S-generic (in the sense of Definition 6) if and only if it is typical and KML-S-
generic. So, S-generic elements can be described as typical elements which are also KML-S-generic. Thus, to
describe all possible sets of S-generic elements, it is sufficient to describe all possible sets of typical elements.

Proof. Let us first assume that G if a set of S-generic elements (in the sense of Definition 6). Let us prove
that it is also a set of typical elements, i.e., that it satisfies Definition 3. Indeed, let An be a L-definable
sequence of sets for which An ⊇ An+1 for all n and

∩
n
An = ∅. By definition of the family of small sets, it

contains an empty set, and since ∅ ∈ S, we have
∩
n
An ∈ S. Thus, by Definition 6, there exists an N for which

AN ∩G = ∅. So, G indeed satisfies Definition 3.

Let us prove that if T is a set of typical elements, then the intersection G
def
= T ∩ GK is indeed a set of

S-generic elements in the set of Definition 6. Indeed, let An be a L-definable sequence of sets An for which

An ⊇ An+1 for all n and A
def
=
∩
n
An ∈ S. Since the sequence An is definable, its intersection A is also

definable. Thus, by definition of KML-S-genericity, we have GK ∩A = ∅.
The auxiliary sequence A′

n
def
= An − A is also definable. It is easy to check that A′

n ⊇ A′
n+1, and that∩

n
A′

n = ∅. Thus, by Definition 3, there exists an N for which A′
N ∩ T = ∅.

Let us show that for the same index N , we have AN ∩G = ∅. Indeed, since the sequence An is decreasing,
we have A ⊆ AN and thus, AN = A′

N ∪ A. Here, the set A′
N does not have any common elements with the

set T – hence with the intersection G = T ∩GK ; the set A also does not have any common elements with the
set GK – hence with the intersection G = T ∩GK . Thus, the entire union AN = A′

N ∪ A does not have any
common points with the intersection G, i.e., indeed, AN ∩G = ∅. The theorem is proven.
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