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Abstract

Fuzzy control is a methodology that transforms control rules (de-
scribed by an expert in words of a natural language) into a precise control
strategy. There exist several versions of this transformation. The main
difference between these versions is in how they interpret logical connec-
tives “and” and “or”, i.e., in other words, what reasoning method a version
uses. Which of these versions should we choose? It turns out that on dif-
ferent stages of control, different reasoning methods lead to better control
results. In this paper, we describe the choice of reasoning methods that
optimize control results in terms of smoothness and stability. It turns
out that reasoning methods which are optimal on each stage correspond
to tropical algebras — algebras isomorphic to the set of real numbers with
operations plus and maximum.

1 Introduction

Fuzzy control methodology: a brief intro. In the situations when we do
not have the complete knowledge of the plant, we often have the experience of
human operators who successfully control this plant. We would like to make
an automated controller that uses their experience. With this goal in mind, an
ideal situation is when an operator can describe his control strategy in precise
mathematical terms. However, most frequently, the operators cannot do that
(can you describe how exactly you drive your car?). Instead, they explain their
control in terms of rules formulated in natural language (like “if the velocity is
high, and the obstacle is close, break immediately”). Fuzzy control is a method-
ology that translates these natural-language rules into an automated control
strategy. This methodology was first outlined by L. Zadeh [4] and experimen-
tally tested by E. Mamdani [20] in the framework of fuzzy set theory [25] (hence
the name). For many practical systems, this approach works fine.



Specifically, the rules that we start with are usually of the following type:
if zq is A{ and x5 is Ag and ...and m,, is AJ, then u is B’

where x; are parameters that characterize the plant, u is the control, and A{ ,
BJ are the terms of natural language that are used in describing the j—th rule
(e.g., “small”, “medium”, etc).

The value w is an appropriate value of the control if and only if at least
one of these rules is applicable. Therefore, if we use the standard mathematical
notations & for “and”, V for “or”, and = for “if and only if”, then the property
“u is an appropriate control” (which we will denote by C(u)) can be described
by the following informal “formula”:

Cu) = (Af(z1) & Ay(w2) & ... & AL () & B (u))Vv
(A3 (x1) & Ad(29) & ... & A% () & B*(u))V

(AK(21) & AF (20) & ... & AK(2,,) & B (u))

Terms of natural language are described as membership functions. In other
words, we describe Al(z) as p;;(z), the degree of belief that a given value x
satisfies the property AJ. Similarly, B’(u) is represented as p;(u). Logical
connectives & and V are interpreted as some operations fy and fg, with degrees
of belief (e.g., fy = max and fg, = min). After these interpretations, we can
form the membership function for control: pc(u) = fu(p1,...,px), where

pi = fe(pia(@n), pyia(w2), s pin(Tn), i (w))), j=1,...,K.

We need an automated control, so we must end up with a single value @ of the
control that will actually be applied. An operation that transforms a mem-
bership function into a single value is called a defuzzification. Therefore, to
complete the fuzzy control methodology, we must apply some defuzzification
operator D to the membership function pc(u) and thus obtain the desired

value 4 = fe(Z) of the control that corresponds to & = (z1,...,z,). Usually,
the centroid defuzzification is used, when
_— Ju-pe(u)du
[ pe(u)du

A simple example: controlling a thermostat. The goal of a thermostat
is to keep a temperature T equal to some fixed value Tj, or, in other words,
to keep the difference © = T — T equal to 0. To achieve this goal, one can
control the degree of cooling or heating. What we actually control is the rate at
which the temperature changes, i.e., in mathematical terms, a derivative T of
temperature with respect to time. So if we apply the control u, the behavior of
the thermostat will be determined by the equation T = w. In order to automate



this control we must come up with a function u(z) that describes what control
to apply if the temperature difference x is known.

In many cases, the exact dependency of the temperature on the control is not
precisely known. Instead, we can use our experience, and formulate reasonable
control rules:

e If the temperature T is close to Tp, i.e., if the difference x = T — T} is
negligible, then no control is needed, i.e., u is also negligible.

e If the room is slightly overheated, i.e., if x is positive and small, we must
cool it a little bit (i.e., u = & must be negative and small).

e If the room is slightly overcooled, then we need to heat the room a little
bit. In other terms, if = is small negative, then w must be small positive.

So, we have the following rules:
e if x is negligible, then u must be negligible;
e if x is small positive, then u must be small negative;
e if z is small negative, then v must be small positive.
In this case, u is a reasonable control if either:
e the first rule is applicable (i.e., 2 is negligible) and u is negligible; or

e the second rule is applicable (i.e., x is small positive), and u must be small
negative;

e or the third rule is applicable (i.e., = is small negative), and u must be
small positive.

Summarizing, we can say that w is an appropriate choice for a control if and
only if either x is negligible and u is negligible, or x is small positive and u is
small negative, etc. If we use the denotations C(u) for “u is an appropriate
control”, N(z) for “x is negligible”, SP for “small positive”, and SN for “small
negative”, then we arrive at the following informal “formula”:

C(u) = (N(x)&N(u)) V (SP(x)&SN(u)) V (SN (2)&SP(u)).

If we denote the corresponding membership functions by uy, psp, and psy,
then the resulting membership function for control is equal to

po(u) = fu(fe(pn(x), pn(u), fe(psp (), psn(w)), fo(psn(x), psp(u))).

Problem. There exist several versions of fuzzy control methodology. The
main difference between these versions is in how they translate logical connec-
tives “or” and “and”, i.e., in other words, what reasoning method a version uses.
Which of these versions should we choose? The goal of this paper is to provide
an answer to this question.



The contents of this paper. The main criterion for choosing a set of rea-
soning methods is to achieve the best control possible. So, before we start the
description of our problem, it is necessary to explain when a control is good.
This will be done (first informally, then formally) in Section 2.

Now that we know what our objective is, we must describe the possible
choices, i.e., the possible reasoning methods. This description is given in Sec-
tion 3.

We are going to prove several results explaining what choice of a reasoning
method leads to a better control. The proofs will be very general. However,
for the readers’ convenience, we will explain them on the example of a simple
plant. This simple plant that will serve as a testbed for different versions of
fuzzy control will be described in Section 4.

The formulation of the problem in mathematical terms is now complete. In
Section 5, we formulate the results, and in Section 6, we describe the proofs of
these results.

2 What do we expect from an ideal control?

What is an ideal control? In some cases, we have a well-defined control
objective (e.g., minimizing fuel). But in most cases, engineers do not explain
explicitly what exactly they mean by an ideal control. However, they often
do not hesitate to say that one control is better than another one. What do
they mean by that? Usually, they draw a graph that describes how an initial
perturbation changes with time, and they say that a control is good if this
perturbation quickly goes down to 0 and then stays there.

In other words, in a typical problem, an ideal control consists of two stages:

e On the first stage, the main objective is to make the difference x = X — X
between the actual state X of the plant and its ideal state Xy go to 0 as
fast as possible.

e After we have already achieved the objective of the first stage, and the
difference is close to 0, then the second stage starts. On this second stage,
the main objective is to keep this difference close to 0 at all times. We do
not want this difference to oscillate wildly, we want the dependency z(t)
to be as smooth as possible.

This description enables us to formulate the objectives of each stage in precise
mathematical terms.

First stage of the ideal control: main objective. We have already men-
tioned in Section 1 that, for readers’ convenience, we will illustrate our ideas on
some simple plants. So, let us consider the case when the state of the plant is
described by a single variable x, and we control the first time derivative . For
this case, we arrive at the following definition:



Definition 1. Let a function u(x) be given; this function will be called a control
strategy.

e By a trajectory of the plant, we understand the solution of the differential
equation & = u(x).

e Let’s fix some positive number M (e.g., M = 1000). Assume also that a
real number & # 0 is given. This number will be called an initial pertur-
bation.

e A relaxation time () for the control u(x) and the initial perturbation &
is defined as follows:

— we find a trajectory x(t) of the plant with the initial condition x(0) =
é, and

— take as t(9), the first moment of time starting from which |z(t)] <
|2(0)|/M (i.e., for which this inequality is true for all t > t(§)).

Comment. For linear control, i.e., when u(x) = —k - x for some constant k,
we have z(t) = z(0)exp(—k - t) and therefore, the relaxation time ¢ is easily
determined by the equation exp(—k-t) =1/M, i.e., t = In(M/k). Thus defined
relaxation time does not depend on §. So, for control strategies that use linear
control on the first stage, we can easily formulate the objective: to minimize
relaxation time. The smaller the relaxation time, the closer our control to the
ideal.

In the general case, we would also like to minimize relaxation time. However,
in general, we encounter the following problem: For non-linear control (and
fuzzy control is non-linear) the relaxation time ¢(0) depends on §. If we pick
a 0 and minimize t(d), then we get good relaxation for this particular §, but
possibly at the expense of not-so-ideal behavior for different values of the initial
perturbation 4.

How can we solve our problem? The problem that we encountered was due
to the fact that we considered a simplified control situation, when we start
to control a system only when it is already out of control. This may be too
late. Usually, no matter how smart the control is, if a perturbation is large
enough, the plant will never stabilize. For example, if the currents that go
through an electronic system exceed a certain level, they will simply burn the
electronic components. To avoid that, we usually control the plant from the
very beginning, thus preventing the values of x from becoming too large. From
this viewpoint, what matters is how fast we go down for small perturbations,
when § ~ 0.

What does “small” mean in this definition? If for some value § that we
initially thought to be small, we do not get a good relaxation time, then we
will try to keep the perturbations below that level. On the other hand, the
smaller the interval that we want to keep the system in, the more complicated
and costly this control becomes. So, we would not decrease the admissible level
of perturbations unless we get a really big increase in relaxation time. In other



words, we decrease this level (say, from dp to d1 < dp) only if going from ¢(dp)
to t(d1) means decreasing the relaxation time. As soon as t(d1) = t(do) for all
61 < dg, we can use dg as a reasonable upper level for perturbations.

In mathematical terms, this condition means that ¢(dy) is close to the limit
of t(8) when 6 — 0. So, the smaller this limit, the faster the system relaxes.
Therefore, this limit can be viewed as a reasonable objective for the first stage
of the control.

Definition 2. By a relaxation time T for a control u(x), we mean the limit of
t(9) for § — 0.

So, the main objective of the first stage of control is to maximize relazation
time.

Lemma 1. If the control strategy u(x) is a smooth function of x, then the
relazation time equals to In M/(—u’(0)), where v’ denotes the derivative of u.

Comment. So the bigger this derivative, the smaller the relaxation time. There-
fore, our objective can be reformulated as follows: to mazimize u'(0).

Second stage of the ideal control: main objective. After we have made
the difference 2 go close to 0, the second stage starts, on which z(t) has to be
kept as smooth as possible. What does smooth mean in mathematical terms?
Usually, we say that a trajectory x(t) is smooth at a given moment of time tg
if the value of the time derivative &(to) is close to 0. We want to say that a
trajectory is smooth if &(¢) is close to 0 for all ¢.

In other words, if we are looking for a control that is the smoothest possible,
then we must find the control strategy for which #(¢) ~ 0 for all ¢t. There
are infinitely many moments of time, so even if we restrict ourselves to control
strategies that depend on finitely many parameters, we will have infinitely many
equations to determine these parameters. In other words, we will have an over-
determined system. Such situations are well-known in data processing, where
we often have to find parameters pq,...,p, from an over-determined system
filp1, -, pn) = ¢, 1 < i < N. A well-known way to handle such situations
is to use the least squares method, i.e., to find the values of p; for which the
“average” deviation between f; and ¢; is the smallest possible. To be more
precise, we minimize the sum of the squares of the deviations, i.e., we are solving
the following minimization problem:

N
(fi(plv--~7pn)—qi)2—> min
=1 P1s--5Pn

K2

In our case, f; = @(t) for different moments of time ¢, and ¢; = 0. So, least
squares method leads to the criterion Y (#(¢))? — min. Since there are infinitely
many moments of time, the sum turns into an integral, and the criterion for
choosing a control into J(z(t)) — min, where J(z(t)) = [(&(t))? dt. This value
J thus represents a degree to which a given trajectory z(¢) is non-smooth. So,
we arrive at the following definition:



Definition 3. Assume that a control strategy x(t) is given, and an initial
perturbation § is given. By a non-smoothness 1(8) of a resulting trajectory x(t),
we understand the value J(x) = fooo(j:(t))2 dt.

Foundational comment. The least squares method is not only heuristic, it has
several reasonable justifications. So, instead of simply borrowing the known
methodology from data processing (as we did), we can formulate reasonable
conditions for a functional J (that describes non-smoothness), and thus deduce
the above-described form of J without using analogies at all. This is done in [12].

Mathematical comment. What control to choose on the second stage? Sim-
ilarly to relaxation time, we get different criteria for choosing a control if we
use values of non-smoothness that correspond to different §. And similarly to
relaxation time, a reasonable solution to this problem is to choose a control
strategy for which in the limit 6 — 0, the non-smoothness takes the smallest
possible value.

Mathematically, this solution is a little bit more difficult to implement than
the solution for the first stage: Indeed, the relaxation time t(§) has a well-
defined non-zero limit when 6 — 0, while non-smoothness simply tends to 0.
Actually, for linear control, I(§) tends to 0 as §%. To overcome this difficulty
and still get a meaningful limit of non-smoothness, we will divide J(z) (and,
correspondingly, 1(5)) by 62 and only then, tend this ratio J(x(t)) = I(8) to
a limit. This division does not change the relationship between the functional
and smoothness: indeed, if for some §, a trajectory z;(t) is smoother than a
trajectory zo(t) in the sense that J(z1(t)) < J(z2(t)), then, after dividing both
sides by 62, we will get J(z1(t)) < J(z2(t)). So, a trajectory x(t) for which .J(x)
is smaller, is thus smoother.

As a result, we arrive at the following definition.

Definition 4. By a non-smoothness I of a control u(x), we mean the limit of

1(6)/862 for 6 — 0.

So, the main objective of the second stage of control is to minimize non-
smoothness.

3 What are the possible reasoning methods?

General properties of V— and &—operations: commutativity and as-
sociativity. In order to apply fuzzy control methodology, we must assign a
truth value (also called degree of belief, or certainty value) t(A) to every uncer-
tain statement A contained in the experts’ rules. Then, we must define V— and
&—operations fy(a,b) and fg(a,b) in such a way that for generic statements A
and B, t(AVB) is close to fy(t(A),t(B)), and t(A&B) is close to fg (t(A),t(B)).
Let us first describe properties that are general to both V— and &—operations.

Statements A& B and B& A mean the same. Hence, t(A&B) = t(B&A), and
it is therefore reasonable to expect that fg (¢(A),t(B)) = fe.(¢(B),t(A)) for all



A and B. In other words, it is reasonable to demand that fg (a,b) = fg (b, a) for
all a and b, i.e., that fg is a commutative operation. Similarly, it is reasonable
to demand that f, is a commutative operation.

Statements (A&B)&C and A&(B&C) also mean the same thing: that
all three statements A, B, and C are true. Therefore, it is reasonable to
demand that the corresponding approximations fg (fs (t(A4),t(B)),t(C)) and
fe(t(A), fe.(¢(B),t(C)) coincide. In mathematical terms, it means that an
&—operation must be associative. Similarly, it is reasonable to demand that
an V—operation is associative. To make our exposition complete, let us give a
precise mathematical definition.

Definition 5. A function f : [0,1] x [0,1] — [0,1] is called commutative
if f(a,b) = f(b,a) for all a and b. It is called associative if f(f(a,b),c) =
f(a, f(b,c)) for all a, b, c.

Comment. If a function f is commutative and associative, then the result of
applying f to several values a,b, ..., c does not depend on their order. So, we
can use a simplified notation f(a,b,...,c) for f(a, f(b,...c)...)).

What are the possible V—operations? One of the most frequently used
methods of assigning a certainty value ¢t(A) to a statement A is as follows (see,
e.g., [1, 2]; [6], IV.1.d; [10]): we take several (V) experts, and ask each of them
whether he believes that a given statement A is true (for example, whether
he believes that 0.3 is negligible). If N(A) of them answer “yes”, we take the
ratio t(A) = N(A)/N as a desired certainty value. In other words, we take
t(A) = |S(A)|/N, where S(A) is the set of all experts (out of the given N) who
believe that A is true, and |S| denotes the number of elements in a given set S.
Here, S(AV B) = S(A) U S(B), hence,

N(AV B) = [S(AUB)| < [S(A)| + [S(B)| = N(4) + N(B).

If we divide both sides of this inequality by N, we can conclude that t(AV B) <
t(A) + t(B). Also, since N(A) < N, we get t(A) < 1, hence, t(AV B) <
min(t(A) +t(B),1).

On the other hand, since S(A) C S(A)US(B), we have |S(A)| < |S(AV B)|
and hence, t(A) < t(A Vv B). Similarly, ¢(B) < t(A Vv B). From these two
inequalities, we can deduce that max(t(A),t(B)) < t(AV B). So, we arrive at
the following definition:

Definition 6. By an V—operation, we will understand a commutative and
associative function fy : [0,1] x [0,1] — [0,1] for which max(a,b) < fy(a,b) <
min(a + b,1) for all a and b.

Comment. Another possibility to estimate ¢(A) is to interview a single expert
and express his degree of confidence in terms of the so-called subjective prob-
abilities [22]. For this method, similar inequalities can be extracted from the
known properties of (subjective) probabilities.



What are the possible &—operations? Similarly to V, we can conclude
that S(A&B) = S(A) N S(B), so N(A&B) < N(A), N(A&B) < N(B), hence
N(A&B) < min(N(A), N(B)) and t(A&B) < min(t(A), t(B)).

On the other hand, a person does not believe in A& B iff either he does not
believe in A, or he does not believe in B. Therefore, the number N(—(A&B))
of experts who do not believe in A& B cannot exceed the sum N(—A)+ N(-B).
The number N(—(A&B)) of experts who do not believe in A&B is equal to
N — N(A&B), and similarly, N(-A) = N — N(A) and N(—-B) = N — N(B).
Therefore, the above-mentioned inequality turns into

N — N(A&B) < N — N(A) + N — N(B),

which leads to N(A&B) > N(A) + N(B) — N and hence, to t(A&B) > t(A) +
t(B) — 1. Since t(A&B) > 0, we have

t(A&B) > max(0, t(A) + ¢(B) — 1).

So, we arrive at the following definition:

Definition 7. By an &—operation, we will understand a commutative and
associative function fg : [0,1] x [0,1] — [0,1] for which max(0,a +b—1) <
fe(a,b) < min(a,b) for all a and b.

Comment. The same formulas hold if we determine ¢(A) as a subjective proba-
bility.

Problems with &—operations. The definition that we came up with for
an V—operation was OK, but with &—operations, we have a problem: in some
situations, an &—operation can be unusable for fuzzy control. For example,
if fg.(a,b) = 0 for some a > 0, b > 0, then for some x,,... the resulting
membership function for a control puc(u) can be identically 0, and there is no
way to extract a value of the control @ from such a function. For such situations,
it is necessary to further restrict the class of possible &—operations.

In the following subsection, we will describe how this problems can be solved.

Solution to the problem: correlated &—operations. We have already
mentioned that to solve the first problem (that pc(u) is identically 0 and hence,
no fuzzy control is defined), we must restrict the class of possible &—operations.
The forthcoming restriction will be based on the following idea. If belief in A
and belief in B were independent events (in the usual statistical sense of the
word “independent”), then we would have t(A&B) = t(A) - t(B). In real life,
beliefs are not independent. Indeed, if an expert has strong beliefs in several
statements that later turn out to be true, then this means that he is really a
good expert. Therefore, it is reasonable to expect that his degree of belief in
other statements that are actually true will be bigger than the degree of belief of
an average expert. If A and B are statements with ¢(A4) > 1/2 and ¢(B) > 1/2,
i.e., such that the majority of experts believe in A and in B, this means that



there is a huge possibility that both A and B are actually true. A reasonable
portion of the experts are good experts, i.e., experts whose predictions are almost
often true. All of these good experts will believe in A and in B and therefore,
all of them will believe in A&B.

Let us give an (idealized) numerical example of this phenomenon. Suppose
that, say, 60% of experts are good, and ¢t(A) = ¢(B) = 0.7. This means that
at least some of these good experts believe in A, and some believe in B. Since
we assumed that the beliefs of good experts usually come out right, it means
that A and B are actually true. Therefore, because of the same assumption
about good experts, all good experts will believe in A, and all good experts will
believe in B. Therefore, all of them will believe in A& B. Hence,

t(A&B) > 0.6 > t(A) - t(B) = 0.49.

In general, we have a mechanism that insures that there is, in statistical
terms, a positive correlation between beliefs in A and B. In mathematical terms,
the total number N(A&B) of experts who believe in A& B must be larger than
the number N;,q(A&B) = Nt(A)t(B) = N(N(A)/N)(N(B)/N) that corre-
sponds to the case when beliefs in A and B are uncorrelated random events.
So we come to a conclusion that the following inequality sounds reasonable:
t(A&B) > t(A) - t(B). So, we arrive at the following definition:

Definition 8. An &—operation will be called correlated if fg(a,b) > a-b for
all a,b.

Comment. In this case, we are guaranteed that if ¢ > 0 and b > 0, then
fe(a,b) >0, i.e., we do avoid the problem in question.

4 Let’s describe a simplified plant, on which dif-
ferent reasoning methods will be tested

Plant. Following Section 2, we will consider the simplest case when the state

of the plant is described by a single variable z, and we control the first time

derivative #. To complete our description of the control problem, we must also
describe:

e the experts’ rules,
e the corresponding membership functions, and

o defuzzification.

Membership functions. For simplicity, we will consider the simplest (and
most frequently used; see, e.g., [14, 15, 16]) membership functions, namely,
triangular ones (as we will see from our proof, the result will not change if we
use any other type of membership functions).

Definition 9. By a triangular membership function with a midpoint a and
endpoints a — Ay and a + Ay we mean the following function p(x):

10



o p(x)=0ifz<a—Ay orz>a+ Ag;
o p(z)=(xr—(a—A1))/Ay ifa— Ay <z <a;
e uz)=1-(z—a)/Asifa<z <a+ As.

Rules. Fuzzy control can be viewed as a kind of extrapolation. In reality
there exists some control u(z,...) that an expert actually applies. However,
he cannot precisely explain, what function v he uses. So we ask him lots of
questions, extract several rules, and form a fuzzy control from these rules.

We will restrict ourselves to the functions u(z) that satisfy the following
properties:

Definition 10. By an actual control function (or control function, for short),
we mean a function u(x) that satisfies the following three properties:

e u(0)=0;
e u(x) is monotonically decreasing for all x;

o u(x) is smooth (differentiable).

Comment. These restrictions are prompted by common sense:

e If x = 0, this means that we are already in the desired state, and there is
no need for any control, i.e., u(0) = 0.

e The more we deviate from the desired state x = 0, the faster we need to
move back if we want the plant to be controllable. So, u is monotonically
decreasing.

e We want the control to be smooth (at least on the second stage), so the
function u(z) that describes an expert’s control, must be smooth.

Let’s now describe the resulting rules formally.

Definition 11. Let’s fix some A > 0. For every integer j, by N;, we will
denote a triangular membership function with a midpoint j - A and endpoints

-1 -Aand (j+1)-A.

o We will call the corresponding fuzzy property Ny negligible (N for short),
N7 small positive or SP, and N_; small negative, or SN.

e Assume that a monotonically non-increasing function u(x) is given, and
that u(0) = 0. By rules generated by u(x), we mean the set of following
rules: “if N;(z), then M;(u)” for all u, where M; is a triangular mem-
bership function with a midpoint u(j-A) and endpoints u((j —1)-A) and
u((j+1)-4A).

11



In particular, if we start with a linear control u = —k-z (and linear control is
the one that is most frequently used, see. e.g., [5]), then M; resembles N_; with
the only difference being that instead of A, we use kA. So, we can reformulate
the corresponding rules as follows: if x is negligible, then v must be negligible;
if x is small positive, then u must be small negative, etc. Here, we use A when
we talk about x, and we use kA when we talk about w.

How to choose A? We have two phenomena to take into consideration:

e On one hand, the smaller A, the better the resulting rules represent the
original expert’s control. From this viewpoint, the smaller A, the better.

e On the the other hand, the smaller A, the more rules we will have and
therefore, the more running time our control algorithm will require. So,
we must not take A too small.

As a result, the following is the natural way to choose A:
e choose some reasonable value of A;
e if the resulting control is not good enough, decrease A;

e repeat this procedure until the further decrease does not lead to any im-
provement in the control quality.

So, the quality (i.e., relaxation time or non-smoothness) of the rule-based control
for the chosen A will be close to the limit value of this quality when A — 0.
Therefore, when choosing the best reasoning method, we must consider this
limit quality as a choosing criterion. Let’s formulate the relevant definitions.

Definition 12. Assume that the following are given:
e an actual control function u(x);
e a defuzzification procedure.

For a given A > 0, by a A—relaxation time, we mean the relaxation time of
a control strategy that is generated by an actual control function u(x) for this
A. By a relaxation time, corresponding to an actual control function u(x), we
mean the limit of A—relazation times when A — 0.

Definition 13. Assume that the following are given:
e an actual control function u(x);
e a defuzzification procedure.

For a given A > 0, by a A—non-smoothness, we mean the non-smoothness of
a control strategy that is generated by an actual control function u(x) for this
A. By a non-smoothness, corresponding to an actual control function u(zx), we
mean the limit of A-non-smoothness when A — 0.
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Defuzzification. For simplicity of analysis, we will only use centroid defuzzi-
fication.

The formulation of the problem in mathematical terms is now complete.

5 Main results

First stage: minimizing relaxation time (i.e., maximizing stability).
Let us first describe the result corresponding to the first stage when we minimize
relaxation time.

Theorem 1. Assume that an actual control function u(x) is given. Then,
among all possible V— and &—operations, the smallest relazation time, corre-
sponding to u(x), occurs when we use fy(a,b) = min(a + b,1) and fg.(a,b) =
min(a, b).

Second stage: minimizing non-smoothness (i.e., maximizing smooth-
ness). We have already mentioned that since we are using an &—operation
for which fg(a,b) = 0 for some a,b > 0, we may end up with a situation
when the resulting function pe(u) is identically 0 and therefore, fuzzy control
methodology is not applicable. For such a situation, we must restrict ourselves
to correlated &—operations. For these operations, we get the following result:

Theorem 2. Assume that an actual control function u(x) is given. Then among
all possible V—operations and all possible correlated &— operations, the smallest
non-smoothness, corresponding to u(x), occurs when we use fy(a,b) = max(a,b)
and fg(a,b) =a-b.

General comment. These results are in good accordance with the general op-
timization results for fuzzy control described in [12]. We will show that the
optimal pairs of operations described in Theorem 1 and Theorem 2 are example
of so-called tropical (idempotent) algebras. Thus, the use of these algebras is
indeed a way to optimize fuzzy control.

What are tropical algebras and what are idempotent algebras? In
arithmetic, we have two basic operations: addition and multiplication. There
are numerous generalizations of these two operations to objects which are more
general than numbers: e.g., we can define the sum and (cross) product of two 3D
vectors, sum and product of complex numbers, sum and products of matrices,
etc. Many results and algorithms originally developed for operations with real
numbers have been successfully extended (sometimes, with appropriate modifi-
cations) to such more general objects.

It turns out that many of these results can be also extended to the case when
one of the operations @ is idempotent, i.e., when a @ a = a for all a. Structures
with two related operations one of which is idempotent and another one has the
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usual properties of addition or multiplication (such as associativity) are called
idempotent algebras; see, e.g., [11, 17, 18].

The most widely used example of an idempotent algebra is a tropical algebra,
i.e., an algebra which is isomorphic to a maz-plus algebra with operations a®b =
a+band a®b = max(a,b). In precise terms, the set with two operation f;(a,b)
and f2(a,b) is isomorphic to a max-plus algebra if there is a 1-1 mapping m(x)
for which fi(a, b) get transformed into the sum and f3(a,b) gets transformed into
the maximum, in the sense that m(f1(a,b)) = m(a) + m(b) and m(f2(a,b)) =
max(m(a), m(b)).

Both optimal pairs of &- and V-operations form tropical algebras.
Let us show that — at least until we reach the value 1 — both pairs of optimal
&- and V-operations form tropical algebras, i.e., are isomorphic to the max-plus
algebra.

Let us start with operations that maximize stability: fy(a,b) = min(a+b,1)
and fg (a,b) = min(a, b). Until we reach the value 1, we get f(a,b) = a+b and
f&(a,b) = min(a,b). Let us show that the mapping m(z) = —x is the desired
isomorphism. Indeed,

m(fv(a;b)) = —(a+b) = (=a) + (=b) = m(a) + m(b).

Similarly, since the function m(z) = —x is decreasing, it attains its largest value
when z is the smallest, in particular, max(—a, —b) = — min(a, b). Thus, we have

m(fg(a,b)) = —min(a,b) = max(—a, —b) = max(m(a), m(b)).

So, our two operations are indeed isomorphic to plus and max.

Let us now show that the operations fy(a,b) = max(a,b) and fg(a,b) =a-b
that maximize smoothness are also isomorphic to the max-plus algebra. Indeed,
in this case, we can take m(x) = In(x). Logarithm is an increasing function, so it
attains its largest value when x is the largest, in particular, max(In(a), In(b)) =
In(max(a,b)). Thus, we have

m(fv(a,b)) = In(max(a, b)) = max(In(a),In(d)) = max(m(a), m(b)).
On the other hand, In(a - b) = In(a) + In(b)) hence
m(fx(a,b)) =1In(a-b) =In(a) + In(b) = m(a) + m(b).

The isomorphism is proven.

6 Proofs

Proof of the Lemma is simple, because for small § the control is approximately
linear: u(z) ~ v'(0) - x.

Proof of Theorem 1. Let us first consider the case when u(x) is a linear
function i.e., when u(z) = —k - 2. In this case, instead of directly proving the
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statement of Theorem 1 (that the limit of A—relaxation times is the biggest for
the chosen reasoning method), we will prove that for every A, A—relaxation
time is the largest for this very pair of V— and &—operations. The statement
itself will then be easily obtained by turning to a limit A — 0.

So, let us consider the case when u(z) = —k-x for some k > 0. In view of the
Lemma, we must compute the derivative @'(0) = lim,_,o (@(z)—u(0))/x), where
@(x) is the control strategy into which the described fuzzy control methodology
translates our rules.

It is easy to show that @(0) = 0. Hence, @' (0) = lim@(z)/z. So, to find
the desired derivative, we must estimate @(x) for small . To get the limit, it
is sufficient to consider only negative values x — 0. Therefore, for simplicity of
considerations, let us restrict ourselves to small negative values = (we could as
well restrict ourselves to positive z, but we have chosen negative ones because
for them the control is positive and therefore, slightly easier to handle).

In particular, we can always take all these z from an interval [-A/2,0].
For such z, only two of the membership functions IN; are different from 0:
N(z) = No(z) =1—|z|/A and SN(z) = N_1(x) = |z|/A. Therefore, only two
rules are fired for such x, namely, those that correspond to N(u) and SP(u).

We have assumed the centroid defuzzification rule, according to which u(x) =
n(x)/d(z), where the numerator n(z) = [ u- pc(u) du and the denominator is
equal to d(z) = [pc(u)du. When x = 0, the only rule that is applicable
is No(z) — No(u). Therefore, for this x, the above-given general expression
for pe(u) turns into pe(z) = pn(u) Indeed, from our definitions of &— and
V—operations, we can deduce the following formulas:

e fy(a,0) =0 for an arbitrary a, so the rule whose condition is not satisfied
leads to 0, and

e fy(a,0) =0 for all a, so the rule that leads to 0, does not influence pc(u).

Therefore, for = 0, the denominator d(0) equals [ pn(u)du = k- A (this is
the area of the triangle that is the graph of the membership function).

So, when = — 0, then d(z) — d(0) = k - A. Therefore, we can simplify the
expression for the desired value @'(0):

@' (0) = limu(x)/x = lim(n(z)/d(z))/x = (k- A) "' lim(n(z)/z).

Since kA is a constant that does not depend on the choice of a reasoning method
(i.e., of V— and &—operations), the biggest value of @'(0) (and hence, the small-
est relaxation time) is attained when the limit lim(n(z)/x) takes the smallest
possible value. So, from now on, let’s estimate this limit.

For small negative x, as we have already mentioned, only two rules are
fired: N(z) — N(u) and SN (z) — SP(u). Therefore, the membership function
for control takes the following form: pc(u) = fy(p1(u),p2(u)), where pi(u) =
fe(pn (), pn(u) and p2(u) = fe(psn(z), psp(u)). The function psp(u) is
different from 0 only for w > 0. Therefore, for u < 0, we have pa(u) = 0 and
hence, pc(u) = p1(u).
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We are looking for the reasoning method, for which lim(n(z)/z) takes
the largest possible value, where n(z) = [ jpc(u)du. Let’s fix an arbitrary
&—operation fg, and consider different functions f,,. If we use two different
V—operations fy(a,b) and gy(a,b) for which fy(a,b) < gv(a,b) for all a,b,
then, when we switch from fy to gy, the values of pc(u) for u < 0 will be
unaffected, but the values for v > 0 will increase. Therefore, the total value of
the numerator integral n(z) = [ puc(u)du will increase after this change. So,
if we change fy to a maximum possible function min(a + b, 1), we will increase
this integral. Therefore, we will arrive at a new pair of functions, for which the
new value of @ is not smaller for small x, and, therefore, the derivative of % in
0 is not smaller.

Therefore, when looking for the best reasoning methods, it is sufficient to
consider only the pairs of V— and &—operations in which fy (a,b) = min(a+b, 1).
In this case, we have pc(x) = p1(u) + pa(u) — pap(u), where pap(u) is different
from 0 only for u ~ 0, and corresponds to the values u for which we use the 1
part of the min(a+b, 1) formula. Therefore, n(z) can be represented as the sum
of the three integrals: n(z) = ni + ng — ngy, where ny = [u - pi(u)du, ny =
Ju-pa(u)du, and ngy, = [ u- pey(u) du. Let’s analyze these three components
one by one.

e The function p;i(u) is even (because puy(u) is even). It is well known
that for an arbitrary even function f, the integral [u - f(u) du equals
0. Therefore, n; = 0. So, this component does not influence the limit
lim(n(z)/x) (and therefore, does influence the relaxation time).

e The difference p,p(u) is of size u, which, in its turn, is of size x (pap(u) ~
u ~ ), and it is different from 0 on the area surrounding u = 0 that is
also of size ~ x. Therefore, the corresponding integral n,; will be of order
x3. Therefore, when x — 0, we have ny,/z ~ 2 — 0. This means that
this component does not influence the limit lim(n(x)/x) either.

As a result, the desired limit is completely determined by the second component

n) o male)

p2(u), ie., lim m ———=. Therefore, the relaxation time is the smallest
x

na () !

when lim ——= takes the biggest possible value. Now,
T

o :/u~p2(u)du,

where po(u) = fe(usn(x), psp(u)). The membership function pgp(u) is differ-
ent from 0 only for positive u. Therefore, the function ps(u) is different from 0
only for positive u. So, the bigger fg, , the bigger ne. Therefore, the maximum is
attained, when fg attains its maximal possible value, i.e., min(a, b). For linear
actual control functions, the statement of the theorem is thus proven.

The general case follows from the fact that the relaxation time is uniquely
determined by the behavior of a system near x = 0. The smaller A we take,
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the closer u(x) to a linear function on an interval [-A, A] that determines the
derivative of u(x), and, therefore, the closer the corresponding relaxation time
to a relaxation time of a system that originated from the linear control. Since
for each of these approximating systems, the resulting relaxation time is the
smallest for a given pair of V— and &—operations, the same inequality will be
true for the original system that these linear systems approximate. Q.E.D.

Proof of Theorem 2. For a linear system u(z) = —k - x, we have z(t) =
0-exp(—k-t),soz(t) =—k-d-exp(—k-t), and the non-smoothness functional
equals 1(8) = 02 - [T k? - exp(—2k - t)dt = (k/2) - 6. Therefore, I = k/2.
For non-linear systems with a smooth control u(z) we can similarly prove that
I = —(1/2)-4/(0). Therefore, the problem of choosing a control with the smallest
value of non-smoothness is equivalent to the problem of finding a control with
the smallest value of & = |u/(0)]. This problem is directly opposite to the
problem that we solved in Theorem 1, where our main goal was to maximize k.

Similar arguments show that the smallest value of k is attained, when we
take the smallest possible function for V, and the smallest possible operation
for &. Q.E.D.

Comment. We have proved our results only for the simplified plant. However,
as one can easily see from the proof, we did not use much of the details about
this plant. What we mainly used was the inequalities between different &— and
V—operations. In particular, our proofs do not use the triangular form of the
membership function, they use only the fact that the membership functions are
located on the intervals [a — A, a + A].

Therefore, a similar proof can be applied in a much more general context.
We did not formulate our results in this more general context because we did
not want to cloud our results with lots of inevitable technical details.
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