
Is It Possible to Have a Feasible

Enclosure-Computing Method Which Is

Independent of the Equivalent Form?∗

Marcin Michalak
Institute of Computer Science, Silesian University
of Technology, ul. Academicka 16, 44-100 Glivice,
Poland

marcin.michalak@polsl.pl

Vladik Kreinovich
Department of Computer Science, University of Texas
at El Paso, 500 W. University, El Paso, TX 79968,
USA

vladik@utep.edu

August 22, 2012

Abstract

The problem of computing the range y of a given function
f(x1, . . . , xn) over given intervals xi – often called the main problem of
interval computations – is, in general, NP-hard. This means that unless P
= NP, it is not possible to have a feasible (= polynomial time) algorithm
that always computes the desired range. Instead, interval computations
algorithms compute an enclosure Y ⊇ y for the desired range. For all
known feasible enclosure-computing methods – starting with straightfor-
ward interval computations – there exist two expressions f(x1, . . . , xn)
and g(x1, . . . , xn) for computing the same function that lead to different
enclosures. We prove that, unless P = NP, this is inevitable: it is not pos-
sible to have a feasible enclosure-computing method which is independent
of the equivalent form.

Keywords: interval computations, enclosure, equivalent form, NP-hard
AMS subject classifications: 65G20, 65G40, 03D15, 68Q17

1 Formulation of the Problem

One of the main problems of interval computations. One of the main
problems of interval computations has the following form:

∗Submitted: June 28, 2011; Revised: August 19, 2012; Accepted: ???.

1



2 M. Michalak, V. Kreinovich, Equivalent forms, different enclosures

• We are given an algorithm f(x1, . . . , xn) for computing a function of n real
variables, and n intervals x1, . . . , xn.

• We need to compute the range

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

of the function f(x1, . . . , xn) under given intervals.

This problem is NP-hard. It is known (see, e.g., [3]) that the above problem
is, in general, NP-hard.

Comment. It is widely believed that P ̸=NP. In this case, NP-hardness means that it
is not possible to have a feasible (= polynomial time) algorithm that always computes
the desired range.

Feasible methods for computing enclosures. Since we cannot always ef-
ficiently compute the exact range y, and we want to guarantee that the value
f(x1, . . . , xn) is contained in the estimated range, we need to find an enclosure Y ⊇ y.
There exist many feasible techniques for computing enclosures: straightforward in-
terval computations, mean value form, methods combined with bisection, etc.; see,
e.g., [4].

Existing feasible methods for computing enclosure are not indepen-
dent on the equivalent form. In straightforward interval computations, we

• represent the algorithm f(x1, . . . , xn) as a sequence of elementary arithmetic
operations such as +, −, ·, /, min, max, etc. and then

• replace each elementary operation with the corresponding operation of interval
arithmetic.

In this method, in general, the resulting enclosure may be different for different algo-
rithms that compute the same function. For example, the algorithms f(x1) = x1 − x1

and g(x1) = 0 compute the same function 0 on the interval [0, 1], but:

• for f(x1) = x1 − x1 straightforward interval computations leads to an enclosure

[0, 1]− [0, 1] = [−1, 1],

while

• for g(x1) = 0, we get the enclosure Y = [0, 0] ̸= [−1, 1].

Similarly, all other feasible methods for computing enclosure – at least those which
are known to the authors – are not independent on the equivalent form: for each of
these methods, there exist two algorithms that compute the same function but lead
to different enclosures.

Natural question. The above fact leads to the following natural question: Is it
possible to have a feasible enclosure-computing method which is independent of the
equivalent form?



Reliable Computing, 2011 3

Comment. For straightforward interval computations S(f,x1, . . . ,xn), we have an
even stronger result about algorithms that compute the same function but lead to
different enclosures (see, e.g., [1, 2]). This result is as follows: for each algorithm
f(x1, . . . , xn), for each set of intervals xi, and for each interval Y ⊇ y containing
the actual range y, there exists an algorithm g(x1, . . . , xn) with the following two
properties:

• for values xi ∈ xi, the algorithm g(x1, . . . , xn) computes the same function as
f(x1, . . . , xn), i.e.,

∀x1 ∈ x1 . . . ∀xn ∈ xn (f(x1, . . . , xn) = g(x1, . . . , xn));

• straightforward interval computations, when applied to the algorithm
g(x1, . . . , xn), return the interval Y :

S(g,x1, . . . ,xn) = Y .

2 Main Result

Definition. By a feasible enclosure-computing method, we mean a feasible algo-
rithm A that, given an algorithm f(x1, . . . , xn) and n intervals x1, . . . , xn, computes
an interval A(f,x1, . . . ,xn) that contains the range

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

Proposition. If P ̸= NP, then for every feasible enclosure-computing method A,
there exist two algorithms g(x1, . . . , xn) and h(x1, . . . , xn) and n intervals x1, . . . , xn

for which

• g(x1, . . . , xn) = h(x1, . . . , xn) for all x1 ∈ x1, . . . , xn ∈ xn, but

• A(g,x1, . . . ,xn) ̸= A(h,x1, . . . ,xn).

Comment. Thus, it is not possible to have a feasible enclosure-computing method
which is independent of the equivalent form.

Proof.

1◦. In our proof, we will use the following result from [3]: that even if we fix the
intervals x1 = . . . = xn = [0, 1], then, for a certain class of polynomial functions
f(x1, . . . , xn), we would always have y ≥ 1 or y ≤ 0, and the problem of checking
whether y ≥ 1 or y ≤ 0 is NP-hard. (This result is proved at the end of the proof of
Theorem 3.1 from [3].) In our proof, we will consider these same intervals x1 = . . . =
xn = [0, 1].

2◦. We will prove this result by contradiction. Let us assume that there exists a
feasible enclosure-computing method A for which, if two algorithms g(x1, . . . , xn)
and h(x1, . . . , xn) compute the same function on a box [0, 1] × . . . × [0, 1], then
A(g, [0, 1], . . . , [0, 1]) = A(h, [0, 1], . . . , [0, 1]).



4 M. Michalak, V. Kreinovich, Equivalent forms, different enclosures

Let us show that in this case, we will be able to feasibly check, given an algorithm
f(x1, . . . , xn) and n intervals x1 = . . . = xn = [0, 1], whether the upper endpoint y of
the range [y, y] = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn} is ≥ 1 or is ≤ 0.

3◦. Let us first apply the method A to the algorithm f0(x1, . . . , xn) that always returns
0. Let us denote the result A(f0, [0, 1], . . . , [0, 1]) of applying A to this algorithm f0 by
[z−, z+]. Since the method A is enclosure-computing, the range [z−, z+] is an enclosure
for the actual range [0, 0] of the function f0. Thus, z− ≤ 0 ≤ z+.

4◦. Our main idea is that, based on the algorithm f(x1, . . . , xn), we can compute a
new algorithm g(x1, . . . , xn) = max((z+ + 1) · f(x1, . . . , xn), 0).

Let us consider two possible cases: y ≥ 1 and y ≤ 0.

4.1◦. If y ≤ 0, this means that f(x1, . . . , xn) ≤ 0 for all xi ∈ [0, 1]. Thus, for all values
(x1, . . . , xn) from the corresponding box [0, 1] × . . . × [0, 1], we have g(x1, . . . , xn) =
max((z+ + 1) · f(x1, . . . , xn), 0) = 0. Hence, in this case, g(x1, . . . , xn) computes
the same function as f0(x1, . . . , xn) for all the values from the box. So, due to our
assumption, A(g, [0, 1], . . . , [0, 1]) = A(f0, [0, 1], . . . , [0, 1]) = [z−, z+], and thus,

A(g, [0, 1], . . . , [0, 1]) = z+.

4.2◦. On the other hand, if y ≥ 1, this means that there exists values xi ∈ [0, 1] for
which f(x1, . . . , xn) ≥ 1. For these values xi, we have

g(x1, . . . , xn) = max((z+ + 1) · f(x1, . . . , xn), 0) ≥ z+ + 1.

Thus, the upper endpoint of the range of the function g on the box [0, 1]× . . .× [0, 1]
is also ≥ z+ + 1. Since the interval A(g, [0, 1], . . . , [0, 1]) is an enclosure for this range,
its upper endpoint greater than or equal to z+ + 1:

A(g, [0, 1], . . . , [0, 1]) ≥ z+ + 1.

4.3◦. Summarizing:

• if y ≤ 0, then A(g, [0, 1], . . . , [0, 1]) = z+;

• if y ≥ 1, then A(g, [0, 1], . . . , [0, 1]) ≥ z+ + 1.

5◦. According to Part 4 of this proof, by applying the method A to the function
g(x1, . . . , xn) and the intervals x1 = . . . = xn = [0, 1], and by checking whether
A(g, [0, 1], . . . , [0, 1]) = z+ or A(g, [0, 1], . . . , [0, 1]) ≥ z+ + 1, we will be able to detect,
in feasible time, whether y ≤ 0 or y ≥ 1.

However, we know that the problem of detecting whether y ≥ 0 or y ≥ 1 is NP-
hard. Thus, the fact that we can solve this problem in polynomial time means that P
= NP – and we assumed that P ̸=NP.

This contradiction shows that our assumption is wrong, i.e., that for every fea-
sible enclosure-computing method A, there exist two algorithms g(x1, . . . , xn) and
h(x1, . . . , xn) that compute the same function for given n intervals x1 = . . . = xn =
[0, 1] but for which A(g,x1, . . . ,xn) ̸= A(h,x1, . . . ,xn).

The proposition is proven.



Reliable Computing, 2011 5

Acknowledgments. The first author was supported by the European Union from
the European Social Fund (grant agreement number: UDA-POKL.04.01.01-106/09).
This work was also partly supported by the US National Science Foundation grants
HRD-0734825 and DUE-0926721, and by Grant 1 T36 GM078000-01 from the US
National Institutes of Health.

The authors are thankful to all the participants of the 13th International Con-
ference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing RSFD-
GrC’2011 (Moscow, Russia, June 25–30, 2011) and to the anonymous referees for
valuable discussions.

References

[1] Koshelev, M.: Every Superinterval of the Function Range Can Be An Interval-
Computations Enclosure, The Chinese University of Hong Kong, Department of
Mechanical & Automation Engineering, Technical Report CUHK-MAE-99-003,
January 1999.

[2] Koshelev, M.: Every superinterval of the function range can be an interval-
computations enclosure, Reliable Computing 6, pp. 219–223, 2000.

[3] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht,
1997.

[4] Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis,
SIAM Press, Philadelphia, Pennsylvania, 2009.


