
Theoretical Explanation of Bernstein

Polynomials’ Efficiency: They Are Optimal

Combination of Optimal Endpoint-Related

Functions∗

J. Nava and V. Kreinovich
Department of Computer Science, University of Texas
at El Paso, El Paso, Texas 79968, USA

jenava@miners.utep.edu,vladik@utep.edu

Abstract

In many applications of interval computations, it turned out to be
beneficial to represent polynomials on a given interval [x, x] as linear com-
binations of Bernstein polynomials (x − x)k · (x − x)n−k. In this paper,
we provide a theoretical explanation for this empirical success: namely,
we show that under reasonable optimality criteria, Bernstein polynomials
can be uniquely determined from the requirement that they are optimal
combinations of optimal polynomials corresponding to the interval’s end-
points.

Keywords: Bernstein polynomials, interval computations, symmetries, optimization
AMS subject classifications: 65G20 65G40 65K99 58J70

1 Formulation of the Problem

Polynomials are often helpful. In many areas of numerical analysis, in partic-
ular, in computations with automatic results verification, it turns out to be helpful to
approximate a dependence by a polynomial. For example, in computations with auto-
matic results verification, Taylor methods – in which the dependence is approximated
by a polynomial – turned out to be very successful; see, e.g., [1, 2, 3, 8, 9, 11].

The efficiency of polynomials can be theoretically explained. The effi-
ciency of polynomials is not only an empirical fact, this efficiency can also be theoret-
ically justified. Namely, in [12], it was shown that under reasonable assumptions on
the optimality criterion – like invariance with respect to selection a starting point and
a measuring unit for describing a quantity – every function from the optimal class of
approximating functions is a polynomial.

∗Submitted: July 15, 2011; Revised: ?; Accepted: ?

1



2 J. Nava and V. Kreinovich, Why Are Bernstein Polynomials Efficient

How to represent polynomials in a computer: straightforward way
and Bernstein polynomials. In view of the fact that polynomials are efficient,
we need to represent them inside the computer. A straightforward way to represent a
polynomial is to store the coefficients at its monomials. For example, a natural way to
represent a quadratic polynomial f(x) = c0 + c1 · x+ c2 · x2 is to store the coefficients
c0, c1, and c2.

It turns out that in many applications in which we are interested in functions de-
fined on a given interval [x, x], we get better results if instead, we represent a general
polynomial as a linear combination of Bernstein polynomials, i.e., functions propor-
tional to (x − x)k · (x − x)n−k, and store coefficients of this linear combination; see,
e.g., [4, 5, 6, 7, 10, 13].

For example, a general quadratic polynomial on the interval [0, 1] can be repre-
sented as

f(x) = a0 ·x0 ·(1−x)2+a1·x1 ·(1−x)1+a0·x2 ·(1−x)0 = a0·x2+a1 ·x·(1−x)+a2 ·(1−x)2;

to represent a generic polynomial in a computer, we store the values a0, a1, and a2.
(To be more precise, we store values proportional to ai.)

For polynomials of several variables defined on a box [x1, x1] × . . . × [xn, xn], we
can use similarly multi-dimensional Bernstein polynomials which are proportional to
n∏

i=1

(xi − xi)
ki · (xi − xi)

n−ki .

Natural questions. Natural questions are:

• why is the use of these basic functions more efficient than the use of standard

monomials
n∏

i=1

xki
i ?

• are Bernstein polynomials the best or these are even better expressions?

Towards possible answers to these questions. To answer these questions,
we take into account that in the 1-D case, an interval [x, x] is uniquely determined by its
endpoints x and x. Similarly, in the multi-D case, a general box [x1, x1]×. . .×[xn, xn] is
uniquely determined by two multi-D “endpoints” x = (x1, . . . xn) and x = (x1, . . . , xn).
It is therefore reasonable to design the basic polynomials as follows:

• first, we find two polynomial functions f(x) and f(x), where x = (x1, . . . , xn),
related to each of the endpoints;

• then, we use some combination operation F (a, b) to combine the functions f(x)

and f(x) into a single function f(x) = G(f(x), f(x)).

In this paper, we use the approach from [12] to prove that if we select the optimal
polynomials f(x) and f(x) on the first stage and the optimal combination operation
on the second stage, then the resulting function f(x) is proportional to a Bernstein
polynomial.

In other words, we prove that under reasonable optimality criteria, Bernstein pol-
ynomials can be uniquely determined from the requirement that they are optimal
combinations of optimal polynomials corresponding to the interval’s endpoints.



Reliable Computing, 2011 3

2 Optimal Functions Corresponding to End-
points: Towards a Precise Description of the
Problem

Formulation of the problem: reminder. Let us first find optimal polynomials
corresponding to endpoints x(0) = x and x(0) = x.

We consider applications in which the dependence of a quantity y on the input
values x1, . . . , xn is approximated by a polynomial y = f(x) = f(x1, . . . , xn). For each
of the two endpoints x(0) = x and x(0) = x, out of all polynomials which are “related”
to this point, we want to find the one which is, in some reasonable sense, optimal.

How to describe this problem in precise terms. To describe this problem
in precise terms, we need to describe:

• what it means for a polynomial to be “related” to the point, and

• what it means for one polynomial to be “better” than the other.

Physical meaning. To formalize the two above notions, we take into account
that in many practical applications, the inputs numbers xi are values of some physical
quantities, and the output y also represent the value of some physical quantity.

Scaling and shift transformations. The numerical value of each quantity de-
pends on the choice of a measuring unit and on the choice of the starting point. If
we replace the original measuring unit by a unit which is λ times smaller (e.g., use
centimeters instead of meters), then instead of the original numerical value y, we get
a new value y′ = λ · y.

Similarly, if we replace the original starting point with a new point which corre-
sponds to y0 on the original scale (e.g., as the French Revolution did, select 1789 as the
new Year 0), then, instead as the original numerical value y, we get a new numerical
value y′ = y − y0.

In general, if we change both the measuring unit and the starting point, then
instead of the original numerical value y, we get the new value λ · y − y0.

We should select a family of polynomials. Because of scaling and shift, for
each polynomial f(x), the polynomials λ · f(x) − y0 represent the same dependence,
but expressed in different units. Because of this fact, we should not select a single
polynomial, we should select the entire family {λ · f(x)−y0}λ,y0 of polynomials repre-
senting the original dependence for different selections of the measuring unit and the
starting point.

Scaling and shift for input variables. In many practical applications, the
inputs numbers xi are values of some physical quantities. The numerical value of each
such quantity also depends on the choice of a measuring unit and on the choice of the
starting point. By using different choices, we get new values x′

i = λi · xi − xi0, for
some values λi and xi0.



4 J. Nava and V. Kreinovich, Why Are Bernstein Polynomials Efficient

Transformations corresponding to a given endpoint x(0) =(
x
(0)
1 , . . . , x

(0)
n

)
. Once the endpoint is given, we no longer have the freedom of

changing the starting point, but we still have re-scalings: xi − x
(0)
i → λi ·

(
xi − x

(0)
i

)
,

i.e., equivalently, xi → x′
i = x

(0)
i + λ ·

(
xi − x

(0)
i

)
.

What is meant by “the best” family? When we say “the best” family, we
mean that on the set of all the families, there is a relation ≽ describing which family
is better or equal in quality. This relation must be transitive (if F is better than G,
and G is better than H, then F is better than H).

Final optimality criteria. The preference relation ≽ is not necessarily asym-
metric, because we can have two families of the same quality. However, we would like
to require that this relation be final in the sense that it should define a unique best
family Fopt, for which ∀G (Fopt ≽ G).

Indeed, if none of the families is the best, then this criterion is of no use, so there
should be at least one optimal family.

If several different families are equally best, then we can use this ambiguity to
optimize something else: e.g., if we have two families with the same approximating
quality, then we choose the one which is easier to compute. As a result, the original
criterion was not final: we obtain a new criterion: F ≽new G, if either F gives a better
approximation, or if F ∼old G and G is easier to compute. For the new optimality
criterion, the class of optimal families is narrower.

We can repeat this procedure until we obtain a final criterion for which there is
only one optimal family.

Optimality criteria should be invariant. Which of the two families is better
should not depend on the choice of measuring units for measuring the inputs xi. Thus,
if F was better than G, then after re-scaling, the re-scaled family F should still be
better than the re-scaled family G.

Thus, we arrive at the following definitions.

3 Optimal Functions Corresponding to End-
points: Definitions and the Main Result

Definition 1. By a family, we mean a set of functions from IRn → IR which has
the form {C · f(x) − y0 : C, y0 ∈ IR, C > 0} for some polynomial f(x). Let F denote
the class of all possible families.

Definition 2. By a optimality criterion ≼ on the class F , we mean a pre-ordering
relation on the set F , i.e., a transitive relation for which F ≼ F for every F . We say
that a family F is optimal with respect to the optimality criterion ≼ if G ≼ F for all
G ∈ F .

Definition 3. We say that the optimality criterion is final if there exists one and
only one optimal family.



Reliable Computing, 2011 5

Definition 4. Let x(0) ba a vector. By a x(0)-rescaling corresponding to the values
λ = (λ1, . . . , λn), λi > 0, we mean a transformation x → x′ = Tx(0),λ(x) for which

x′
i = x

(0)
i + λi ·

(
xi − x

(0)
i

)
.

By a x(0)-rescaling of a family F = {C ·f(x)−y0}C,y0 , we mean a family Tx(0),λ(F ) =

{C · f(Tx(0),λ(x))s}C,y0 . We say that an optimality criterion is x(0)-scaling-invariant
if for every F , G, and λ, F ≼ G implies Tx(0),λ(F ) ≼ Tx(0),λ(G).

Proposition 1. Let ≼ be a final x(0)-scaling-invariant optimality criterion. Then
every polynomial from the optimal family has the form

f(x) = A+B ·
n∏

i=1

(
xi − x

(0)
i

)ki

.

Comment. For readers’ convenience, all the proofs are placed in the special (last)
Proofs section.

Discussion. As we have mentioned, the value of each quantity is defined modulo a
starting point. It is therefore reasonable, for y, to select a starting point so that A = 0.
Thus, we get the dependence

f(x) = B ·
n∏

i=1

(
xi − x

(0)
i

)ki

.

Once the starting point for y is fixed, the only remaining y-transformations are scalings
y → λ · y.

4 Optimal Combination Operations

In the previous section, we described the optimal functions corresponding to the end-
points x and x. What is the optimal way of combining these functions? Since we are
dealing only with polynomial functions, it is reasonable to require that a combination
operation transform polynomials into polynomials.

Definition 5. By a combination operation, we mean a function K : IR2 → IR for
which, if f(x) and f(x) are polynomials, then the composition K

(
f(x), f(x)

)
is also

a polynomial.

Lemma 1. A function K(a, b) is a combination operation if and only if it is a
polynomial.

Discussion. Similarly to the case of optimal functions corresponding to individual
endpoint, the numerical value of the function K (a, a) depends on the choice of the
measuring unit and the starting point: an operation that has the form K (a, a) under
one choice of the measuring unit and starting point has the form C ·K (a, a)−y0 under
a different choice. Thus, we arrived at the following definition.



6 J. Nava and V. Kreinovich, Why Are Bernstein Polynomials Efficient

Definition 6. By a C-family, we mean a set of functions from IR2 → IR which has
the form {C ·K(a, b)−y0 : C, y0 ∈ IR, C > 0} for some combination operation K(a, b).
Let K denote the class of all possible C-families.

Definition 7. By an optimality criterion ≼ on the class K of all C-families, we
mean a pre-ordering relation on the set K, i.e., a transitive relation for which F ≼ F for
every C-family F . We say that a C-family F is optimal with respect to the optimality
criterion ≼ if G ≼ F for all G ∈ K.

Definition 8. We say that the optimality criterion is final if there exists one and
only one optimal C-family.

Discussion. From the previous section, we know that both functions f(x) and f(x)

are determined modulo scaling f(x) → λ · f(x) and f(x) → λ · f(x). Thus, it is
reasonable to require that the optimality relation not change under such re-scalings.

Definition 9. By a C-rescaling corresponding to the values λ =
(
λ, λ

)
, we mean a

transformation Tλ (a, a) =
(
λ · a, λ · a

)
. By a C-rescaling of a family

F = {C ·K(a, a)− y0}C,y0 ,

we mean a family Tλ(F ) = {C · K(Tλ(a))}C,y0 . We say that an optimality criterion
is C-scaling-invariant if for every F , G, and λ, F ≼ G implies Tλ(F ) ≼ Tλ(G).

Proposition 2. Let ≼ be a final C-scaling-invariant optimality criterion. Then
every combination operation from the optimal family has the form

K(a, a) = A+B · ak · ak.

5 Conclusions

By applying this optimal combination operation from Section 4 to the optimal func-
tions corresponding to x(0) = x and x(0) = x (described in Section 3), we conclude
that the resulting function has the form

f(x1, . . . , xn) = K
(
f(x1, . . . , xn), f(x1, . . . , xn)

)
=

A+B ·

(
n∏

i=1

(xi − xi)
ki

)k

·

(
n∏

i=1

(xi − xi)
ki

)k

.

Modulo an additive constant, this function has the form

f(x1, . . . , xn) = B ·
n∏

i=1

(xi − xi)
k′
i ·

n∏
i=1

(xi − xi)
k
′
i ,

where k′
i = ki · k and k

′
i = ki · k.

These are Bernstein polynomials. Thus, Bernstein polynomials can indeed by
uniquely determined as the result of applying an optimal combination operation to
optimal functions corresponding to x and x.



Reliable Computing, 2011 7

6 Proofs

Proof of Proposition 1.

1◦. Let us first prove that the optimal family Fopt is x(0)-scaling-invariant, i.e.,
Tx(0),λ(Fopt) = Fopt.

Since Fopt is an optimal family, we have G ≼ Fopt for all families G. In particular,
for every family G and for every λ, we have Tx(0),λ−1(G) ≼ Fopt. Since the optimal

criterion is x(0)-scaling-invariant, we conclude that

Tx(0),λ

(
Tx(0),λ−1(G)

)
≼ Tx(0),λ(Fopt).

One can easily check that if we first re-scale the family with the coefficient λ−1, and
then with λ, then we get the original family G back. Thus, the above conclusion
takes the form G ≼ Tx(0),λ(Fopt). This is true for all families G, hence the family
Tx(0),λ(Fopt) is optimal. Since the optimality criterion is final, there is only one optimal
family, so Tx(0),λ(Fopt) = Fopt. The statement is proven.

2◦. For simplicity, instead of the original variables xi, let us consider auxiliary variables
zi = xi − x

(0)
i . In terms of these variables, re-scaling takes a simpler form zi → λi · zi.

Since xi = zi + x
(0)
i , the dependence f(x1, . . . , xn) take the form

g(z1, . . . , zn) = f
(
z1 + x

(0)
1 , . . . , zn + x(0)

n

)
.

Since the function f(x1, . . . , xn) is a polynomial, the new function g(z1, . . . , zn) is a
polynomial too.

3◦. Let us now use the invariance that we have proved in Part 1 of this proof to find the
dependence of the function f(z) on each variable zi. For that, we will use invariance
under transformations that change zi to λi ·zi and leave all other coordinates zj (j ̸= i)
intact.

Let us fix the values zj of all the variables except for zi. Under the above transfor-
mation, invariance implies that if g(z1, . . . , zi−1, zi, zi+1, . . . , zn) is a function from the
optimal family, then the re-scaled function g(z1, . . . , zi−1, λi · zi, zi+1, . . . , zn) belongs
to the same family, i.e.,

g(z1, . . . , zi−1, λi · zi, zi+1, . . . , zn) = C(λi) · g(z1, . . . , zi−1, zi, zi+1, . . . , zn)− y0(λi)

for some values C and y0 depending on λi. Let us denote

gi(zi) = g(z1, . . . , zi−1, zi, zi+1, . . . , zn).

Then, the above condition takes the form

gi(λ · zi) = C(λi) · gi(zi)− y0(λi).

It is possible that the function gi(zi) is a constant. If it is not a constant, this means
that there exist values zi ̸= z′i for which gi(zi) ̸= gi(z

′
i). For these two values, we get

gi(λi · zi) = C(λi) · gi(zi)− y0(λi);

gi(λi · z′i) = C(λi) · gi(z′i)− y0(λi).



8 J. Nava and V. Kreinovich, Why Are Bernstein Polynomials Efficient

By subtracting these equations, we conclude that

gi(λi · zi)− gi(λi · z′i) = C(λi) · (gi(zi)− gi(z
′
i)),

hence

C(λi) =
gi(λi · zi)− gi(λi · z′i)

gi(zi)− gi(z′i)
.

Since the function gi(zi) is a polynomial, the right-hand side is a smooth function of
λ. Thus, the dependence of C(λi) on λi is differentiable (smooth). Since y0(λi) =
C(λi) · gi(zi) − gi(λi · zi), and both C and gi are smooth functions, the dependence
y0(λi) is also smooth.

Since all three functions C, y0, and gi are differentiable, we can differentiate both
sides of the equality gi(λi · zi) = C(λi) · gi(zi) − y0(λi) by λi and take λi = 1. This
leads to the formula

zi ·
dgi
dzi

= C1 · gi(zi)− y1,

where we denoted C1
def
=

dC

dλi |λi=1

and y1
def
=

dy0
dλi |λi=1

.

By moving all the terms related to gi to one side and all the terms related to zi to
the other side, we get

dgi
C1 · gi − y1

=
dzi
zi

.

We will consider two possibilities: C1 = 0 and C1 ̸= 0.

3.1◦. If C1 = 0, then the above equation takes the form

− 1

y1
· dgi =

dzi
zi

.

Integrating both sides, we get

− 1

y1
· gi = ln(zi) + const,

thus gi = −y1 · ln(zi) + const. This contradicts to the fact that the dependence gi(zi)
is polynomial. Thus, C1 ̸= 0.

3.2◦. Since C1 ̸= 0, we can introduce a new variable hi = gi −
y1
C1

. For this new

variable, we have dhi = dgi. Hence the above differential equation takes the simplified
form

1

C1
· dhi

hi
=

dzi
zi

.

Integrating both sides, we get

1

C1
· ln(hi) = ln(zi) + const,

hence
ln(hi) = C1 · ln(zi) + const,

and
hi = const · zC1

i .

Thus,

gi(zi) = hi(zi) +
y1
C1

= const · zC1
i +

y1
C1

.



Reliable Computing, 2011 9

Since we know that gi(zi) is a polynomial, the power C1 should be a non-negative
integer, so we conclude that

gi(zi) = A · zki
i +B

for some values Ai, Bi, and ki which, on general, depend on all the other values zj .

4◦. Since the function g(z1, . . . , zn) is a polynomial, it is continuous and thus, the
value ki continuously depends on zj . Since the value ki is always an integer, it must
therefore be constant – otherwise we would have a discontinuous jump from one integer
to another. Thus, the integer ki is the same for all the values zj .

5◦. Let us now use the above dependence on each variable zi to find the dependence on
two variables. Without losing generality, let us consider dependence on the variables
z1 and z2.

Let us fix the values of all the other variables except for z1 and z2, and let us define

g12(z1, z2) = g(z1, z2, z3, . . . , zn).

Our general result can be applied both to the dependence on z1 and to the dependence
on z2. The z1-dependence means that g12(z1, z2) = A1(z2) · zk1

1 +B1(z2), and the z1-
dependence means that g12(z1, z2) = A2(z1)·zk2

2 +B2(z1). Let us consider two possible
cases: k1 = 0 and k1 ̸= 0.

5.1◦. If k1 = 0, this means that g12(z1, z2) does not depend on z1 at all, so both A2

and B2 do not depend on z1, hence we have g12(z1, z1) = A2 · zk2
2 +B2.

5.2◦. Let us now consider the case when k1 ̸= 0. For z1 = 0, the z1-dependence means
that g12(0, z2) = B1(z2), and the z2-dependence implies that B1(z2) = g12(0, z2) =
A2(0) · zk2

2 +B2(0).
For z1 = 1, the z1-dependence means that g12(1, z2) = A1(z2) + B1(z2). On the

other hand, from the z2-dependence, we conclude that A1(z2) +B1(z2) = g12(1, z2) =
A2(1) · zk2

2 +B2(1). We already know the expression for B1(z2), so we conclude that

A1(z2) = g12(1, z2)−B1(z2) = (A2(1)−A2(0)) · zk2
2 + (B2(1)−B2(0)).

Thus, both A1(z2) and B1(z2) have the form a+ b · zk2 , hence we conclude that

g12(z1, z2) = (a+ b · zk2
2 ) · zk1

1 + (c+ d · zk2
2 ) = c+ a · zk1

1 + d · zk2
2 + b · zk1

1 · zk2
2 .

Previously, we only considered transformations of a single variable, let us now
consider a joint transformation z1 → λ1 · z1, z2 → λ2 · z2. In this case, we get

g(λ1 · z1, λ2 · z2) = c+ a · λk1
1 · zk1

1 + d · λk2
2 · zk2

2 + b · λk1
1 · λk2

2 · zk1
1 · zk2

2 .

We want to make sure that

g(λ1 · z1, λ2 · z2) = C(λ1, λ2) · g(z1, z2)− y0(λ1, λ2),

i.e., that
c+ a · λk1

1 · zk1
1 + d · λk2

2 · zk2
2 + b · λk1

1 · λk2
2 · zk1

1 · zk2
2 =

C(λ1, λ2) · (c+ a · zk1
1 + d · zk2

2 + b · zk1
1 · zk2

2 )− y0(λ1, λ2).

Both sides are polynomials in z1 and z2; the polynomials coincide for all possible values
z1 and z2 if and only if all their coefficients coincide. Thus, we conclude that

a · λk1
1 = a · C(λ1, λ2);



10 J. Nava and V. Kreinovich, Why Are Bernstein Polynomials Efficient

d · λk2
2 = d · C(λ1, λ2);

c · λk1
1 · λk2

2 = c · C(λ1, λ2).

If a ̸= 0, then by dividing both sides of the a-containing equality by a, we get
C(λ1, λ2) = λk1

1 . If d ̸= 0, then by dividing both sides of the d-containing equality by
d, we get C(λ1, λ2) = λk2

2 . If c ̸= 0, then by dividing both sides of the c-containing
equality by c, we get C(λ1, λ2) = λk1

1 · λk2
2 . These three formulas are incompatible, so

only one of three coefficients a, d, and c is different from 0 and two other coefficients
are equal to 0. In all three cases, the dependence has the form

g12(z1, z2) = a+ const · zℓ11 · zℓ22 .

6◦. Similarly, by considering more variables, we conclude that

g(z1, . . . , zn) = a+ const · zℓ11 · . . . · zℓnn .

By plugging in the values zi in terms of xi, we get the conclusion of the proposition.
The proposition is proven.

Proof of Lemma 1. Let us first show that if the function K(a, b) is a combination
operation, then K(a, b) is a polynomial. Indeed, by definition of a combination oper-
ation, if we take f(x) = x1 and f(x) = x2, then the function f(x) = K

(
f(x), f(x)

)
=

K(x1, x2) is a polynomial.

Vice versa, if K(x1, x2) is a polynomial, then for every two polynomials f(x) and

f(x), the composition f(x) = K
(
f(x), f(x)

)
is also a polynomial. The lemma is

proven.

Proof of Proposition 2. Due to Lemma, Proposition 2 follows from Proposition 1
– for the case of two variables.

Acknowledgements

This work was supported in part by the National Science Foundation grants HRD-
0734825 and DUE-0926721 and by Grant 1 T36 GM078000-01 from the National
Institutes of Health.

References

[1] M. Berz and G. Hoffstätter, “Computation and Application of Taylor Polynomials
with Interval Remainder Bounds”, Reliable Computing, 1998, Vol. 4, pp. 83–97.

[2] M. Berz and K. Makino, “Verified Integration of ODEs and Flows using Differen-
tial Algebraic Methods on High-Order Taylor Models”, Reliable Computing, 1998,
Vol. 4, pp. 361–369.

[3] M. Berz, K. Makino and J. Hoefkens, “Verified Integration of Dynamics in the So-
lar System”, Nonlinear Analysis: Theory, Methods, & Applications, 2001, Vol. 47,
pp. 179–190.



Reliable Computing, 2011 11

[4] J. Garloff, “The Bernstein algorithm”, Interval Computation, 1993, Vol. 2,
pp. 154–168.

[5] J. Garloff, “The Bernstein expansion and its applications”, Journal of the Amer-
ican Romanian Academy, 2003, Vol. 25–27, pp. 80–85.

[6] J. Garloff and B. Graf, “Solving strict polynomial inequalities by Bernstein ex-
pansion”, In N. Munro, editor, The Use of Symbolic Methods in Control System
Analysis and Design, volume 56 of IEE Contr. Eng., London, 1999, pp. 339–352.

[7] J. Garloff and A. P. Smith, “Solution of systems of polynomial equations by us-
ing Bernstein polynomials”, In: G. Alefeld, J. Rohn, S. Rump, and T. Yamamoto
(eds.), Symbolic Algebraic Methods and Verification Methods – Theory and Ap-
plication, Springer-Verlag, Wien, 2001, pp. 87–97.

[8] J. Hoefkens and M. Berz, “Verification of Invertibility of Complicated Functions
over Large Domains”, Reliable Computing, 2002, Vol. 8, No. 1, pp. 1–16.

[9] R. Lohner, Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertauf-
gaben und Anwendungen, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Ger-
many, 1988.

[10] P. S. V. Nataraj and M. Arounassalame, “A new subdivision algorithm for the
Bernstein polynomial approach to global optimization”, International Journal of
Automation and Computing, 2007, Vol. 4, pp. 342–352.

[11] A. Neumaier, “Taylor Forms - Use and Limits”, Reliable Computing, 2002, Vol. 9,
pp. 43–79.

[12] N. S. Nedialkov, V. Kreinovich, and S. A. Starks, “Interval Arithmetic, Affine
Arithmetic, Taylor Series Methods: Why, What Next?”, Numerical Algorithms,
2004, Vol. 37, pp. 325–336.

[13] S. Ray and P. S. V. Nataraj, “A New Strategy For Selecting Subdivision Point
In The Bernstein Approach To Polynomial Optimization”, Reliable Computing,
2010, Vol. 14, pp. 117–137.


