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Abstract: Protein structure is invariably connected to protein function. There are two im-1

portant secondary structure elements: alpha helices and beta-sheets – which also come in2

a shape of beta-barrels. The actual shapes of these structures can be complicated, but in3

the first approximation, they are usually approximated by spirals, planes, and cylinders. In4

this paper, following Misha Gromov’s ideas, we use natural symmetries to show that, under5

reasonable assumptions, these sets are indeed the best approximating families for secondary6

structures.7
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1. Introduction9

Proteins are biological polymers that perform most of the life’s function. A single chain polymer10

(protein) is folded in such a way that forms local substructures called secondary structure elements. In11

order to study the structure and function of proteins it is extremely important to have a good geometrical12

description of the proteins structure. There are two important secondary structure elements: alpha helices13

and beta-sheets. A part of the protein structure where different fragments of the polypeptide align next to14

each other in extended conformation forming a surface-like feature defines a secondary structure called15

a beta pleated sheet, or, for short, a beta-sheet; see, e.g., [1,6].16
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Beta-sheets are coming in many forms and shapes. In some cases, we have a cylinder-like structure17

called a beta-barrel that is “closed” in one dimension and “open” in the other, but in most cases, we have18

a surface that is open in both directions.19

The actual shapes of the alpha-helices, beta-sheets, and beta-barrels can be complicated. In the first20

approximation, they are usually approximated by cylindrical spirals, planes, and cylinders. In this paper,21

following Misha Gromov’s ides [5], we use symmetries to show that under reasonable assumptions, these22

empirically observed shapes are indeed the best families of simple approximating sets.23

Thus, symmetries indeed explain why the secondary protein structures consists of alpha-helices, beta-24

sheets, and beta-barrels.25

2. Analysis of the Problem26

Of course, the more parameters we allow, the better the approximation. So, the question of selecting27

the best approximating family of sets can be reformulated as follows: for a given number of parameters28

(i.e., for a given dimension of approximating family of sets), which is the best family?29

When we say “the best”, we mean that on the set of all appropriate families, there is a relation �30

describing which family is better or equal in quality. This relation must be transitive (if A is better than31

B, and B is better than C, then A is better than C). This relation is not necessarily asymmetric, because32

we can have two approximating families of the same quality. However, we would like to require that this33

relation be final in the sense that it should define a unique best family Aopt (i.e., the unique family for34

which ∀B (Aopt � B). Indeed:35

• If none of the families is the best, then this criterion is of no use, so there should be at least one36

optimal family.37

• If several different families are equally best, then we can use this ambiguity to optimize something38

else: e.g., if we have two families with the same approximating quality, then we choose the one39

which is easier to compute. As a result, the original criterion was not final: we get a new criterion40

(A �new B if either A gives a better approximation, or if A ∼old B and A is easier to compute),41

for which the class of optimal families is narrower. We can repeat this procedure until we get a42

final criterion for which there is only one optimal family.43

It is reasonable to require that the relation A � B should be invariance relative to natural geometric44

symmetries, i.e., shift- and rotation-invariant.45

These requirements sounds reasonable but weak. We will show, however, that they are sufficient to46

find the optimal families.47

Comment. Our explanation is similar to the symmetry-based explanation of the shapes of celestial bodies48

presented in [2–4,7].49

3. Definitions and the Main Mathematical Result50

Our goal is to choose the best finite-parametric family of sets. To formulate this problem precisely,51

we must formalize what a finite-parametric family is and what it means for a family to be optimal. In52

accordance with the above analysis of the problem, in both formalizations will use natural symmetries.53
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So, we will first formulate how symmetries can be defined for families of sets, then what it means for a54

family of sets to be finite-dimensional, and finally, how to describe an optimality criterion.55

Definition 1. Let g : M → M be a 1-1-transformation of a set M , and let A be a family of subsets of56

M . For each set X ∈ A, we define the result g(X) of applying this transformation g to the set X as57

{g(x) |x ∈ X}, and we define the result g(A) of applying the transformation g to the family A as the58

family {g(X) |X ∈ A}.59

Definition 2. Let M be a smooth manifold. A group G of transformations M → M is called a Lie60

transformation group, if G is endowed with a structure of a smooth manifold for which the mapping61

g, a→ g(a) from G×M to M is smooth.62

We want to define r-parametric families sets in such a way that symmetries from G would be com-63

putable based on parameters. Formally:64

Definition 3. Let M and N be smooth manifolds.65

• By a multi-valued function F : M → N we mean a function that maps each m ∈ M into a66

discrete set F (m) ⊆ N .67

• We say that a multi-valued function is smooth if for every point m0 ∈ M and for every value68

f0 ∈ F (m), there exists an open neighborhood U of m0 and a smooth function f : U → N for69

which f(m0) = f0 and for every m ∈ U , f(m) ⊆ F (m).70

Definition 4. Let G be a Lie transformation group on a smooth manifold M .71

• We say that a class A of closed subsets of M is G-invariant if for every set X ∈ A, and for every72

transformation g ∈ G, the set g(X) also belongs to the class.73

• If A is a G-invariant class, then we say that A is a finitely parametric family of sets if there exist:74

– a (finite-dimensional) smooth manifold V ;75

– a mapping s that maps each element v ∈ V into a set s(v) ⊆M ; and76

– a smooth multi-valued function Π : G× V → V77

such that:78

– the class of all sets s(v) that corresponds to different v ∈ V coincides with A, and79

– for every v ∈ V , for every transformation g ∈ G, and for every π ∈ Π(g, v), the set s(π)80

(that corresponds to π) is equal to the result g(s(v)) of applying the transformation g to the81

set s(v) (that corresponds to v).82

• Let r > 0 be an integer. We say that a class of sets B is a r-parametric class of sets if there exists a83

finite-dimensional family of sets A defined by a triple (V, s,Π) for which B consists of all the sets84

s(v) with v from some r-dimensional sub-manifold W ⊆ V .85

Definition 5. Let A be a set, and let G be a group of transformations defined on A.86
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• By an optimality criterion, we mean a pre-ordering (i.e., a transitive reflexive relation) � on the87

set A.88

• An optimality criterion is called G-invariant if for all g ∈ G, and for all A,B ∈ A, A � B implies89

g(A) � g(B).90

• An optimality criterion is called final if there exists one and only one element A ∈ A that is91

preferable to all the others, i.e., for which B � A for all B 6= A.92

Proposition. Let M be a manifold, let G be a d-dimensional Lie transformation group on M , and let �93

be a G-invariant and final optimality criterion on the class A of all r-parametric families of sets from94

M , r < d. Then:95

• the optimal family Aopt is G-invariant; and96

• each set X from the optimal family is a union of orbits of ≥ (d− r)-dimensional subgroups of the97

group G.98

Comment. For readers’ convenience, the proof of the Proposition is placed in the special (last) section.99

4. Resulting Geometric Shapes100

In our case, the natural group of symmetries G is generated by shifts and rotations. So, to apply the101

above Proposition to the geometry of protein structures, we must describe all orbits of subgroups of this102

groups G.103

In the applications to the geometry of a molecule, we only considered connected continuous sub-104

groups G0 ⊆ G: since connected continuous subgroups explain connected shapes.105

Let us start with 1-D orbits. A 1-D orbit is an orbit of a 1-D subgroup. This subgroup is uniquely106

determined by its “infinitesimal” element, i.e., by the corresponding element of the Lie algebra of the107

group G. This Lie algebra if easy to describe. For each of its elements, the corresponding differential108

equation (that describes the orbit) is reasonably easy to solve.109

2-D forms are orbits of ≥ 2-D subgroups, so, they can be enumerated by combining two 1-D sub-110

groups.111

Comment. An alternative (slightly more geometric) way of describing 1-D orbits is to take into consid-112

eration that an orbit, just like any other curve in a 3-D space, is uniquely determined by its curvature113

κ1(s) and torsion κ2(s), where s is the arc length measured from some fixed point. The fact that this114

curve is an orbit of a 1-D group means that for every two points x and x′ on this curve, there exists a115

transformation g ∈ G that maps x into x′. Shifts and rotations do not change κi, they may only shift s (to116

s+ s0). This means that the values of κi are constant. Taking constant κi, we get differential equations,117

whose solution leads to the desired 1-D orbits.118

The resulting description of 0-, 1-, and 2-dimensional orbits of connected subgroups Ga of the group119

G is as follows:120

0: The only 0-dimensional orbit is a point.121
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1: A generic 1-dimensional orbit is a cylindrical spiral, which is described (in appropriate coordi-122

nates) by the equations z = k · φ, ρ = R0. Its limit cases are:123

– a circle (z = 0, ρ = R0);124

– a semi-line (ray);125

– a straight line.126

2: Possible 2-D orbits include:127

– a plane;128

– a semi-plane;129

– a sphere; and130

– a circular cylinder.131

Bounded shapes like a point, a circle, or a sphere do occur in chemistry, but, due to their boundedness,132

they usually (approximately) describe the shapes of relatively small molecules like benzenes, fullerenes,133

etc. We are interested in relatively large molecules like proteins, so it is reasonable to only consider134

unbounded shapes. With this restriction, we end up with the following shapes:135

• a cylindrical spiral (with a straight line as its limit case);136

• a plane (or a part of the plane), and137

• a cylinder.138

These shapes correspond exactly to alpha-helices, beta-sheets, and beta-barrels that we observe in pro-139

teins. Thus, the symmetries indeed explain the observed protein shapes.140

Comment. As we have mentioned earlier, spirals, planes, and cylinders are only the first approximation141

to the actual shape of protein structures. For example, it has been empirically found that for beta-sheets142

and beta-barrels, general hyperbolic (quadratic) surfaces provide a good second approximation; see,143

e.g., [8]. It is worth mentioning that the empirical fact that quadratic models provide the best second144

approximation can also be theoretical explained by using symmetries [9].145

5. Possible Physical Meaning146

We have provided a somewhat mathematical explanation for the shapes, but this explanation can be147

also reformulated in more physical terms. In the beginning, protein generation starts with a uniform148

medium, in which the distribution is homogeneous and isotropic. In mathematical terms, the initial149

distribution of matter is invariant w.r.t. arbitrary shifts and rotations.150

The equations that describe the physical forces that are behind the corresponding chemical reactions151

are invariant w.r.t. arbitrary shifts and rotations. In other words, these interactions are invariant w.r.t. our152

groupG. The initial distribution was invariant w.r.t.G; the evolution equations are also invariant; hence,153

at first glance, we should get a G-invariant distribution of for all moments of time.154
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In reality, we do not see such a homogeneous distribution – because this highly symmetric distribution155

is known to be unstable. As a result, an arbitrarily small perturbations cause drastic changes in the matter156

distribution: matter concentrates in some areas, and shapes are formed. In physics, such symmetry157

violation is called spontaneous.158

In principle, it is possible to have a perturbation that changes the initial highly symmetric state into a159

state with no symmetries at all, but statistical physics teaches us that it is much more probable to have160

a gradual symmetry violation: first, some of the symmetries are violated, while some still remain; then,161

some other symmetries are violated, etc.162

Similarly, a (highly organized) solid body normally goes through a (somewhat organized) liquid phase163

before it reaches a (completely disorganized) gas phase.164

If a certain perturbation concentrates matter, among other points, at some point a, then, due to165

invariance, for every transformation g ∈ G′, we will observe a similar concentration at the point166

g(a). Therefore, the shape of the resulting concentration contains, with every point a, the entire or-167

bit G′(a) = {g(a) | g ∈ G′} of the group G′. Hence, the resulting shape consists of one or several orbits168

of a group G′. This is exactly the conclusion we came up with before, but now we have a physical169

explanation for it.170

6. Proof of Proposition171

Since the criterion � is final, there exists one and only one optimal family of sets. Let us denote this172

family by Aopt.173

1◦. Let us first show that this family Aopt is indeed G-invariant, i.e., that g(Aopt) = Aopt for every174

transformation g ∈ G.175

Indeed, let g ∈ G. From the optimality of Aopt, we conclude that for every B ∈ A, g−1(B) � Aopt.176

From the G-invariance of the optimality criterion, we can now conclude that B � g(Aopt). This is true177

for all B ∈ A and therefore, the family g(Aopt) is optimal. But since the criterion is final, there is only178

one optimal family; hence, g(Aopt) = Aopt. So, Aopt is indeed invariant.179

2◦. Let us now show an arbitrary set X0 from the optimal family Aopt consists of orbits of ≥ (d − r)-180

dimensional subgroups of the group G.181

Indeed, the fact that Aopt is G-invariant means, in particular, that for every g ∈ G, the set g(X0) also182

belongs to Aopt. Thus, we have a (smooth) mapping g → g(X0) from the d-dimensional manifold G183

into the ≤ r-dimensional set G(X0) = {g(X0) | g ∈ G} ⊆ Aopt. In the following, we will denote this184

mapping by g0.185

Since r < d, this mapping cannot be 1-1, i.e., for some sets X = g′(X0) ∈ G(X0), the pre-image186

g−10 (X) = {g | g(X0) = g′(X0)} consists of one than one point. By definition of g(X), we can conclude187

that g(X0) = g′(X0) iff (g′)−1g(X0) = X0. Thus, this pre-image is equal to {g | (g′)−1g(X0) = X0}.188

If we denote (g′)−1g by g̃, we conclude that g = g′g̃ and that the pre-image g−10 (X) = g−10 (g′(X0)) is189

equal to {g′g̃ | g̃(X0) = X0}, i.e., to the result of applying g′ to {g̃ | g̃(X0) = X0} = g−10 (X0). Thus,190

each pre-image (g−10 (X) = g−10 (g′(X0))) can be obtained from one of these pre-images (namely, from191

g−10 (X0)) by a smooth invertible transformation g′. Thus, all pre-images have the same dimension D.192
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We thus have a stratification (fiber bundle) of a d-dimensional manifold G into D-dimensional strata,193

with the dimensionDf of the factor-space being≤ r. Thus, d = D+Df , and fromDf ≤ r, we conclude194

that D = d−Df ≥ n− r.195

So, for every set X0 ∈ Aopt, we have a D ≥ (n − r)-dimensional subset G0 ⊆ G that leaves X0196

invariant (i.e., for which g(X0) = X0 for all g ∈ G0). It is easy to check that if g, g′ ∈ G0, then197

gg′ ∈ G0 and g−1 ∈ G0, i.e., that G0 is a subgroup of the group G. From the definition of G0 as198

{g | g(X0) = X0} and the fact that g(X0) is defined by a smooth transformation, we conclude that G0 is199

a smooth sub-manifold of G, i.e., a ≥ (n− r)-dimensional subgroup of G.200

To complete our proof, we must show that the set X0 is a union of orbits of the group G0. Indeed, the201

fact that g(X0) = X0 means that for every x ∈ X0, and for every g ∈ G0, the element g(x) also belongs202

to X0. Thus, for every element x of the set X0, its entire orbit {g(x) | g ∈ G0} is contained in X0. Thus,203

X0 is indeed the union of orbits of G0. The proposition is proven.204
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