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Abstract: Protein structure is invariably connected to protein function. There are two im-1

portant secondary structure elements: alpha helices and beta-sheets (which sometimes come2

in a shape of beta-barrels). The actual shapes of these structures can be complicated, but in3

the first approximation, they are usually approximated by, correspondingly, cylindrical spi-4

rals and planes (and cylinders, for beta-barrels). In this paper, following the ideas pioneered5

by a renowned mathematician M. Gromov, we use natural symmetries to show that, under6

reasonable assumptions, these geometric shapes are indeed the best approximating families7

for secondary structures.8

Keywords: symmetries; secondary protein structures; alpha-helices; beta-sheets; beta-barrels9

1. Introduction10

Alpha-helices and bet-sheets: brief reminder. Proteins are biological polymers that perform most of11

the life’s function. A single chain polymer (protein) is folded in such a way that forms local substruc-12

tures called secondary structure elements. In order to study the structure and function of proteins it is13

extremely important to have a good geometrical description of the proteins structure. There are two14

important secondary structure elements: alpha helices and beta-sheets. A part of the protein structure15

where different fragments of the polypeptide align next to each other in extended conformation forming16
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a line-like feature defines a secondary structure called an alpha-helix. A part of the protein structure17

where different fragments of the polypeptide align next to each other in extended conformation forming18

a surface-like feature defines a secondary structure called a beta pleated sheet, or, for short, a beta-sheet;19

see, e.g., [1,9].20

Shapes of alpha-helices and bet-sheets: first approximation. The actual shapes of the alpha-helices21

and beta-sheets can be complicated. In the first approximation, alpha-helices are usually approximated22

by cylindrical spirals (also known as circular helices or (cylindrical) coils), i.e., curves which, in an23

appropriate coordinate system, have the form x = a · cos(ω · t), y = a · sin(ω · t), and c = b · t. Similarly,24

in the first approximation, beta-sheets are usually approximated as planes. These are the shapes that we25

will try to explain in this paper.26

What we do in this paper: our main result. In this paper, following the ideas of a renowned mathe-27

matician M. Gromov [8], we use symmetries to show that under reasonable assumptions, the empirically28

observed shapes of cylindrical spirals and planes are indeed the best families of simple approximating29

sets.30

Thus, symmetries indeed explain why the secondary protein structures consists of alpha-helices and31

beta-sheets.32

Auxiliary result: we also explain the (approximate) shape of beta-barrels. The actual shape of an33

alpha-helix or of a beta-sheet is somewhat different from these first-approximation shapes. In [12], we34

showed that symmetries can explain some resulting shapes of beta-sheets. In this paper, we will add, to35

the basic approximate shapes of a circular helix and a planes, one more shape. This shape is observed36

when, due to tertiary structure effects, a beta-sheet “folds” on itself, becoming what is called a beta-37

barrel. In the first approximation, beta-barrels are usually approximated by cylinders. So, in this paper,38

we will also explain cylinders.39

We hope that similar symmetry ideas can be used to describe other related shapes. For example,40

it would be nice to see if a torus shape – when a cylinder folds on itself – can also be explained by41

symmetry ideas.42

Possible future work: need for explaining shapes of combinations of alpha-helices and beta-sheets.43

A protein usually consists of several alpha-helices and beta-sheets. In some cases, these combinations of44

basic secondary structure elements have their own interesting shapes: e.g., coils (alpha-helices) some-45

times form a coiled coil. In this paper, we use symmetries to describe the basic geometric shape of46

secondary structure elements; we hope that similar symmetry ideas can be used to describe the shape of47

their combinations as well.48

2. Symmetry Approach in Physics: Brief Reminder49

Symmetries are actively used in physics. In our use of symmetries, we have been motivated by the50

successes of using symmetries in physics; see, e.g., [2]. So, in order to explain our approach, let us first51

briefly recall how symmetries are used in physics.52
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Symmetries in physics: main idea. In physics, we usually know the differential equations that describe53

the system’s dynamics. Once we know the initial conditions, we can then solve these equations and54

obtain the state of the system at any given moment of time.55

It turns out that in many physical situations, there is no need to actually solve the corresponding56

complex system of differential equations: the same results can be obtained much faster if we take into57

account that the system has certain symmetries (i.e., transformations under which this system does not58

change).59

Symmetries in physics: examples. Let us give two examples of the use of symmetries in physics:60

• a simpler example in which we will be able to perform all the computations, and61

• a more complex example in which we will skip all the computations and proofs – but which will62

be useful for our analysis of the shape of proteins.63

First example: pendulum. As the first simple example, let us consider the problem of finding how the64

period T of a pendulum depends on its length L and on the free fall acceleration g on the corresponding65

planet. We will denote the desired dependence by T = f(L, g). This dependence was originally found by66

using Newton’s equations. We will show that (modulo a constant) the same dependence can be obtained67

without using any differential equations, only by taking the corresponding symmetries into account.68

What are the natural symmetries here? To describe a numerical value of the length, we need to select69

a unit of length. In this problem, there is no fixed length, so it makes sense to assume that the physics70

does not change if we simply change the unit of length. If we change a unit of length to a one λ times71

smaller, we get new numerical value L′ = λ · L; e.g., 1.7 m = 170 cm.72

Similarly, if we change a unit of time to a one which is µ times smaller, we get a new numerical value73

for the period T ′ = µ · T . Under these transformations, the numerical value of the acceleration changes74

as g → g′ = λ · µ−2 · g.75

Since the physics does not change by simply changing the units, it makes sense to require that the76

dependence T = f(L, g) also does not change if we simply change the units, i.e., that T = f(L, g)77

implies T ′ = f(L′, g′). Substituting the above expressions for T ′, L′, and g′ into this formula, we78

conclude that f(λ · L, λ · µ−2 · g) = µ · f(L, g). From this formula, we can find the explicit expression79

for the desired function f(L, g). Indeed, let us select λ and µ for which λ · L = 1 and λ · µ−2 · g = 1.80

Thus, we take λ = L−1 and µ =
√
λ · g =

√
g/L. For these values λ and µ, the above formula takes the81

form f(1, 1) = µ · f(L, g) =
√
g/L · f(L, g). Thus, f(L, g) = const ·

√
L/g (for the constant f(1, 1)).82

This is exactly the same formula that we obtain from Newton’s equations.83

What is the advantage of using symmetries? At first glance, the above derivation of the pendulum84

formula is somewhat useless: we did not invent any new mathematics, the above mathematics is very85

simple, and we did not come up with any new physical conclusion – the formula for the period of the86

pendulum is well known. Yes, we got a slightly simpler derivation, but once a result is proven, getting a87

new shorter proof is not very interesting. So what is new in this derivation?88

What is new is that we derived the above without using any specific differential equations – we only89

the fact that these equations do not have any fixes unit of length or fixed unit of time. Thus, the same90
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formula is true not only for Newton’s equations, but also for any alternative theory – as long as this91

alternative theory has the same symmetries.92

Another subtle consequence of our result is related to the fact that physical theories need to be exper-93

imentally confirmed. Usually, when a formula obtained from a theory turned out to be experimentally94

true, this is a strong argument for confirming that the original theory is true. One may similarly think that95

if the pendulum formula is experimentally confirmed, this is a strong argument for confirming that New-96

ton’s mechanics is true. However, the fact that we do not need the whole theory to derive the pendulum97

formula – we only need symmetries – shows that:98

• if we have an experimental confirmation of the pendulum formula,99

• this does not necessarily mean that we have confirmed Newton’s equations – all we confirmed are100

the symmetries.101

General comment about physical problems and fundamental physical equations. The fact that we102

could derive this formula so easily – shows that maybe in more complex situations, when solving the103

corresponding differential equation is not as easy, we would still be able to find an explicit solution by104

using appropriate symmetries. This is indeed the case in many complex problems; see, e.g., [2].105

Moreover, in many situations, even equations themselves can be derived from the symmetries. This106

is true for most equations of fundamental physics: Maxwell’s equations of electrodynamics, Einstein’s107

General Relativity equations for describing the gravitation field, Schrödinger’s equations of quantum108

mechanics, etc.; see, e.g., [6,7].109

As a result, in modern physics, often, new theories are formulated not in terms of differential equa-110

tions, but in term of symmetries. This started with quarks whose theory was first introduced by M. Gell-111

Mann by postulating appropriate symmetries.112

Second example: shapes of celestial objects. Another example where symmetries are helpful is the113

description of observed geometric shapes of celestial bodies. Many galaxies have the shape of planar114

logarithmic spirals; other clusters, galaxies, galaxy clusters have the shapes of the cones, conic spirals,115

cylindrical spirals, straight lines, spheres, etc. For several centuries, physicists have been interested in116

explaining these shapes. For example, there exist several dozen different physical theories that explain117

the observed logarithmic spiral shape of many galaxies. These theories differ in their physics, in the118

resulting differential equations, but they all lead to exactly the same shape – of the logarithmic spiral.119

It turns out that there is a good explanation for this phenomenon – all observed shapes can be de-120

duced from the corresponding symmetries; see, e.g., [3–5,10]. Here, possible symmetries include shifts,121

rotations, and “scaling” (dilation) xi → λ · xi.122

The fact that the shapes can be derived from symmetry shows that the observation of these shapes123

does not confirm one of the alternative theories – it only confirms that all these theories are invariant124

under shift, rotation, and dilation. This derivation also shows that even if the actual physical explanation125

for the shape of the galaxies turns out to be different from any of the current competing theories, we126

should not expect any new shapes – as long as we assume that the physics is invariant with respect to the127

above basic geometric symmetries.128
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3. From Physics to Analyzing Shapes of Proteins: Towards the Formulation of the Problem129

Reasonable symmetries. It is reasonable to assume that the underlying chemical and physical laws do130

not change under shifts and rotations. Thus, as a group of symmetries, we take the group of all “solid131

motions”, i.e., of all transformations which are composed of shifts and rotations.132

Comment. In the classification of shapes of celestial bodies, we also considered dilations. Dilations133

make sense in astrophysics and cosmology. Indeed, in forming celestial shapes of large-scale objects,134

the main role is played by long-distance interactions like gravity and electromagnetic forces, and the135

formulas describing these long-distance interactions are dilation-invariant. In constant, on the molecular136

level – that corresponds to the shapes of the proteins – short-distance interactions are also important, and137

these interactions are not necessarily dilation-invariant.138

Thus, in our analysis of protein shapes, we only consider shifts and rotations.139

Reasonable shapes. In chemistry, different shapes are possible. For example, bounded shapes like a140

point, a circle, or a sphere do occur in chemistry, but, due to their boundedness, they usually (approxi-141

mately) describe the shapes of relatively small molecules like benzenes, fullerenes, etc.142

We are interested in relatively large molecules like proteins, so it is reasonable to only consider po-143

tentially unbounded shapes. Specifically, we want to describe connected components of these shapes.144

145

Reasonable families of shapes. We do not want to just find one single shape, we want to find families146

of shapes that approximate the actual shapes of proteins. These families contain several parameters, so147

that by selecting values of all these parameters, we get a shape.148

The more parameters we allow, the larger the variety of the resulting shape and therefore, the better149

the resulting shape can match the observed protein shape.150

We are interested in the shapes that describe the secondary structure, i.e., the first (crude) approxi-151

mation to the actual shape. Because of this, we do not need too many parameters, we should restrict152

ourselves to families with a few parameters.153

We want to select the best approximating family. In principle, we can have many different approxi-154

mating families. Out of all these families, we want to select a one which is the best in some reasonable155

sense – e.g., the one that, on average, provides the most accurate approximation to the actual shape, or156

the one which is the fastest to compute, etc.157

What does the “best” mean? There are many possible criteria for selecting the “best” family. It158

is not easy even to enumerate all of them – while our objective is to find the families which are the159

best according to each of these criteria. To overcome this difficulty, we therefore formulate a general160

description of the optimality criteria and provide a general description of all the families which are161

optimal with respect to different criteria.162

When we say “the best”, we mean that on the set of all appropriate families, there is a relation �163

describing which family is better or equal in quality. This relation must be transitive (if A is better than164

B, and B is better than C, then A is better than C). This relation is not necessarily asymmetric, because165

we can have two approximating families of the same quality. However, we would like to require that this166
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relation be final in the sense that it should define a unique best family Aopt, i.e., the unique family for167

which ∀B (Aopt � B). Indeed:168

• If none of the families is the best, then this criterion is of no use, so there should be at least one169

optimal family.170

• If several different families are equally best, then we can use this ambiguity to optimize something171

else: e.g., if we have two families with the same approximating quality, then we choose the one172

which is easier to compute. As a result, the original criterion was not final: we get a new criterion173

(A �new B if either A gives a better approximation, or if A ∼old B and A is easier to compute),174

for which the class of optimal families is narrower. We can repeat this procedure until we get a175

final criterion for which there is only one optimal family.176

It is also reasonable to require that the relation A � B should be invariant relative to natural geometric177

symmetries, i.e., that this relation is shift- and rotation-invariant.178

At fist glance, these requirements sounds reasonable but somewhat weak. We will show, however,179

that they are sufficient to actually find the optimal families of shapes – and that the resulting optimal180

shapes are indeed the above-mentioned observed secondary-structure shapes of protein components.181

4. Definitions and the Main Result182

Our goal is to choose the best finite-parametric family of sets. To formulate this problem precisely,183

we must formalize what a finite-parametric family is and what it means for a family to be optimal. In184

accordance with the above analysis of the problem, both formalizations will use natural symmetries. So,185

we will first formulate how symmetries can be defined for families of sets, then what it means for a186

family of sets to be finite-dimensional, and finally, how to describe an optimality criterion.187

Definition 1. Let g : M → M be a 1-1-transformation of a set M , and let A be a family of subsets of188

M . For each set X ∈ A, we define the result g(X) of applying this transformation g to the set X as189

{g(x) |x ∈ X}, and we define the result g(A) of applying the transformation g to the family A as the190

family {g(X) |X ∈ A}.191

In our problem, the set M is the 3-D space IR3.192

Definition 2. Let M be a smooth manifold. A group G of transformations M → M is called a Lie193

transformation group, if G is endowed with a structure of a smooth manifold for which the mapping194

g, a→ g(a) from G×M to M is smooth.195

In our problem, the group G is the group generated by all shifts and rotations. in the 3-D space, we need196

three parameters to describe a general shift, and three parameters to describe a general rotation; thus, the197

group G is 6-dimensional – in the sense that we need six parameters to describe an individual element198

of this group.199

We want to define r-parametric families sets in such a way that symmetries from G would be com-200

putable based on parameters. Formally:201

Definition 3. Let M and N be smooth manifolds.202
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• By a multi-valued function F : M → N we mean a function that maps each m ∈ M into a203

discrete set F (m) ⊆ N .204

• We say that a multi-valued function is smooth if for every point m0 ∈ M and for every value205

f0 ∈ F (m), there exists an open neighborhood U of m0 and a smooth function f : U → N for206

which f(m0) = f0 and for every m ∈ U , f(m) ⊆ F (m).207

Definition 4. Let G be a Lie transformation group on a smooth manifold M .208

• We say that a class A of closed subsets of M is G-invariant if for every set X ∈ A, and for every209

transformation g ∈ G, the set g(X) also belongs to the class.210

• If A is a G-invariant class, then we say that A is a finitely parametric family of sets if there exist:211

– a (finite-dimensional) smooth manifold V ;212

– a mapping s that maps each element v ∈ V into a set s(v) ⊆M ; and213

– a smooth multi-valued function Π : G× V → V214

such that:215

– the class of all sets s(v) that corresponds to different v ∈ V coincides with A, and216

– for every v ∈ V , for every transformation g ∈ G, and for every π ∈ Π(g, v), the set s(π)217

(that corresponds to π) is equal to the result g(s(v)) of applying the transformation g to the218

set s(v) (that corresponds to v).219

• Let r > 0 be an integer. We say that a class of sets B is a r-parametric class of sets if there exists a220

finite-dimensional family of sets A defined by a triple (V, s,Π) for which B consists of all the sets221

s(v) with v from some r-dimensional sub-manifold W ⊆ V .222

In our example, we consider families of unbounded connected sets.223

Definition 5. Let A be a set, and let G be a group of transformations defined on A.224

• By an optimality criterion, we mean a pre-ordering (i.e., a transitive reflexive relation) � on the225

set A.226

• An optimality criterion is called G-invariant if for all g ∈ G, and for all A,B ∈ A, A � B implies227

g(A) � g(B).228

• An optimality criterion is called final if there exists one and only one element A ∈ A that is229

preferable to all the others, i.e., for which B � A for all B 6= A.230

Lemma. Let M be a manifold, let G be a d-dimensional Lie transformation group on M , and let � be231

a G-invariant and final optimality criterion on the class A of all r-parametric families of sets from M ,232

r < d. Then:233

• the optimal family Aopt is G-invariant; and234
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• each set X from the optimal family is a union of orbits of ≥ (d− r)-dimensional subgroups of the235

group G.236

Comment. For readers’ convenience, all the proofs are placed in the following Proofs section.237

Theorem. Let G be a 6-dimensional group generated by all shifts and rotations in the 3-D space IR3,238

and let � be a G-invariant and final optimality criterion on the class A of all r-parametric families of239

unbounded sets from IR3, r < 6. Then each set X from the optimal family is a union of cylindrical240

spirals, planes, and cylinders.241

Conclusion. These shapes correspond exactly to alpha-helices, beta-sheets (and beta-barrels) that we242

observe in proteins. Thus, the symmetries indeed explain the observed protein shapes.243

Comment. As we have mentioned earlier, spirals, planes, and cylinders are only the first approximation244

to the actual shape of protein structures. For example, it has been empirically found that for beta-sheets245

and beta-barrels, general hyperbolic (quadratic) surfaces provide a good second approximation; see,246

e.g., [11]. It is worth mentioning that the empirical fact that quadratic models provide the best second247

approximation can also be theoretical explained by using symmetries [12].248

5. Proofs249

Proof of the Lemma. Since the criterion � is final, there exists one and only one optimal family of sets.250

Let us denote this family by Aopt.251

1◦. Let us first show that this family Aopt is indeed G-invariant, i.e., that g(Aopt) = Aopt for every252

transformation g ∈ G.253

Indeed, let g ∈ G. From the optimality of Aopt, we conclude that for every B ∈ A, g−1(B) � Aopt.254

From the G-invariance of the optimality criterion, we can now conclude that B � g(Aopt). This is true255

for all B ∈ A and therefore, the family g(Aopt) is optimal. But since the criterion is final, there is only256

one optimal family; hence, g(Aopt) = Aopt. So, Aopt is indeed invariant.257

2◦. Let us now show an arbitrary set X0 from the optimal family Aopt consists of orbits of ≥ (d − r)-258

dimensional subgroups of the group G.259

Indeed, the fact that Aopt is G-invariant means, in particular, that for every g ∈ G, the set g(X0) also260

belongs to Aopt. Thus, we have a (smooth) mapping g → g(X0) from the d-dimensional manifold G261

into the ≤ r-dimensional set G(X0) = {g(X0) | g ∈ G} ⊆ Aopt. In the following, we will denote this262

mapping by g0.263

Since r < d, this mapping cannot be 1-1, i.e., for some sets X = g′(X0) ∈ G(X0), the pre-image264

g−10 (X) = {g | g(X0) = g′(X0)} consists of one than one point. By definition of g(X), we can conclude265

that g(X0) = g′(X0) iff (g′)−1g(X0) = X0. Thus, this pre-image is equal to {g | (g′)−1g(X0) = X0}.266

If we denote (g′)−1g by g̃, we conclude that g = g′g̃ and that the pre-image g−10 (X) = g−10 (g′(X0)) is267

equal to {g′g̃ | g̃(X0) = X0}, i.e., to the result of applying g′ to {g̃ | g̃(X0) = X0} = g−10 (X0). Thus,268

each pre-image (g−10 (X) = g−10 (g′(X0))) can be obtained from one of these pre-images (namely, from269

g−10 (X0)) by a smooth invertible transformation g′. Thus, all pre-images have the same dimension D.270
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We thus have a stratification (fiber bundle) of a d-dimensional manifold G into D-dimensional strata,271

with the dimensionDf of the factor-space being≤ r. Thus, d = D+Df , and fromDf ≤ r, we conclude272

that D = d−Df ≥ n− r.273

So, for every set X0 ∈ Aopt, we have a D ≥ (n − r)-dimensional subset G0 ⊆ G that leaves X0274

invariant (i.e., for which g(X0) = X0 for all g ∈ G0). It is easy to check that if g, g′ ∈ G0, then275

gg′ ∈ G0 and g−1 ∈ G0, i.e., that G0 is a subgroup of the group G. From the definition of G0 as276

{g | g(X0) = X0} and the fact that g(X0) is defined by a smooth transformation, we conclude that G0 is277

a smooth sub-manifold of G, i.e., a ≥ (n− r)-dimensional subgroup of G.278

To complete our proof, we must show that the set X0 is a union of orbits of the group G0. Indeed, the279

fact that g(X0) = X0 means that for every x ∈ X0, and for every g ∈ G0, the element g(x) also belongs280

to X0. Thus, for every element x of the set X0, its entire orbit {g(x) | g ∈ G0} is contained in X0. Thus,281

X0 is indeed the union of orbits of G0. The lemma is proven.282

Proof of the Theorem. In our case, the natural group of symmetries G is generated by shifts and283

rotations. So, to apply the above lemma to the geometry of protein structures, we must describe all orbits284

of subgroups of this groups G.285

Since we are interested in connected components, we should consider only connected continuous286

subgroups G0 ⊆ G, since such subgroups explain connected shapes.287

Let us start with 1-D orbits. A 1-D orbit is an orbit of a 1-D subgroup. This subgroup is uniquely288

determined by its “infinitesimal” element, i.e., by the corresponding element of the Lie algebra of the289

group G. This Lie algebra if easy to describe. For each of its elements, the corresponding differential290

equation (that describes the orbit) is reasonably easy to solve.291

2-D forms are orbits of ≥ 2-D subgroups, so, they can be enumerated by combining two 1-D sub-292

groups.293

Comment. An alternative (slightly more geometric) way of describing 1-D orbits is to take into consid-294

eration that an orbit, just like any other curve in a 3-D space, is uniquely determined by its curvature295

κ1(s) and torsion κ2(s), where s is the arc length measured from some fixed point. The fact that this296

curve is an orbit of a 1-D group means that for every two points x and x′ on this curve, there exists a297

transformation g ∈ G that maps x into x′. Shifts and rotations do not change κi, they may only shift s (to298

s+ s0). This means that the values of κi are constant. Taking constant κi, we get differential equations,299

whose solution leads to the desired 1-D orbits.300

The resulting description of 0-, 1-, and 2-dimensional orbits of connected subgroups Ga of the group301

G is as follows:302

0: The only 0-dimensional orbit is a point.303

1: A generic 1-dimensional orbit is a cylindrical spiral, which is described (in appropriate coordi-304

nates) by the equations z = k · φ, ρ = R0. Its limit cases are:305

– a circle (z = 0, ρ = R0);306

– a semi-line (ray);307

– a straight line.308
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2: Possible 2-D orbits include:309

– a plane;310

– a semi-plane;311

– a sphere; and312

– a circular cylinder.313

Since we are only interested in unbounded shapes, we end up with the following shapes:314

• a cylindrical spiral (with a straight line as its limit case);315

• a plane (or a part of the plane), and316

• a cylinder.317

The theorem is proven.318

6. Symmetry-Related Speculations on Possible Physical Origin of the Observed Shapes319

We have provided a somewhat mathematical explanation for the observed shapes. Our theorem ex-320

plains the shapes, but not how a protein acquires these shapes.321

A possible (rather speculative) explanation can be obtained along the lines of a similar symmetry-322

based explanation for the celestial shapes; see [3–5,10].323

In the beginning, protein generation starts with a uniform medium, in which the distribution is homo-324

geneous and isotropic. In mathematical terms, the initial distribution of matter is invariant w.r.t. arbitrary325

shifts and rotations.326

The equations that describe the physical forces that are behind the corresponding chemical reactions327

are invariant w.r.t. arbitrary shifts and rotations. In other words, these interactions are invariant w.r.t. our328

groupG. The initial distribution was invariant w.r.t.G; the evolution equations are also invariant; hence,329

at first glance, we should get a G-invariant distribution of for all moments of time.330

In reality, we do not see such a homogeneous distribution – because this highly symmetric distribution331

is known to be unstable. As a result, an arbitrarily small perturbations cause drastic changes in the matter332

distribution: matter concentrates in some areas, and shapes are formed. In physics, such symmetry333

violation is called spontaneous.334

In principle, it is possible to have a perturbation that changes the initial highly symmetric state into a335

state with no symmetries at all, but statistical physics teaches us that it is much more probable to have336

a gradual symmetry violation: first, some of the symmetries are violated, while some still remain; then,337

some other symmetries are violated, etc.338

Similarly, a (highly organized) solid body normally goes through a (somewhat organized) liquid phase339

before it reaches a (completely disorganized) gas phase.340

If a certain perturbation concentrates matter, among other points, at some point a, then, due to341

invariance, for every transformation g ∈ G′, we will observe a similar concentration at the point342

g(a). Therefore, the shape of the resulting concentration contains, with every point a, the entire or-343

bit G′(a) = {g(a) | g ∈ G′} of the group G′. Hence, the resulting shape consists of one or several orbits344
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of a group G′. This is exactly the conclusion we came up with before, but now we have a physical345

explanation for it.346
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