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Abstract

Traditional statistical estimates C(x1, . . . , xn) for different statistical
characteristics (such as mean, variance, etc.) implicitly assume that we
know the sample values x1, . . . , xn exactly. In practice, the sample values
x̃i come from measurements and are, therefore, in general, different from
the actual (unknown) values xi of the corresponding quantities. Some-
times, we know the probabilities of different values of the measurement
error ∆xi = x̃i − xi, but often, the only information that we have about
the measurement error is the upper bound ∆i on its absolute value – pro-
vided by the manufacturer of the corresponding measuring instrument. In
this case, the only information that we have about the actual values xi is
that they belong to the intervals [x̃i −∆i, x̃i +∆i].

In general, different values xi ∈ [x̃i−∆i, x̃i+∆i] lead to different values
of the corresponding statistical characteristic C(x1, . . . , xn). In this case,
it is desirable to find the set of all possible values of this characteristic.
For continuous estimates C(x1, . . . , xn), this range is an interval.

The values of C are used, e.g., in decision making – e.g., in a control
problem, to select an appropriate control value. In this case, we need to
select a single value from the corresponding interval. It is reasonable to
select a value which is, in some sense, the most probable. In this paper,
we show how the Maximum Likelihood approach can provide such a value,
i.e., how it can produce pointwise estimates in statistical data processing
under interval uncertainty.
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1 Formulation of the Problem

Prediction and decision making: deterministic vs. stochastic situa-
tions. In practice, we need to predict the future state of the system and to
make decisions based on these predictions.

In some cases, such predictions are largely deterministic. For example, if
we know the current position and velocity of a spaceship, we can use Newton’s
equations to predict its future trajectory. We can then use these predictions
to design a trajectory that will lead the spaceship to the target – e.g., to the
desired place on the Moon surface.

In other cases, only probabilistic predictions are possible. For example, even
when we have a good record of meteorological parameters such as temperature,
wind speed, humidity, rainfall, we can only predict future weather with a certain
probability. Similarly, in reliability engineering, we cannot predict which exact
component will fail, but we can predict the probabilities of different components
failing during a given time interval. We then need to make a decision based on
these predictions. For example, in the meteorological case, if there is a proba-
bility that the expected total rainfall will exceed the capacity of a dam, we need
to reinforce this dam to prevent potential flooding. If there is a probability
that both duplicate control systems will fail, then we need to add additional
failsafe features to our system. In all these cases, we use some statistical char-
acteristic of the corresponding distribution – such as mean (= expected value),
probability, variance, etc. – to make the corresponding decisions.

Need for statistical data processing. Sometimes, we know the exact prob-
ability distribution for the desired quantities. However, in most probabilistic
situations, we do not know the exact values of the corresponding probabilities.
These values must be determined from the observations. In such situations, we
use the observed data x̃1, . . . , x̃n to find the probability distribution that fits this
data, and then we make a decision based on the corresponding characteristic of
the resulting distribution.

How probability distributions are determined now. Usually, while we
do not know the desired probabilities, but, based on the previous observations,
we know a typical shape of the corresponding probability distributions. For
example, we may not know the exact probability distribution of a rainfall at
a given location, but we usually have a sample of rainfall distributions from
various locations, and our experience has shown that the distribution at our
location shall have the same shape. For each possible combination of the pa-
rameters c1, . . . , ck, we know the corresponding probability density function
ρ(x, c1, . . . , ck).

For example, often, we observe that the distribution of the sample values
x1, . . . , xn follows the Gaussian (normal) distribution, with the probability den-
sity function

ρ(x, µ, σ) =
1√

2π · σ
· exp

(
− (x− µ)2

2σ2

)
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with mean µ and variance σ2. In our notations, this means that we have a
probability density function

ρ(x, c1, c2) =
1√

2π · c2
· exp

(
− (x− c1)

2

2c22

)
with mean c1 = µ and standard deviation c2 = σ. The fact that many real-
life random variables are normally distributed can be explained by the Central
Limit Theorem, according to which, crudely speaking, the distribution of the
sum of a large number of small random quantities is close to normal; see, e.g.,
[13].

We assume that all observations are independent, and that each of these
observations comes from the same distribution – a distribution from the given
family, with unknown values cj that we need to determine. Due to the inde-
pendence assumption, for each sample x1, . . . , xn and for each combination of
parameters c1, . . . , ck, we can thus describe the likelihood L(c1, . . . , ck) that the
observe data come from the distribution corresponding to these parameters as
the product of the corresponding probability densities, i.e., as

L(c1, . . . , ck) =

n∏
i=1

ρ(x, c1, . . . , ck).

Then, we select the values cj for which this likelihood is the largest possible.
Such a selection is known as the Maximum Likelihood approach; see, e.g., [13].

Example. For the Gaussian distribution, this expression takes the form

L(µ, σ) =

n∏
i=1

1√
2π · σ

· exp
(
− (xi − µ)2

2σ2

)
.

Maximizing this expression is equivalent to minimizing an auxiliary expression

ψ(µ, σ)
def
= − ln(L(µ, σ)) = n · ln(

√
2π · σ) +

n∑
i=1

(xi − µ)2

2σ2
.

Differentiating this expression with respect to µ and equating the derivative to

0, we conclude that µ =
1

n
·

n∑
i=1

xi. Differentiating with respect to σ, we conclude

that σ2 =
1

n
·

n∑
i=1

(xi−µ)2. These are standard ways to estimate parameters of a

normal distribution – except that often, a slightly different un-biased estimator

is used to estimate σ2, in which the factor
1

n
is replaced by a slightly different

factor
1

n− 1
.

Similar formulas are used for many other distributions, e.g., for the lognormal
distribution.
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Need for interval uncertainty. Traditional statistical estimates
C(x1, . . . , xn) for different statistical characteristics (such as mean, vari-
ance, etc.) implicitly assume that we know the sample values x1, . . . , xn
exactly. In practice, the sample values x̃i come from measurements and are,
therefore, in general, different from the actual (unknown) values xi of the
corresponding quantities. Sometimes, we know the probabilities ρi(∆xi) of
different values of the measurement error ∆xi = x̃i − xi, but often, the only
information that we have about the measurement error is the upper bound
∆i on its absolute value – provided by the manufacturer of the corresponding
measuring instrument. In this case, the only information that we have about
the actual values xi is that they belong to the intervals xi = [x̃i −∆i, x̃i +∆i];
see, e.g., [12].

In general, different values xi ∈ [x̃i − ∆i, x̃i + ∆i] lead to different values
of the corresponding statistical characteristic C(x1, . . . , xn). In this case, it is
desirable to find the range of all possible values of this characteristic:

C = {C(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

For continuous estimates C(x1, . . . , xn), this range is an interval C.
For different statistical characteristics, there exist numerous efficient algo-

rithms for computing the interval ranges of these characteristics under interval
uncertainty; see, e.g., [2, 3, 5, 6, 7, 8, 9, 10, 11, 15].

Need for pointwise estimates. The values of C are used, e.g., in decision
making – e.g., in a control problem, to select an appropriate control value. In
this case, we need to select a single value from the corresponding interval of
possible values of C.

For example, in many applications of meteorological predictions – e.g., in
agriculture – decisions are based on the expected values of the average temper-
ature, expected rainfall, average humidity, sometimes taking into account the
corresponding variance. Thus, the users expect to see numbers representing
these averages or variances – and they use these numbers to decide, e.g., how
much fertilizer to buy or how much crop to expect.

Which point C from the interval C should we choose?

2 Main Idea

Analysis of the problem. In the traditional statistical analysis, the un-
knowns are the parameters c1, . . . , ck of the corresponding statistical distribu-
tion. According to the Maximum Likelihood approach, we select the “most
probable” values of these parameters. Once these values are selected, the corre-
sponding probability distribution is well defined. Based on these distributions,
we can compute the estimates for the desired statistical characteristics.

In our case, in addition to not knowing the parameters c1, . . . , ck of the
sample distribution, we also do not know the probability distributions of the

4



measurement errors ∆x1, . . . , ∆xn corresponding to all n measurements. To be
more precise, we know that these distributions are located in the corresponding
intervals [−∆i,∆i], but the exact probability density functions ρi(∆xi) corre-
sponding to these measurement errors are not known.

Idea. When we only had the parameters cj as unknowns, we used the Maxi-
mum Likelihood method to find the values for which the likelihood is the largest.
A natural idea is to use the Maximum Likelihood approach in our new case as
well, i.e., to find both the values cj and the distributions ρi(∆xi) from the con-
dition that the corresponding likelihood is the largest possible.

How to implement this idea. For given values c1, . . . , ck, the probability
density for different actual values x is equal to ρ(x, c1, . . . , ck). We assume that
different values from the sample are independent. So, if we have n actual values
x1, . . . , xn, then the corresponding probability density is equal to

n∏
i=1

ρ(xi, c1, . . . , ck).

Measurement errors are also assumed to be independent, so for any set of values
x̃i and xi, the probability of the corresponding sequence of measurement errors
is equal to

n∏
i=1

ρi(x̃i − xi).

The total probability density is given by the product:

n∏
i=1

ρ(xi, c1, . . . , ck) ·
n∏

i=1

ρi(x̃i − xi).

In practice, we do not know the actual values xi, we only know the measurement
results x̃i. The probability of getting the observed measurement results can be
obtained by the formula of full probability, when we integrate over all possible
values of xi. As a result, we get the following formula for the probability of
observing the values x̃1, . . . , x̃n:

L =

∫
. . .

∫ n∏
i=1

ρ(xi, c1, . . . , ck) ·
n∏

i=1

ρi(x̃i − xi) dx1 . . . dxn. (1)

Our objective is, given the observations x̃1, . . . , x̃n, to find the values cj and the
distributions ρi(∆xi) for which the value L is the largest possible.

To describe the most general probability distributions ρi(∆xi), including the
ones that are located at a single point, we must consider not only continuous
functions ρi(∆xi), but also generalized functions – e.g., a delta-function δ(∆xi)
that represents a distribution located at a single point 0 – i.e., a random variable
which is equal to 0 with probability 1.

Thus, we arrive at the following formulation:
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Precise formulation of the problem.

• Given: n values x̃1, . . . x̃n, and a function ρ(x, c1, . . . , ck).

• Find: the values cj and the distributions ρi(∆xi) for which the expression
(1) attains the largest possible values.

Comment. Once the values c1, . . . , ck are determined, we use the corresponding
probability distribution ρ(x, c1, . . . , ck) to determine the pointwise estimates of
all the desired statistical characteristics.

3 Main Result

Discussion. The original optimization problem (1) is difficult to solve since
in this problem, we need to optimize not only over all possible values c1, . . . , ck,
but also over all possible functions ρi(∆xi). To make this problem easier to
solve, we will reduce it to the standard optimization problem, in which there
are only unknown values, but no unknown functions.

Main result: formulation. We will prove that the largest value of the ex-
pression (1) is attained for the values c1, . . . , ck for which the auxiliary expression

L̃ =
n∏

i=1

ρ(xi, c1, . . . , ck) (2)

attains its largest possible value as a function of the variables x1 ∈ x1, . . . ,
xn ∈ xn, c1, . . . , ck.

Proof. Let xopt1 ∈ x1, . . . , x
opt
n ∈ xn, c

opt
1 , . . . , coptk be the values for which

the expression L̃ attains its largest value Lopt:

Lopt =
n∏

i=1

ρ(xopti , copt1 , . . . , coptk ) =

max

{
n∏

i=1

ρ(xi, c1, . . . , ck) : x1 ∈ x1, . . . , xn ∈ xn, c1, . . . , ck

}
.

Then, for the values cj = coptj and for the distributions

ρi(∆xi) = δ((∆xi + x̃i)− xopti ) = δ(xi − xopti )

which are located, with probability 1, on the values xi = xopti , the expression
(1) takes the form

L =

∫
. . .

∫ n∏
i=1

ρ(xi, c
opt
1 , . . . , coptk ) ·

n∏
i=1

δ(xi − xopti ) dx1 . . . dxn.
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Here, as usual, δ(x) denotes Dirac’s delta-function (a generalized function that
describes the probability density of a random variable which is located at point
0 with probability 1).

By definition of the delta-function, this means that this value L is equal to

n∏
i=1

ρ(xopti , copt1 , . . . , coptk ),

i.e., to Lopt. Since we have selected xopti and coptj as the values for which the
expression (2) attains its maximum, we can thus conclude that

Lopt = max

{
n∏

i=1

ρ(xi, c1, . . . , ck) : x1 ∈ x1, . . . , xn ∈ xn, c1, . . . , ck

}
.

To prove our result, it is sufficient to show that for every other values cj and for
every other set of distributions ρi(∆xi), the value L (defined by the expression
(1)) is smaller than or equal to Lopt.

Indeed, for each function, its expected value is smaller than or equal than
its maximum. The expression (1) is the expected value of the expression (2) un-

der the distributions for x1, . . . , xn with probability density
n∏

i=1

ρi(∆xi). Thus,

for every set of values c1, . . . , ck, and for every set of probability distributions
ρi(∆xi), we have

L ≤ max

{
n∏

i=1

ρ(xi, c1, . . . , ck) : x1 ∈ x1, . . . , xn ∈ xn

}
.

The right-hand side of this expression, in turn, is bounded by the largest value
of this expression over all possible parameters c1, . . . , ck:

max

{
n∏

i=1

ρ(xi, c1, . . . , ck) : x1 ∈ x1, . . . , xn ∈ xn

}
≤

max

{
n∏

i=1

ρ(xi, c1, . . . , ck) : x1 ∈ x1, . . . , xn ∈ xn, c1, . . . , ck

}
.

By definition of Lopt, this means that

max

{
n∏

i=1

ρ(xi, c1, . . . , ck) : x1 ∈ x1, . . . , xn ∈ xn

}
≤ Lopt.

This means that L ≤ Lopt,, i.e., that the value L of the expression (1) is indeed
smaller than or equal to Lopt.

Thus, the value Lopt is indeed the largest possible values of the maximum
likelihood expression (1). The statement is proven.
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Observation. Once the values xopt1 , . . . , xoptn are determined, the values
c1, . . . , ck can be found from the condition that the likelihood is the largest
– i.e., from the standard Maximum Likelihood method.

4 First Example: Normal Distributions

Description of the example. Let us first apply our main idea to the case
when the shape function ρ(x, c1, c2) describes normal distribution.

Analysis of the problem. In this case, once we fix the optimal values
x1, . . . , xn, the corresponding values of the mean µ = c1 and of the standard
deviation σ = c2 are determined by the usual Maximum Likelihood approach.

As we have shown, this means that we take µ =
1

n
·

n∑
i=1

xi and σ2 =
1

n
·

n∑
i=1

(xi − µ)2. The corresponding value of the likelihood is equal to

L =
n∏

i=1

1√
2π · σ

· exp
(
− (xi − µ)2

2σ2

)
=

1

(
√
2π)n · σn

· exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
.

Because of our selection of σ2, we have

n∑
i=1

(xi − µ)2

2σ2
=

n

2σ2
· 1
n
·

n∑
i=1

(xi − µ)2 =
n

2σ2
· σ2 =

n

2
.

Thus, the above expression for L takes the form

L =
1

(
√
2π)n · σn

· exp
(
−n
2

)
.

This expression is the largest if and only the variance V = σ2 is the smallest.
Thus, to find the corresponding values cj , we first need to find the values xi ∈ xi

for which the sample variance takes the smallest possible value.

Resulting algorithm. We have shown that for the normal distribution, the
maximum likelihood approach to pointwise estimation implies that we select the
values x1 ∈ x1 = [x1, x1], . . . , xn ∈ xn = [xn, xn] for which the sample variance

σ2 =
1

n
·

n∑
i=1

(xi − µ)2 attains its smallest possible value.

Algorithms for computing the smallest possible values of the sample variance
under such interval uncertainty – and of finding the values xi ∈ xi for which this
minimal variance is attained – are given in [5, 6, 7, 9, 10, 15]. These algorithms
are based on the fact (proved in these papers) that when the minimum of the
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variance is attained, for each interval xi, the corresponding minimizing value xi

is the closest to the mean µ =
1

n
·

n∑
i=1

xi.

In particular, in [15], based on this fact, we present a sophisticated linear-
time algorithm for computing these values. The easiest to explain is the follow-
ing slightly slower O(n · log(n)) algorithm:

• First, we sort all 2n endpoints xi and xi in increasing order, into a sequence
r1 ≤ r2 ≤ . . . ≤ r2n. To this sequence, we add values r0 = −∞ and
r2n+1 = +∞; as a result, we divide the real line into 2n+1 zones [rk, rk+1],
k = 0, 1, . . . , 2n.

• For each zone [rk, rk+1], and for each i, we find the value xi,k ∈ xi which is
minimizing under the assumption that the corresponding mean µk belongs
to this zone:

– when the interval xi is fully to the left of the zone, i.e., when xi ≤ rk,
we take xi,k = xi;

– when the interval xi is fully to the right of the zone, i.e., when rk+1 ≤
xi, we take xi,k = xi;

– finally, in the remaining cases, i.e., when the interval contains the
zone, we mark xi,k as equal to the (still to be determined) value µk.

Then, we find the value µk from the condition that it is equal to the mean
of all selected values, i.e., that∑

i:xi≤rk

xi +
∑

i:rk+1≤xi

xi +
∑

other i

µk = n · µk.

The resulting value is equal to µk =
Nk

Dk
, where

Nk =
∑

i:xi≤rk

xi +
∑

i:rk+1≤xi

xi;

Dk = #{i : xi ≤ rk}+#{i : rk+1 ≤ xi}.
If this value µk does not belong to the zone [rk, rk+1], this means that our
initial assumption that µk is within this zone is inconsistent, so we move
to the next zone. If the resulting value µk is within the zone, we use the

selected values xi to compute the sample variance Vk =
1

n
·

n∑
i=1

(xi,k−µk)
2.

To simplify the computations, we can use the known fact that, in general,
the variance V = σ2 can be represented as V = M − µ2, where M =

1

n
·

n∑
i=1

x2i . In our case, we have

Vk =
1

n
· (Mk + (n−Dk) · µ2

k)− µ2
k,
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where we denoted

Mk =
∑

i:xi≤rk

(xi)
2 +

∑
i:rk+1≤xi

(xi)
2.

Thus, we conclude that Vk =
1

n
·Mk − Dk

n
· µ2

k.

• The smallest of the resulting values Vk is then returned as the smallest
possible value of the variance, and the corresponding value µk is then
returned as the corresponding value of the mean.

Computational comment. To speed up computations, when we move from one
zone to the next, we do not re-compute the values Nk, Dk, andMk from scratch:
we use the previous values and only add and delete terms that changed. As we
go from k = 0 to k = 2n, each value xi,k changes at most twice: from xi to
µk and then from µk to xi. Thus, each term has to be recomputed only twice,
thus, after sorting (which takes time O(n · ln(n))) we only need linear time to
find all the values Nk, Dk, and Mk.

Comment. To avoid confusion, we should mention that our description is
slightly different from the description given in [5, 6, 7, 9, 10, 15], since in these
papers, we were only interested in the smallest value of the variance, but now,
we are also interested in the values xi where this smallest value is attained –
and in the corresponding value of the mean.

5 Second Example: Lognormal Distribution

Description of the example. Let us now apply our main idea to the case
when the shape function ρ(x, c1, c2) describes a lognormal distribution, with the
probability density function

ρ(x, µ, σ) =
1√

2π · σ · x
· exp

(
− (ln(x)− µ)2

2σ2

)
.

Analysis of the problem. For lognormal distribution, likelihood has the
form

L(µ, σ, x1, . . . , xn) =

n∏
i=1

ρ(xi, µ, σ) =

n∏
i=1

1√
2π · σ · xi

· exp
(
− (ln(xi)− µ)2

2σ2

)
.

According to our approach, we need to find both the optimal values of the
parameters µ and σ and the optimal values x1 ∈ x1, . . . , xn ∈ xn from the
requirement that the resulting value of the likelihood L is the largest possible.
In particular, this means that once we fix the optimal values x1, . . . , xn, then
the corresponding values of the parameters µ and σ are determined by the usual
Maximum Likelihood approach.
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Maximizing the likelihood L(µ, σ, x1, . . . , xn) is equivalent to minimizing the
auxiliary function

ψ(µ, σ, x1, . . . , xn) = − ln(L(µ, σ, x1, . . . , xn)) =

n · ln(
√
2π · σ) +

n∑
i=1

ln(xi) +
n∑

i=1

(ln(xi)− µ)2

2σ2
.

Differentiating this expression with respect to µ and equating the derivative to

0, we conclude that µ =
1

n
·

n∑
i=1

ln(xi). Differentiating with respect to σ and

equating derivative to 0, we conclude that σ2 =
1

n
·

n∑
i=1

(ln(xi)−µ)2. Substituting

these values into the expression for ψ and taking into account that
n∑

i=1

ln(xi) =

n · µ, we conclude that

ψ = n · ln(
√
2π · σ) + n · µ+

n

2
= n · ln(

√
2π) + n · ln(σ) + n · µ+

n

2
.

We are interested in the values x1, . . . , xn for which this expression is the smallest
possible. The location of the minimum does not change if we subtract the

constant n · ln(
√
2π) +

n

2
from the objective function and divide the resulting

expression by a constant n. Thus, the values xi ∈ [xi, xi] can be found from
the condition that the following expression attains its smallest possible value:
φ = µ+ ln(σ), i.e.,

φ =
1

n
·

n∑
i=1

ln(xi) +
1

2
· ln

 1

n
·

n∑
i=1

(ln(xi))
2 −

(
1

n
·

n∑
i=1

ln(xi)

)2
 .

This expression can simplified if instead of the original unknowns xi ∈ [xi, xi] we
consider the new unknowns yi = ln(xi) for which yi ∈ [y

i
, yi], where yi = ln(xi)

and yi = ln(yi). In terms of these new unknowns yi, the minimized expression
φ takes the form

φ = µ+ ln(σ),

where

µ =
1

n
·

n∑
i=1

yi

and

σ2 =
1

n
·

n∑
i=1

y2i −

(
1

n
·

n∑
i=1

yi

)2

.

With respect to reach unknown xi, the minimum of the function φ on the
interval [y

i
, yi] is attained either inside the interval, or at one of its endpoints.
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• If the minimum is attained inside the interval, then, according to calculus,

the corresponding partial derivative is equal to 0:
∂φ

∂yi
= 0.

• If the minimum is attained for yi = y
i
, then we should have

∂φ

∂yi
≥ 0 – because if

∂φ

∂yi
< 0, then, for small h > 0, the value

φ(y1, . . . , yi−1, yi + h, yi+1, . . . , yn) would be smaller than the minimal
value φ(y1, . . . , yi−1, yi, yi+1, . . . , yn).

• Similarly, if the minimum is attained for yi = yi, then we should have
∂φ

∂yi
≤ 0.

To use this property, let us find the explicit expression for this partial deriva-
tive. We have

∂µ

∂yi
=

∂

∂yi

(
1

n
·

n∑
i=1

yi

)
=

1

n
.

For σ2 =
1

n
·

n∑
i=1

y2i −

(
1

n
·

n∑
i=1

yi

)2

, we have

∂σ2

∂yi
=

1

n
· (2 · yi)− 2 · µ · 1

n
=

2

n
· (yi − µ).

Thus, due to the chain rule, for ln(σ) =
1

2
· ln(σ2), the derivative is equal to

∂ ln(σ)

∂yi
=

1

2
· ∂ ln(σ

2)

∂yi
=

1

2
· 1

σ2
· ∂σ

2

∂yi
=

1

2
· 1

σ2
· 2
n
· (yi − µ) =

yi − µ

n · σ2
.

So, for φ = µ+ ln(σ), the partial derivative is equal to

∂φ

∂yi
=
∂µ

∂yi
+
∂ ln(σ)

∂yi
=

1

n
+
yi − µ

n · σ2
=
yi − (µ− σ2)

n · σ2
.

Since n · σ2 > 0, the sign of the derivative coincides with the sign of the

numerator z
def
= µ− σ2:

• ∂φ

∂yi
= 0 if and only if yi − z = 0, i.e., if and only if yi = z;

• ∂φ

∂yi
≥ 0 if and only if yi − z ≥ 0, i.e., if and only if yi ≥ z; and

• ∂φ

∂yi
≤ 0 if and only if yi − z ≤ 0, i.e., if and only if yi ≤ z.

So, the above calculus-related property take the following form:
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• if the minimum is attained strictly inside the interval [y
i
, yi], then

∂φ

∂yi
= 0

and thus, the corresponding values of yi is equal to z;

• if the minimum is attained at yi = y
i
, then

∂φ

∂yi
≥ 0 and thus, we have

yi ≥ z;

• finally, if the minimum is attained at yi = yi, then
∂φ

∂yi
≤ 0 and thus, we

have yi ≤ z.

Thus, if the interval [y
i
, yi] is located completely to the left of the point z,

i.e., if yi < z and thus, yi < z for all yi ∈ [y
i
, yi], then:

• the minimum cannot be attained strictly inside the interval [y
i
, yi], because

then we would have yi = z for some yi from this interval;

• the minimum also cannot be attained for yi = y
i
, because then we would

have y
i
= yi ≥ z.

So, in this case, the minimum is attained when yi = yi.
Similarly, if the interval [y

i
, yi] is located completely to the right of the point

z, i.e., if z < y
i
and thus, z < yi for all yi ∈ [y

i
, yi], then:

• the minimum cannot be attained strictly inside the interval [y
i
, yi], because

then we would have yi = z for some yi from this interval;

• the minimum also cannot be attained for yi = yi, because then we would
have yi = yi ≤ z.

So, in this case, the minimum is attained when yi = y
i
.

Finally, if the interval [y
i
, yi] contains the point z inside, then:

• if the minimum is attained at a point yi which is strictly inside this interval,
then yi = z;

• if the minimum is attained at a point yi = y
i
, then we should have y

i
≥ z;

since z ∈ [y
i
, yi], this inequality is only possible when yi = z;

• similarly, if the minimum is attained at a point yi = yi, then we should
have yi ≤ z; since z ∈ [y

i
, yi], this inequality is only possible when yi = z.

In all three cases, we have yi = z.
So, we can make the following conclusion about the point yi at which the

minimum is attained:

• if yi < z, then the minimum is attained at the point yi = yi;

• if z < y
i
, then the minimum is attained at the point yi = y

i
;

• if y
i
≤ z ≤ yi, then the minimum is attained at the point yi = z.

13



In all these cases, the minimum is attained at a point which is the closest to z
among all the points of the interval [y

i
, yi].

Once we know where z is with respect to all the endpoints y
i
and yi, we

can uniquely determine all the minimizing values yi – on the condition that we
know the corresponding value z = µ− σ2. This value z can be found from the
condition that z = µ − σ2 = µ −M + µ2, where M = 1

n ·
∑n

i=1 y
2
i . In terms

of the notations that we used for the case of the normal distribution, we get

µ =
1

n
· (Nk + (n−Dk) · z) and M =

1

n
· (Mk + (n−Dk) · z2). Thus, the above

equation takes the form

z =
1

n
· (Nk +(n−Dk) · z)−

1

n
· (Mk +(n−Dk) · z2)+

1

n2
· (Nk +(n−Dk) · z)2.

This equation is quadratic in z, so it is easy to solve and find two possible values
of z. Specifically, if we open the parentheses, multiply both sides by n2, and
move all the terms to the left-hand side, we get

z2(n · (n−Dk)− (n− dk)
2)− z · (n · (n−Dk) + 2Nk · (n−Dk))−

(n ·Nk + n ·Mk +N2
k ) = 0,

i.e., simplifying,
a · z2 − b · z − c = 0,

where a = Dk · (n−Dk), b = (n+2Nk) · (n−Dk), and c = n · (Nk +Mk)+N2
k .

Thus,

z± =
b±

√
b2 + 4a · c
2a

.

As a result, we arrive at the following algorithm.

Resulting algorithm. First, we sort all 2n endpoints y
i
and yi in increasing

order, into a sequence r1 ≤ r2 ≤ . . . ≤ r2n. To this sequence, we add values
r0 = −∞ and r2n+1 = +∞; as a result, we divide the real line into 2n+1 zones
[rk, rk+1], k = 0, 1, . . . , 2n.

For each zone [rk, rk+1], and for each i, we find the value yi,k ∈ yi which
is minimizing under the assumption that the corresponding value z belongs to
this zone:

• when the interval yi is fully to the left of the zone, i.e., when yi < rk, we
take yi,k = yi;

• when the interval yi is fully to the right of the zone, i.e., when rk+1 < y
i
,

we take yi,k = y
i
;

• finally, in the remaining cases, i.e., when the interval contains the zone,
we mark yi,k as equal to the (still to be determined) value z.
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To find the value z, we compute

Nk =
∑

i:yi<rk

yi +
∑

i:rk+1<y
i

y
i
;

Dk = #{i : yi < rk}+#{i : rk+1 < y
i
};

Mk =
∑

i:yi<rk

(yi)
2 +

∑
i:rk+1<y

i

(y
i
)2.

Then, we compute the values ak = Dk · (n − Dk), bk = (n + 2Nk) · (n − Dk),
and ck = n · (Nk +Mk) +N2

k , and

zk,± =
bk ±

√
b2k + 4ak · ck
2ak

.

If both values are outside the zone [rk, rk+1], this means that our initial assump-
tion that z is within this zone is inconsistent, so we move to the next zone. If
one or both of the values zk,± is within the zone, we compute the values

µk,± =
1

n
· (Nk + (n−Dk) · zk,±); Mk,± =

1

n
· (Mk + (n−Dk) · z2k,±),

σk,± =
√
Mk,± −mu2k,±,

and
ψk,± = µk,± + ln(σk,±).

We then take the smallest of the resulting values ψk,±; the corresponding val-
ues µk,± and σk,± are then returned as the desired pointwise estimates of the
corresponding parameters of the lognormal distribution.

Computational comment. Similarly to the case of the normal distribution,
when we move from one zone to the next, we do not re-compute the values
Nk, Dk, and Mk from scratch: we use the previous values and only add and
delete terms that changed. As we go from k = 0 to k = 2n, each value yi,k
changes at most twice: from y

i
to z and then from z to yi. Thus, each term has

to be recomputed only twice, thus, after sorting (which takes time O(n · ln(n))
we only need linear time to find all the values Nk, Dk, and Mk. So, overall, our
algorithm takes time O(n · ln(n)).

6 Third Example: Delta-Lognormal Distribu-
tion

Need for delta-lognormal distributions. In many practical applications,
e.g., in medical applications and in meteorology, a quantity can take any non-
negative values but have a positive probability of 0 values. In many such cases,
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the probabilities are described by the delta-lognomal distribution, in which with
a given probability d > 0, we get a value 0, and with the remaining probability
1− d, we get a lognormal distribution; see, e.g., [1, 4, 14].

In medical applications, in distribution of test costs, zeros correspond to
the cases when a patient refused a test. In environmental applications, zeros
correspond to the case when the actual concentration of the analyzed chemical
is below the detection limit. In biological applications, e.g., in distribution of
certain species in different geographic areas, zeros correspond to areas with are
unsuitable for these species, etc.

The corresponding probability density has the form

ρ(x, µ, σ, d) = d · δ(x) + (1− d) · 1√
2π · σ · x

· exp
(
− (ln(x)− µ)2

2σ2

)
,

where, as before, δ(x) denotes Dirac’s delta-function (a generalized function
that describes the probability density of a random variable which is located at
point 0 with probability 1).

Formulation of the problem. As in the previous two examples, we have
n intervals [xi, xi] that contain the (unknown) values xi which are delta-
lognormally distributed, and we need to find the “most probable” values of the
parameters µ, σ, and δ which are consistent with the given interval observations.

Challenge. We would like to use the above maximum likelihood approach to
find these parameters, i.e., to look for the values that maximize the likelihood

L(µ, σ, d, x1, . . . , xn) =

n∏
i=1

ρ(xi, µ, σ, d).

The problem with this idea is that the delta-function is a generalized function,
its value for x = 0 is infinite. As a result, when one of the values xi is equal
to 0, we get an infinite value of the probability density and thus, the infinite
value of the likelihood. In other words, if we have two different combinations of
values in both of which one of the values of xi is 0, we cannot select which one
is better, like for both combinations, the likelihood is infinite.

Solution. A natural solution to this problem comes from the recalling that
one of the reasons for the ubiquity of delta-lognormal distribution is that when
the actual (positive) value is below the sensor’s detection limit ℓ, we record
the measurement result as 0. It is therefore reasonable, instead of the actual
delta-function which is located at exactly 0 with probability 1, to consider the
approximate distribution δℓ(x) – e.g., uniform on the interval [0, ℓ] – and then
tend ℓ to 0. This is, by the way, how delta-functions are often interpreted: as
limits of distributions which are located on smaller and smaller intervals [0, ℓ]
when the width ℓ of these intervals tends to 0. Let us describe what will result
from this idea.
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Analysis of the problem. For the uniform distribution on the interval [0, ℓ],
the probability density δℓ(x) is equal to 1/ℓ for values from this interval and
to 0 outside. Thus, the corresponding approximation to the delta-lognormal
distribution has the following form:

ρℓ(xi, µ, σ, d) = d · δℓ(xi) + (1− d) · 1√
2π · σ · xi

· exp
(
− (ln(xi)− µ)2

2σ2

)
,

When xi > 0, then, for sufficiently small ℓ, the first term becomes 0 when ℓ < xi.
Thus, for sufficiently small ℓ, the probability density is equal to

ρℓ(xi, µ, σ, d) = (1− d) · ρLN (xi, µ, σ, d),

where

ρLN (xi, µ, σ)
def
=

1√
2π · σ · xi

· exp
(
− (ln(xi)− µ)2

2σ2

)
is the probability density of the lognormal distribution.

When xi = 0, then for the uniform distribution on the interval [0, ℓ], we have

δℓ(xi) =
1

ℓ
, while the lognormal term is equal to 0. Thus, for xi = 0, we have

ρℓ(xi, µ, σ, d) =
d

ℓ
.

Therefore,

L(µ, σ, d, x1, . . . , xn) =
n∏

i=1

ρ(xi, µ, σ, d) =

∏
i:xi=0

ρ(xi, µ, σ, d) ·
∏

i:xi ̸=0

ρ(xi, µ, σ, d) =

(
d

ℓ

)z

·
∏

i:xi ̸=0

((1− d) · ρLN (xi, µ, σ, d)),

where z is the number of zeros, i.e., the number of indices i for which xi = 0.
We want to select the values µ, σ, d, x1, . . . , xn for which, for suffi-

ciently small ℓ, this value is the largest. When z = 0, the above value of
L(µ, σ, d, x1, . . . , xn) does not depend on ℓ at all. When z > 0, this value tends
to ∞ as const · ℓ−z.

When z > z′, then, for sufficiently small ℓ, we have

const · ℓ−z > const′ · ℓ−z′
.

This inequality is easy to prove: multiplying both sides by ℓz, we get an equiv-
alent form const > const′ · ℓz−z′

, which is true since const > 0 and, for z > z′,
we have ℓz−z′ → 0 and thus, const′ · ℓz−z′

< const for sufficiently small ℓ.
So, among all combinations with different values z, according to our criterion,

we select the one with the largest possible value z, i.e., with the largest possible
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number of indices for which xi = 0. For each index i, its possible values are
in the interval [xi, xi]. So, to get the largest possible value of zeros, for each
interval that contains 0, we take xi = 0.

Delta-lognormal distribution describes non-negative variables, hence we have
xi ≥ 0. The resulting interval [xi, xi] contains 0 if and only xi = 0.

The next question is how to determine the values of the parameters µ, σ,
and d from the maximum likelihood idea. Let us start with d. According to the
above formula, we have L = c · dz · (1 − d)n−z, where c does not depend on d.
Maximizing L is equivalent to minimizing ψ = − ln(c)−z·ln(d)−(n−z)·ln(1−d).
Differentiating this expression by d and equating the derivative to 0, we get

0 = −z
d
+
n− z

1− d
,

hence
z

d
=
n− z

1− d
.

Multiplying both sides by d · (1− d), we get z · (1− d) = (n− z) · d. Moving all
terms containing d to the right-hand side, we get z = z · d+ (n− z) · d = n · d,
hence d =

z

n
.

With respect to µ and σ, the optimized expression has the form

L(µ, σ, d, x1, . . . , xn) = c ·
∏

i:xi ̸=0

ρLN (xi, µ, σ, d),

where c does not depend on µ or σ. Thus, the problem of finding the values
µ and σ that maximize this expression is equivalent to the problem of finding
the values µ and σ that maximize the product

∏
i:xi ̸=0

ρLN (xi, µ, σ, d). This is the

problem that we considered in the previous section, and for which we already
have the algorithm. Thus, we arrive at the following algorithm.

Resulting algorithm. We start with n intervals [xi, xi] with xi ≥ 0. For

each index i for which xi = 0, we take xi = 0. Then, we take d =
z

n
, where z is

the number of indices for which we selected xi = 0.
If d = 1, then we simply have a distribution which is located at 0 with

probability 1. If d < 1, then we process the set of all remaining intervals (for
which xi < 0) by applying the lognormal-related algorithm described in the
previous section, and come up with the corresponding values of µ and σ.

Comment. Our arguments were given for the case when we approximate the
original delta-function by a uniform distribution on an interval [0, ℓ] whose width
ℓ tends to 0. One can check that when ℓ → 0, the optimization results will be
the same if we use non-uniform distributions on these intervals.
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J. Beck, R. Kandathi, A. Nayak, R. Torres, and J. Hajagos, “Towards
combining probabilistic and interval uncertainty in engineering calcula-
tions: algorithms for computing statistics under interval uncertainty, and
their computational complexity”, Reliable Computing, 2006, Vol. 12, No. 6,
pp. 471–501.

[11] S. Niwitpong, H. T. Nguyen, I. Neumann, and V. Kreinovich, “Hypothesis
testing with interval data: case of regulatory constraints”, International
Journal of Intelligent Technologies and Applied Statistics, 2008, Vol. 1,
No. 2, pp. 19-41.

[12] S. Rabinovich, Measurement Errors and Uncertainties: Theory and Prac-
tice, American Institute of Physics, New York, 2005.

[13] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Pro-
cedures, Chapman & Hall/CRC, Boca Raton, Florida, 2007.

[14] L. Tian and J. Wu, “Confidence Intervals for the Mean of Lognormal Data
with Excess Zeros”, Biometrical Journal, 2006, Vol. 48, No. 1, pp. 149–156.

[15] G. Xiang, M. Ceberio, and V. Kreinovich, “Computing Population Vari-
ance and Entropy under Interval Uncertainty: Linear-Time Algorithms”,
Reliable Computing, 2007, Vol. 13, No. 6, pp. 467–488.

20


