
Why Neural Networks Are Computationally

Efficient Approximators: An Explanation

Jaime Nava and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

jenava@miners.utep.edu, vladik@utep.edu

Abstract

Many real-life dependencies can be reasonably accurately described by
linear functions. If we want a more accurate description, we need to take
non-linear terms into account. To take nonlinear terms into account, we
can either explicitly add quadratic terms to the regression equation, or,
alternatively, we can use a neural network with a non-linear activation
function. At first glance, regression algorithms would work faster, but in
practice, often, a neural network approximation turns out to be a more
computationally efficient one. In this paper, we provide a reasonable
explanation for this empirical fact.

1 Formulation of the Problem

Practical need to find dependencies. In practice, it often occurs that we
know (or conjecture) that a quantity y depends on quantities x1, . . . , xn, but
we do not know the exact form of this dependence. In such situations, we
must experimentally determine this dependence y = f(x1, . . . , xn). For that,
in several (S) situations s = 1, . . . , N , we measure the values of both the de-
pendent variable y and of the independent variables xi. Then, we use the re-

sults
(
x
(s)
1 , . . . , x

(s)
n , y(s)

)
of these measurements to find a function f(x1, . . . , xn)

which is consistent with all these measurement results, i.e., for which

y(s) ≈ f
(
x
(s)
1 , . . . , x(s)

n

)
for all s from 1 to S. (The equality is usually approximate since the measure-
ments are approximate and the value y is often only approximately determined
by the values of the variables x1, . . . , xn.)
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First approximation: linear dependence. In many practical situations,
the dependence f(x1, . . . , xn) is smooth: informally, this means that small
changes in xi lead to equally small changes in y. In the first approximation, a
smooth function can be approximated by its tangent, i.e., by a linear expression

f(x1, . . . , xn) = c+
n∑

i=1

ci · xi

for appropriate coefficients c and ci.
The task of estimating the values of these coefficients based on the measure-

ment results
(
x
(s)
1 , . . . , x

(s)
n , y(s)

)
, i.e., based on the system of equations

y(s) ≈ c+
n∑

i=1

ci · x(s)
i ,

is known as linear regression; see, e.g., [10].

Need to go beyond linear dependencies. To get a more accurate de-
scription of the desired dependence, we need to go beyond the first (linear)
approximation.

A natural mathematical approach. A natural mathematical idea – tradi-
tionally used in statistical analysis – is that since the first (linear) approximation
does not work well, we need to use the second (quadratic) approximation. In
other words, we need to describe the desired dependence as

f(x1, . . . , xn) = c+

n∑
i=1

ci · xi +

n∑
i=1

n∑
j=1

cij · xi · xj

for appropriate coefficients c, ci, and cij . Statistical regression methods enable
us to find the coefficients from the corresponding system of linear equations:

y(s) ≈ c+
n∑

i=1

ci · x(s)
i +

n∑
i=1

n∑
j=1

cij · x(s)
i · x(s)

j .

A neural network approach is often more efficient. In practice, often,
it is more computationally efficient to use neural networks; see, e.g., [2].

In the traditional (3-layer) neural networks, the input values x1, . . . , xn:

• first go through the non-linear layer of “hidden” neurons, resulting in the
values

yi = s0

 n∑
j=1

wij · xj − wi0

 , 1 ≤ i ≤ m,
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• after which a linear neuron combines the results yi into the output

y =

m∑
i=1

Wi · yi −W0.

Here, Wi and wij are weights selected based on the data, and s0(x) is a non-
linear activation function. Usually, the “sigmoid” activation function is used:

s0(x) =
1

1 + exp(−x)
.

The weights Wi and wij are selected so as to fit the data, i.e., that y(s) ≈
f
(
x
(s)
1 , . . . , x

(s)
n

)
for all s = 1, . . . , S.

A natural question. A natural question is: why are neural networks a more
computationally efficient approximation? In this paper, we provide an explana-
tion for this empirical phenomenon.

2 Towards an Explanation

Apolloni’s idea. One of the problems with the traditional neural networks
is that in the process of learning – i.e., in the process of adjusting the values
of the weights to fit the data – some of the neurons are duplicated, i.e., we get
wij = wi′j for some i ̸= i′ and thus, yi = yi′ .

As a result, we do not fully use the learning capacity of a neural network,
since when yi = yi′ , we can get the same approximation with fewer hidden
neurons.

To avoid the above redundancy problem, B. Apolloni and others suggested
[1] that we orthogonalize the neurons during training, e.g., that we make sure

that the corresponding linear combinations
n∑

j=1

wij ·xj remain orthogonal in the

sense that

⟨wi, wi′⟩
def
=

n∑
j=1

wij · wi′j = 0

for all i ̸= i′. where we denoted wi = (wi1, . . . , win); see also [7, 8].

Neural networks in the second approximation: analysis. We con-
sider the second approximation, in which each function is approximated by
a quadratic expression – e.g., by the sum of the constant, linear, and quadratic
terms of its Taylor expansion, so that cubic and higher orders can be safely
ignored.

In the second approximation, we can approximate the non-linear activation
function s0(x) by the sum of its constant, linear, and quadratic terms:

s0(x) ≈ s+ s1 · x+ s2 · x2.
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In this case, the above formula for the output of an intermediate neuron takes
the following form:

yi = s0 + s1 ·

 n∑
j=1

wij · xj − wi0

+ s2 ·

 n∑
j=1

wij · xj − wi0

2

.

The quadratic term in this expression can be described as n∑
j=1

wij · xj − wi0

2

=

 n∑
j=1

wij · xj

2

− 2wi0 ·

 n∑
j=1

wij · xj

+ w2
i0.

Here, the term  n∑
j=1

wij · xj

2

= (⟨wi, x⟩)2

is the only quadratic terms, the other terms are linear, where we denote x =

(x1, . . . , xn). Thus, the output y =
m∑
i=1

Wi · yi − W0 of the neural networks

consists of a linear part plus a quadratic part of the type

Qn =

n∑
i=1

Wi · ⟨wi, x⟩2.

This part corresponds to the quadratic part
n∑

i=1

n∑
j=1

cij · xi · xj of the original

Taylor-series representation:

Qn =

n∑
i=1

Wi · ⟨wi, x⟩2 =

n∑
i=1

n∑
j=1

cij · xi · xj .

As we have mentioned, it is reasonable to select the vectors wi to be orthog-
onal. By dividing each vector by its length (and appropriately multiplying Wi

by this length), we can assume that the vectors are also orthonormal, i.e., that
⟨wi, wi⟩ = 1 for all i. In the orthonomal basis formed by these vectors wi,

• the corresponding matrix cij becomes a diagonal matrix,

• with values Wi on the diagonal.

Thus:

• the vectors wi are eigenvectors of the matrix cij , while

• the values Wi are the eigenvalues of this matrix.

So, we arrive at the following conclusion.
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Difference between traditional statistical representation and neural
network representation reformulated. In the second approximation, a
generic non-linear part of a function can be represented by a general symmet-
ric matrix cij . We consider the two competing representations of a function
f(x1, . . . , xn):

• the traditional statistical representation in terms of the first few terms of
Taylor series and

• a neural network representation.

In terms of the matrix cij , these two representations correspond to the following:

• in the traditional statistical representation, we store all the components
cij of the original matrix;

• in the neural network representation, we store instead the eigenvectors
and eigenvalues of this matrix.

Physical analogy: a comment. The above conclusion prompts a natural
analogy with quantum physics; see, e.g., [4]. In quantum physics, from the math-
ematical viewpoint, an observable quantity can be described by a corresponding
matrix cij . However, a more physically natural description is to describe possi-
ble values of this quantity – which are exactly eigenvalues of this matrix – and
states in which this quantity has these exactly values, which are eigenvectors of
the matrix. In this example, a representation via eigenvalues and eigenvectors
is clearly intuitively preferable.

Towards efficient computations. Our objective is to come up with an
expression that, given the inputs x1, . . . , xn, would generate the value y =
f(x1, . . . , xn).

Which operations are the most efficient on modern computers? In numerical
computations that form the bulk of modern high performance computer usage,
the most time-consuming operation is the dot product, i.e., computing the ⟨a, b⟩
for given vectors a and b.

The prevalence of dot product makes sense from the mathematical viewpoint,
since most numerical methods are based on linearization, and in the linear

approximation, any function of n variables is approximated as c+
n∑

i=1

ci ·xi, i.e.,

as a constant plus a dot product between the vector of inputs and the vector of
coefficients.

Not surprisingly, most computer speed-up innovations are aimed at comput-
ing the dot product faster – e.g., the multiply-accumulate operation which is
an important part of digital signal processing or fused multiple-add operation
which is now hardware supported on many modern computers; see, e.g., [3].

From this viewpoint, the way to speed up any computation is to reduce it
to as few dot products as possible.
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How to efficiently compute f(x1, . . . , xn) under both representations.
Computing the value of the linear part requires computing exactly one dot
product.

Computing the value of the traditional quadratic form requires n + 1 dot
products:

• first, we compute n dot products ci
def
=

n∑
j=1

cij · xj for i = 1, . . . , n;

• then, to find the desired value of the quadratic form, we compute the dot

product
n∑

i=1

ci · xi.

In the neural network representation, to compute the value with a certain
accuracy, we can dismiss the terms corresponding to small eigenvalues Wi. As
a result, instead of the original formula with n eigenvalues, we get a simplified
formula with n′ < n eigenvalues:

Qn ≈
n′∑
i=1

Wi⟨wi, x⟩2.

From this representation, we can see that fewer than n + 1 dot products are
needed:

• first, we compute n′ < n dot products zi = ⟨wi, x⟩ corresponding to n′

non-dismissed eigenvectors wi;

• then, we perform a component-wise vector operation to compute the values
ti = zi · zi; such vector operations are highly parallelizable and can be
performed really fast on most modern computers; see, e.g., [3];

• finally, to find the desired result, we compute the dot product
n′∑
i=1

Wi · ti.

Resulting comparison. If n′ is smaller than n, then indeed the neural net-
work representation can lead to faster computations. This explains the empirical
fact that in data processing, neural networks are often more efficient than more
traditional statistical methods.

Comment. To “flesh out” this conclusion, we need to estimate to what extent
the number n′ of non-dismissed eigenvalues is smaller than the number n of all
eigenvalues. This estimation is done in the Appendix.
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A Number of Dismissed Eigenvalues: Semi-Heuristic
Statistical Analysis

Idea. The idea is to dismiss some eigenvalues because their contribution is
small. Of course, the number of small eigenvalues depends on the matrix cij .
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We would like to know how many such eigenvalues are there on average. To
formulate this question in precise terms, we need to describe a reasonable prob-
ability distribution on the set of all possible matrices.

Random matrices: motivation. In general, for each element cij of the
matrix, we can have both positive and negative values. There are no reasons to
expect positive values to be more probable than the negative ones or vice versa.
In other words, the situation seems to be symmetric with respect to changing
the sign. Thus, the expected value of the element cij should also be invariant
with respect to this transformation. The only number that remains invariant
when we change the sign is zero, so we conclude that the mean value of each
component cij should be zero.

Similarly, there is no reason to assume that some of the elements have a
different probability distribution; thus, we assume that they are identically dis-
tributed. Finally, there is no reason to assume that there is correlation between
different elements. Thus, we assume that all the elements are independent.
Thus, we arrive at the model in which all the elements are independent identi-
cally distributed random variables with mean 0 and a variance σ2.

Eigenvalues of random matrices. For such random matrices, the distribu-
tion of their eigenvalues follows the Marchenko-Pastur law; see, e.g., [5, 6, 9].
To be more precise, this law describes the limit case of the following situation.
We have an m×n random matrix X whose elements are independent identically
distributed random variables with mean 0 and variance σ2. Assume that m and
n increase in such a way that the ratio m/n tends to a limit α > 0. Then,
for large n and m, the probability distribution of the eigenvalues of the matrix
Y = XXT is asymptotically equivalent to

ρ(x) =

(
1− 1

α

)
· δ(x) + ρc(x),

where δ(x) is Dirac’s delta-function (i.e., the probability distribution which is
located at the point 0 with probability 1), and ρc(x) is different from 0 for
x ∈ [α−, α+], where α± = σ2 · (1±

√
α)2, and

ρc(x) =
1

2 · π · σ2
·
√

(α+ − x) · (x− α−)

α · x
.

In our case, matrices are square, so m = n, α = 1 and thus, we have α− = 0,
α+ = 4σ2 and thus, the limit probability distribution takes the simplified form

ρ(x) =
1

2 · π · σ2
·
√
(4σ2 − x) · x

x
.

Eigenvalues x of the matrix Y = XXT are squares of eigenvalues λ of the
original matrix X: x = λ2.
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We are interested in small eigenvalues. For small eigenvalues, we have x ≪ σ,
so the above formula can be further simplified, into

ρ(x) ∼ 1

2 · π · σ2
·
√
4σ2 · x
x

=
1

2 · π · σ2
· 2 · σ ·

√
x

x
=

1

π · σ
· 1√

x
.

The probability density ρλ for λ =
√
x can thus be found as

ρλ =
dp

dλ
=

dp

dx
· dx
dλ

.

For x = λ2, we get
dx

dλ
=

d(λ2)

dλ
= 2λ,

thus,

ρλ(λ) =
1

π · σ
· 1√

x
· 2λ =

1

π · σ
· 1
λ
· 2λ =

2

π · σ
.

This expression for the probability density does not depend on λ at all. Thus,
small eigenvalues have an approximately uniform distribution.

Heuristic derivation of the number of eigenvalues that can be safely
ignored. We would like to dismiss all the eigenvalues λi = Wi whose absolute
values are smaller than (or equal to) some small number δ > 0. The overall
contribution c of these eigenvalues is equal to

c =
∑

i:|λi|≤δ

Wi · ⟨wi, x⟩2.

Since eigenvectors are orthonormal, the n values ⟨wi, x⟩2 add up to ⟨x, x⟩2. In
particular, for unit vectors x, these n values add up to 1. It is reasonable to as-
sume that values corresponding to different eigenvalues are similarly distributed.
Under this assumption, all these values have the same mean. The sum of n such
means is equal to 1, so each mean is equal to 1/n.

Each value Wi can be positive or negative. It is reasonable to assume that
both negative and positive values are equally possible, so the mean value of each
product Wi · ⟨wi, x⟩2 is 0. Thus, the mean value of the sum is also 0.

Since ⟨wi, x⟩2 ≈ 1

n
, the variance should be approximately equal to W 2

i · 1

n2
.

It is also reasonable to assume that the products Wi · ⟨wi, x⟩2 corresponding to
different eigenvalues are independent. Thus, the variance Vc of their sum c is
equal to sum of their variances, i.e., to

Vc =
1

n2
·

∑
i:|λi|≤δ

W 2
i .

Since the mean is 0, and c is the sum of the large number of small independent
components, it is reasonable to conclude, due to the Central Limit theorem, that
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it is approximately normally distributed; see, e.g., [10]. So, with probability
99.9%, all the values of this sum are located within the three sigma interval
[−3

√
Vc, 3

√
Vc].

Thus, the square root
√
Vc is a good indication of the size of the dismissed

terms. The size of the function itself can be similarly estimates as
√
V , where

V =
1

n2
·
∑
i

W 2
i ,

and the sum is taken over all eigenvalues. We want to make sure that the
dismissed part does not exceed a given portion ε of the overall sum, i.e., that√
Vc · ε ·

√
V , or, equivalently, Vc ≤ ε2 · V 2.

Within this constraint, we want to dismiss as many eigenvalues as possible;
thus, we should not have Vc ≪ ε2 ·V 2, because then, we would be able to dismiss
more terms. We should thus have Vc ≈ ε2 ·V 2. Because of the above expressions
for Vc and for V , we therefore get an equivalent formula

1

n2
·

∑
i:|λi|≤δ

W 2
i ≈ ε2 · 1

n2
·
∑
i

W 2
i .

Multiplying both sides by n2, we can simplify this requirement into∑
i:|λi|≤δ

W 2
i ≈ ε2 ·

∑
i

W 2
i .

Since the probability distribution of eigenvalues is described by the density
function ρλ, and the total number of these eigenvalues is n, we have∑

i

W 2
i ≈ n ·

∫ ∞

−∞
λ2 · ρλ(λ) dλ

and similarly, ∑
i:|λi|≤δ

W 2
i ≈ n ·

∫ δ

−δ

λ2 · ρλ(λ) dλ.

Thus, the above requirement takes the form

n ·
∫ δ

−δ

λ2 · ρλ(λ) dλ ≈ ε2 · n ·
∫ ∞

−∞
λ2 · ρλ(λ) dλ.

Dividing both sides by n, we can simplify this into∫ δ

−δ

λ2 · ρλ(λ) dλ ≈ ε2 ·
∫ ∞

−∞
λ2 · ρλ(λ) dλ.

For small λ, as we have derived, ρλ ≈ const, so∫ δ

−δ

λ2 · ρλ(λ) dλ ≈
∫ δ

−δ

λ2 · const dλ = const · δ3

(for a slightly different constant, of course).
Thus, the above requirement takes the form δ3 ≈ const · ε2, i.e., δ ≈ ε2/3.
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Numerical example. So, for example, for ε ≈ 10% = 0.1, we get δ ≈
0.12/3 ≈ 0.2, so ≈ 20% of all the eigenvalues can be safely ignored. As a
result, we get a 20% decrease in computation time.
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