
Density-Based Fuzzy Clustering as a First Step
to Learning Rules: Challenges and Solutions

Gözde Ulutagay1 and Vladik Kreinovich2

11Department of Industrial Engineering, Izmir University, Uckuyular-Izmir, Turkey,
gozde.ulutagay@gmail.com

2University of Texas at El Paso, El Paso, TX 79968, USA, vladik@utep.edu

Abstract. In many practical situations, it is necessary to cluster given
situations, i.e., to divide them into groups so that situations within each
group are similar to each other. This is how we humans usually make
decisions: instead of taking into account all the tiny details of a situation,
we classify the situation into one of the few groups, and then make a
decision depending on the group containing a given situation. When we
have many situations, we can describe the probability density of different
situations. In terms of this density, clusters are connected sets with higher
density separated by sets of smaller density. It is therefore reasonable to
define clusters as connected components of the set of all the situations
in which the density exceeds a certain threshold t. This idea indeed
leads to reasonable clustering. It turns out that the resulting clustering
works best if we use a Gaussian function for smoothing when estimating
the density, and we select a threshold in a certain way. In this paper,
we provide a theoretical explanation for this empirical optimality. We
also show how the above clustering algorithm can be modified so that it
takes into account that we are not absolutely sure whether each observed
situation is of the type in which we are interested, and takes into account
that some situations “almost” belong to a cluster.

1 Formulation of the Challenges

Clustering is how we humans make decisions. Most algorithms for control and
decision making take, as input, the values of the input parameters, and transform
them into the optimal decision (e.g., into an optimal control value). Humans
rarely do that. When facing a need to make a decision – e.g., where to go eat,
which car or which house to buy, which job offer to accept – we rarely write
down all the corresponding numbers and process them. Most of the time, for
each input variable, instead of its exact known value, we only use a category
to which this value belongs. For example, to decide where to eat, instead of
the exact prices of different dishes, we usually base our decision on whether the
restaurant is cheap, medium, expensive, or very expensive. Instead of taking into
account all the menu details, we base our decision on whether this restaurant
can be classified as Mexican, Chinese, etc. Similarly, when we select a hotel to
stay during a conference, instead of taking into account all the possible features,



we base our decision on how many stars this hotel has and whether it is walking
distance, close, or far away from the conference site.

In all such cases, before we make decisions, we cluster possible situations, i.e.,
divide them into a few groups – and then make a decision based on the group
to which the current situation belongs.

Clustering is a natural first step to learning the rules. Humans are often good at
making decisions. In many situations – such as face recognition – we are much
better than the best of the known computer programs, in spite of the fact that
computers process data much faster than we humans. To improve the ability
of computers to solve problems, it is therefore reasonable to emulate the way
we humans make the corresponding decisions. This means, in particular, that
a reasonable way to come up with a set of good-quality decision rules is to
first cluster possible situations, and then make a decision based on the cluster
containing the current situation.

Clustering: ideal case. How shall we cluster? In order to cluster, we need to have
a set of situations, i.e., vectors x = (x1, . . . , xn) consisting of the values of n
known quantities that characterize each situation.

Let us first consider the case when we have so many examples that in the
vicinity of each situation x = (x1, . . . , xn), we can meaningfully talk about the
density d(x) of situations in this vicinity – i.e., the number of situations per unit
volume.

In the ideal case, when all situations belong to several clearly distinct clusters,
there are no examples outside the clusters – so the density outside the clusters
is 0. Within each cluster, the density d(x) is positive. Different clusters can be
distinguished from each other because each cluster is connected. So, in this ideal
case, one we know the density d(x) at each point x, we can find each cluster as
the connected component of the set {x : d(x) > 0}.

Clustering: a more realistic case. In practice, in addition to objects and situa-
tions which clearly belong to different clusters, there are also “weird” situations
that do not fall under any meaningful clusters. For example, when we make a
medical decision, we classify all the patients into a few meaningful groups – e.g.,
coughing and sneezing patients can be classified into patients with cold, patients
with allergy, patients with flu, etc. However, there may be some exotic diseases
which also cause sneezing and coughing, diseases which are not present in the
current sample in sufficient numbers.

Such not-easy-to-classify examples can occur for every x. Let da be the aver-
age density of such examples. In this case, if at some point, the observed density
d(x) is smaller than or equal to da, then most probably all examples with these
parameters are not-easy-to-classify, so they do not belong to any of the clusters
that we are trying to form. On the other hand, if for some point x, the observed
density d(x) is much larger than da, this means that all these examples cannot
come from not-easy-to-classify cases: some of these example come from one of
the clusters that we are trying to form.



This idea leads us to the following clustering algorithm: we select a threshold
t, and then find each cluster as the connected component of the set {x : d(x) ≥ t}.

How to estimate the density d(x). In practice, we only have a finite set of ex-
amples x(1), x(2), . . . , x(N). In order to apply the above approach, we must use
the observed values x(j) to estimate the density d(x) at different values x.

One possible answer to this question comes from the fact that usually, dues to

inevitable measurement inaccuracy, the measured values x(j) = (x
(j)
1 , . . . , x

(j)
n )

are not exactly equal to the actual (unknown) values x
(j),act
1 , . . . , x

(j),act
n of the

corresponding quantities; see, e.g., [7]. If we know the probability density func-

tion ρ(∆x) describing the measurement errors ∆x
def
= x−xact, then for each j, we

know the probability density of the corresponding actual values: ρ(x(j)−x(j),act).
So, if we only have one observation x(1), it is reasonable to estimate the den-

sity of different situations x as d(x) = ρ(x(1)−x). When we have N observations
x(1), x(2), . . . , x(N), it is reasonable to consider them all equally probable, i.e.,
to assume that each of these observations occurs with probability p(x(j)) = 1/N .
Thus, due to the formula of the full probability, the probability d(x) of having
the actual situation x can be computed as

d(x) = p(x(1)) · ρ(x(1) − x) + . . .+ p(x(N)) · ρ(x(N) − x) =
1

N
·

N∑
j=1

ρ(x(j) − x).

The above formula is known as the Parzen window; see, e.g., [8]. The correspond-
ing function ρ(x) is known as a kernel. As a result, we arrive at the following
algorithm.

Resulting clustering algorithm. At first, we select a function ρ(x). Then, based
on the observed examples x(1), x(2), . . . , x(N), we form a density function d(x) =

(1/N)·
N∑
j=1

ρ(x(j)−x). After that, we select a threshold t, and we find the clusters

as the connected components of the set {x : d(x) ≥ t}.

Algorithmic comment. In practice, we can only handle a finite number of possi-
ble points x, so we perform computations only for finitely many x – e.g., for all
points x from a dense grid. In the discrete case, the subdivision into connected
components is equivalent to finding a transition closure of the direct neighbor-
hood relation – and it is well known how to efficiently compute the transitive
closure of a given relation; see, e.g., [1].

Discussion: beyond probabilities and measurements. In the above text, we de-
scribe a statistical motivation for this algorithm. It turns out (see, e.g., [2, 3])
that a fuzzy approach leads, in effect, to the same algorithm – in this case, in-
stead of the probability density ρ(x), we must take the membership function
describing the neighborhood relation, and the Parzen window formula for d(x)
describes not the total probability, but rather (modulo an irrelevant 1/N factor)



the fuzzy cardinality of the fuzzy set of all examples in the neighborhood of the
given point x. This fuzzy approach makes sense, e.g., when the sample values
x(j) come not from measurements, but from expert observations.

Empirical results. By testing different possible selections, we found out [2, 3]
that empirically:

– The best kernel is the Gaussian function ρ(x) ∼ exp(−const · x2).
– To describe the best threshold, we must describe, for each possible threshold

t, the interval formed by all the threshold values t′ that lead to the same
clustering of the original points x(j) as t. Then, we select the threshold t for
which this interval is the widest – i.e., for which clustering is the most robust
to the threshold selection.

1st challenge: explain the above empirical results. Our 1st challenge is to provide
a theoretical explanation for these empirical results.

2nd challenge: some observations may be erroneous. In the above analysis, we
assumed that all the situations that we observed and/or measured are exactly
of the type in which we are interested. In other words, we assume that the only
uncertainty is that the measurement values are imprecise. In reality, about some
measurements, we are not sure whether the corresponding situations are of the
desired type or not.

For example, when we analyze the animals that we observed in the wild, not
only are our measurements not absolutely accurate, but in addition to this, in
some cases, we are not sure whether we actually observed an animal or it was
just a weird combination of shadows that made it look like an animal.

It is desirable to take this additional uncertainty into account during clus-
tering.

Comment. This additional uncertainty was recently emphasized by L. Zadeh,
when he promoted the idea of a Z-number [9], a number for which there are two
types of uncertainty: an uncertainty in value – corresponding to the accuracy
of the measuring instrument, and an uncertainty in whether we did measure
anything meaningful at all – corresponding, e.g., to reliability of the measuring
instrument.

3rd challenge: need for fuzzy clustering results. The above algorithm provides
a crisp (non-fuzzy) division into clusters. In real life, in some cases, we may
indeed be certain that a given pair of objects belongs to the same cluster (or to
different clusters); however, in many other cases, we are not 100% sure about
it. It is desirable to modify the above clustering algorithm in such a way that it
reflects this uncertainty. In other words, we fuzzy clusters, clusters in which some
situations x are assigned to different clusters with different degrees of certainty.

The existing fuzzy-techniques-based clustering algorithms provide such clas-
sification (see, e.g., [4, 6]); it is therefore reasonable to modify the above density-
based fuzzy-motivated algorithm so that it will produce a similar fuzzy cluster-
ing.



4th challenge: need for hierarchical clustering. In practice, our classification is
hierarchical. For example, to make a decision about how to behave when we see
an animal in the forest, we first classify animals into dangerous and harmless
ones. However, once we get more experience, we realize that different dangerous
animals require different strategies, so we sub-classify them into subgroups with
a similar behavior: snakes, bears, etc.

It is therefore desirable that our clustering algorithm have the ability to
produce such a hierarchical clustering: once we subdivided the original situations
into clusters, we should be able to apply the same clustering algorithm to all the
situations within each cluster c and come up with relevant sub-clusters. Alas,
this does not always happen in the above density-based clustering algorithm.
Indeed, we select a threshold for which the corresponding interval is the widest.
Thus, it is highly possible that within a cluster, we will have the same intervals
– so the new sub-classification will be based on the same threshold and thus, it
will return the exact same cluster. The 4th – and the last – challenge is to modify
the above algorithm so that it will enable us to produce the desired hierarchical
clustering.

In this paper, we propose possible solutions to all these challenges.

2 Solutions to Challenges

A Solution to the 1st Part of the 1st Challenge. We need to explain why
empirically, the Gaussian membership functions – or, equivalently, the Gaussian
kernels ρ(∆x) – are empirically the best.

Case of measurements. This empirical fact is reasonably easy to explain in the
case when the values x(j) come from measurements, and the probability density
ρ(∆x) corresponds to the probability density of the measurement errors.

In this case, the empirical success of the Gaussian kernels can be easily ex-
plained by another (better known) empirical fact: that the Gaussian distribution
of the measurement error is indeed frequently occurring in practice. This new
empirical fact, in its turn, has a known explanation:

– a measurement error usually consists of a large number of small independent
components, and,

– according to the Central Limit theorem, the distribution of the sum of a
large number of small independent components is indeed close to Gaussian
(see, e.g., [8]) – the more components, the closer the resulting distribution
is to Gaussian.

Case of expert estimates. As we have mentioned, the values x(j) often come not
from measurements, but from expert estimates. In this case, the inaccuracy of
these estimates is also caused by a large number of relatively small independent
factors. Thus, we can also safely assume that the corresponding estimation errors
are (approximately) normally distributed.



Alternative explanation. The whole idea of the above density estimates can be
reformulated as follows: we start with the discrete distribution dN (x) in which we
get N values x(j) with equal probability, and then we “smoothen” this original
distribution – by taking a convolution between dN (x) and a kernel function ρ(x):
d(x) =

∫
dN (y) · ρ(x− y) dy.

In the previous text, we mentioned that the empirically best choice of the
kernel function is a Gaussian function, but what we did not explicitly mention is
that even after we fix the class of Gaussian functions, we still to find an appro-
priate parameter – the half-width of the corresponding Gaussian distribution.
An appropriate selection of this parameter is important if we want to achieve a
reasonable clustering:

– on the one hand, if we select a very narrow half-width, then each original
point x(j) becomes its own cluster;

– alternative, if we select a very wide half-width, then all the density differences
will be smoother out, and we will end up with a single cluster.

The choice of this half-width is usually performed empirically: we start with a
small value of half-width and gradually increase it.

In principle, every time we slightly increase the half-width, we could go back
to the original discrete distribution and apply the new slightly modified kernel
function. However, since the kernel functions are close to each other, the re-
sulting convolutions are also close to each other. So, it is more computationally
efficient, instead of starting with the original discrete distribution, to apply a
small modifying convolution to the previous convolution result.

In this approach, the resulting convolution is the result of applying a large
number of minor convolutions, with modification kernel functions which change
the function very slightly – i.e., which are close to the delta-function convolution
with which does not change the original function at all. How can we describe
the composition of such large number of convolutions?

From the mathematical viewpoint, each modification kernel function K(x)
can be viewed as a random variable whose probability density function propor-
tional to K(x). The delta-function kernel – that does not change anything –
corresponds to the random variable which is equal to 0 with probability 1. A
kernel corresponding to a small change thus corresponds to a random variable
which is close to 0 – i.e., which is small.

It is well known that the probability distribution ρ(X) of the sum X =
X1 + X2 of two independent random variables is equal to the convolution of
their probability density functions ρ1(X1) and ρ2(X2):

ρ(X) =

∫
ρ1(X1) · ρ2(X −X1) dX1.

Thus, applying several convolutions – corresponding to several small random
variables – is equivalent to applying one convolution corresponding to the sum
of these small random variables. Due to the Central Limit theorem, this sum is
(almost) normally distributed. So, the corresponding probability density function



is (almost) Gaussian, and the resulting convolution is (almost) the convolution
with the Gaussian kernel.

A Solution to the 2nd Part of the 1st Challenge. The above clustering
algorithm depends on the selection of an appropriate threshold t. It turns out
that empirically, the following method of selecting this threshold works best: we
select a threshold t for which the results of clustering the sample situations x(j)

are the most robust with respect to this selection, i.e., for which the interval
t(t) consisting of all threshold values t′ that lead to the same clustering of the
original situations as t is the widest.

How can we explain the empirical efficiency of this method?

Analysis of the problem. The clustering of the sample situations is based on
comparing the corresponding values d(x(j)) with the threshold t. Thus, crudely
speaking, the interval t(t) consists of all the values t′ between the two sequential
values d(x(j)).

For simplicity, let us consider 1-D case. In this case, locally, the density
function is monotonic, so the consequent values of the density d(x(j)) are, most
probably, attained at the two neighboring points x(j). (In multi-D case, if we use
the local coordinates in which the gradient of the density is one of the directions,
there are also additional dimensions that do not affect the density.)

In a sample of N points, the distance ∆x to the next point can be found
from the condition that there should be one point on this interval. By definition
of the probability density, the probability to find the point on the intervals is
equal to d(x) ·∆x. The total number of points is N , so the average number of
points on the interval is N · d(x) · ∆x. Thus, we have N · d(x) · ∆x ≈ 1 hence
∆x ≈ 1/(N · d(x)). When we move from the original point x to the new point
x+∆x, the density changes from d(x) to d(x)+∆x·d′(x) ≈ d(x)+d′(x)/(N ·d(x)).
Thus, the different between the two values if the threshold that lead to different
clusterings – the desired gap – is proportional to the ratio |d′(x)|/d(x). In multi-

D case, we similarly have ∥∇d(x)∥2/d(x), where ∇d
def
=

(
∂d

∂x1
, . . . ,

∂d

∂xn

)
is the

gradient vector, and for every vector z = (z1, . . . , zn), ∥z∥2
def
=

√
z21 + . . .+ z2n

denotes its length.
After this reformulation, the question becomes: why, as an objective func-

tion, the ratio ∥∇d(x)∥2/d(x) works the best? To answer this question, we will
consider general reasonable optimality criteria which can be formulated in terms
of the density function d(x) and its gradient ∇d(x).

What we need is a preference relation. We do not necessarily need a numerical
objective function that would enable us to compare two points x with two differ-
ent values of d(x) and ∇d(x). All we need is a preference relation (d, z) ≽ (d′, z′)
allowing us to compare two pairs (d, z) consisting of a real number d and an
n-dimensional vector z. The meaning of this relation is that the pair (d, z) is
better than (or of the same quality as) (d′, z′) – as a point whose value d(x) is
used as a threshold.



Let us enumerate natural properties of this relation, and then see which
relations satisfy all these properties.

Natural algebraic properties of the preference relation. To be able to always make
a decision, we must require that for every two pairs (d, z) and (d′, z′), we have
either (d, z) ≽ (d′, z′) or (d′, z′) ≽ (d, z). In mathematical terms, this means that
the relation is linear or total.

Of course, since any pair (d, z) is of the same quality as itself, we must have
(d, z) ≽ (d, z) for all d and z. In mathematical terms, this means that the relation
is reflexive.

This relation must also be transitive: indeed, if (d, z) is better than (or of the
same quality as) (d′, z′), and (d′, z′) is better than (or of the same quality as)
(d′′, z′′), then (d, z) should better than (or of the same quality as) (d′′, z′′).

Closeness of the preference relation. Let us assume that (dn, zn) → (d, z),
(d′n, z

′
n) → (d′, z′), and (dn, zn) ≽ (d′n, z

′
n) for all n.

Since all the measurements are imprecise, this implies that for any given
measurement error, for sufficiently large n, the pair (d, z) is indistinguishable
from (dn, zn): (d, z) ≈ (dn, zn). Similarly, for sufficiently large n, the pair (d′, z′)
is indistinguishable from the pair (d′n, z

′
n): (d

′, z′) ≈ (d′n, z
′
n).

Thus, no matter how accurately we perform measurements, for the pairs (d, z)
and (d′, z′), there are indistinguishable pairs (dn, zn) ≈ (d, z) and (d′n, z

′
n) ≈

(d′, z′) for which (dn, zn) ≽ (d′n, z
′
n). Hence, from the practical viewpoint, we

will never be able to empirically conclude, based on measurement results, that
(d, z) ̸≽ (d′, z′). So, it is reasonable to conclude that (d, z) ≽ (d′, z′).

In mathematical terms, this means that the relation ≽ is closed in the topo-
logical sense.

Rotation invariance. The components xi of each situation x = (x1, . . . , xn) de-
scribe, e.g., spatial coordinates of some object, or components of the 3-D vector
describing the velocity of this object. In all these cases, the specific numerical
representation of the corresponding vector depends on the choice of the coor-
dinate system. In most practical situations, the choice of a coordinate system
is arbitrary: instead of the original system, we could select a new one which is
obtained from the previous one by rotation. It is therefore reasonable to require
that the preference relation not change if we simply rotate the coordinates. In
other words, it is reasonable to require that if (d, z) ≽ (d′, z′), and T is an
arbitrary rotation in n-dimensional space, then (d, T (z)) ≽ (d′, T (z′)).

First result. From closeness and rotation invariance, we can already make an
important conclusion about the preference relation. Let us formulate this first
result in precise terms.

Definition 1.

– A relation ≽ on a set A is called:



• linear (or total) if for every two elements a, a′ ∈ A, we have a ≽ a′ or
a′ ≽ a.

• reflexive if a ≽ a for all a ∈ A;
• transitive if a ≽ a′ and a′ ≽ a′′ imply that a ≽ a′′.

– Let n ≥ 1 be an integer. By a preference relation, we mean a linear reflexive
transitive relation ≽ on the set of all pairs (d, z), where d is a non-negative
real number and z is an n-dimensional vector.

– We say that a preference relation ≽ is closed if for every two sequences
(dn, zn) → (d, z) and (d′n, z

′
n) → (d′, z′) for which (dn, zn) ≽ (d′n, z

′
n) for all

n, we have (d, z) ≽ (d′, z′).
– We say that a preference relation ≽ is rotation-invariant if for every two

pairs (d, z) and (d′, z′) and for every rotation T in n-dimensional space,
(d, z) ≽ (d′, z′) implies that (d, T (z)) ≽ (d′, T (z′)).

Proposition 1. For every closed rotation-invariant preference relation ≽,
whether there is a relation (d, z) ≽ (d′, z′) between the two pairs (d, z) and (d′, z′)
depends only on the values d and d′ and on the lengths ∥z∥2 and ∥z′∥2 of the
vectors z and z′, i.e., if (d, z) ≽ (d′, z′), ∥z∥2 = ∥t∥2, and ∥z′∥2 = ∥t′∥2, then
(d, t) ≽ (d′, t′).

Proof. Let us start with notations. Let us denote a ≡ b if a ≽ b and b ≽
a. This relation is clearly symmetric. Since the original relation ≽ is reflexive
and transitive, the new relation is also reflexive and transitive. In mathematical
terms, reflexive symmetric transitive relations are called equivalence relations;
thus, the above relation ≡ is an equivalence relation.

One can easily check that a ≽ b and b ≡ c imply that a ≽ c, and that a ≡ b
and b ≽ c also implies a ≽ c.

We plan to prove that for for every number d, for every vector z, and for
every rotation T , we have (d, z) ≡ (d, T (z)).

Let us show that if we succeed in proving this, then the proposition will be
proven. Indeed, since every two vectors of equal length can be transformed into
each other by an appropriate rotation, this will mean that if (d, z) ≽ (d′, z′),
∥z∥2 = ∥t∥2, and ∥z′∥2 = ∥t′∥2, then (d, z) ≡ (d, t) and (d′, z′) ≡ (d′, t′). From
(d, t) ≡ (d, z), (d, z) ≽ (d′, z′), and (d′, z′) ≡ (d′, t′), we will now be able to
conclude that (d, t) ≽ (d′, t′), i.e., exactly what we want to conclude in Proposi-
tion 1.

So, to complete our proof, it is sufficient to prove that for every axis ℓ and
for every angle φ, the property (d, z) ≡ (d, Tℓ,φ(z)) holds, where Tℓ,φ denoted a
rotation by the angle φ around the axis ℓ.

We will first prove this statement for the case when φ = 2π/k for some
integer k ≥ 2, i.e., when k · φ = 2π.

Indeed, due to linearity of the preference relation ≽, we have (d, z) ≽
(d, Tℓ,φ(z)) or (d, Tℓ,φ(z)) ≽ (d, z). Without losing generality, let us consider
the first case, when (d, z) ≽ (d, Tℓ,φ(z)).

In this case, rotation invariance implies that (d, Tℓ,φ(z)) ≽ (d, Tℓ,2φ(z)), that
(d, Tℓ,2φ(z)) ≽ (d, Tℓ,3φ(z)), . . . , and that (d, Tℓ,(k−1)·φ(z)) ≽ (d, Tℓ,k·φ(z)) =
(d, Tℓ,2π(z)) = (d, z).



Transitivity, when applied to (d, Tℓ,φ(z)) ≽ (d, Tℓ,2φ(z)) ≽ . . . ≽ (d, z), im-
plies that (d, Tℓ,φ(z)) ≽ (d, z). Since we already know that (d, z) ≽ (d, Tℓ,φ(z)),
we conclude that (d, z) ≡ (d, Tℓ,φ(z)). The statement is proven.

Let us now prove the desired statement (d, z) ≡ (d, Tℓ,φ(z)) for the case when
φ = 2π · (p/q) for some integers p and q.

Indeed, in this case, φ = p · φ(q), where we denoted φ(q)
def
= (2π)/q.

We already know, from Part 3.1 of this proof, that equivalence is preserved
when we rotate by the angle φ(q), i.e., that (d, z) ≡ (d, Tℓ,φ(q)(z)). Similarly,
(d, Tℓ,φ(q)(z)) ≡ (d, Tℓ,2φ(q)(z)), . . . , and, finally, that (d, Tℓ,(p−1)·φ(q)(z)) ≡
(d, Tℓ,p·φ(q)(z)) = (d, Tℓ,φ(z)). Thus, by transitivity of the equivalence relation,
we conclude that indeed (d, z) ≡ (d, Tℓ,φ(z)). The statement is proven.

Let us now prove the desired statement (d, z) ≡ (d, Tℓ,φ(z)) for an arbitrary
angle φ.

Indeed, every real number can be represented as a limit of rational num-
bers – e.g., its approximations of higher and higher accuracy. By applying this
statement to the ratio φ/(2π), we conclude that an arbitrary angle φ can be
represented as a limit of the angles φn each of which has a form 2π times a
rational number. For such angles, in Part 3.2 of our proof, we already proved
that (d, z) ≽ (d, Tℓ,φn(z)) and (d, Tℓ,φn(z)) ≽ (d, z). Due to closeness of the pref-
erence relation, we can now conclude that in the limit φn → φ, we also have
(d, z) ≽ (d, Tℓ,φ(z)) and (d, Tℓ,φ(z)) ≽ (d, z), thus (d, z) ≡ (d, Tℓ,φ(z)).

The statement is proven, and so is the proposition.

Discussion. Based on Proposition 1, when we describe a preference relation, it is
not necessarily to consider pairs consisting of a real number d ≥ 0 and a vector
z. Instead, it is sufficient to only consider two non-negative numbers: d and the

length l
def
= ∥z∥2 of the vector z. So now, we have a preference relation defined

on the set of pairs of non-negative numbers d and l.

Monotonicity. If we have a homogeneous zone, i.e., a zone in which the density
is constant and its gradient is 0, then this whole zone should belong to the same
cluster. Selecting a threshold corresponding to this zone would mean cutting
through this zone, which contradicts to the idea of clustering as bringing similar
situations into the same cluster. From this viewpoint, it makes sense to dismiss
pairs (d, l) for which l = 0: the optimal cut should never be at such pairs.

Similarly, points x with small gradient are probably not the best placed to
cut. In other words, everything else being equal, situations with higher gradi-
ent (i.e., with larger values of l) are preferable as points used to determine a
threshold.

With respect to density, as we have mentioned, the higher the density, the
more probable it is that the corresponding values belong to the same cluster.
Thus, everything else being equal, situations with lower density (i.e., with smaller
values of d) are preferable to cut. From this viewpoint, it makes sense to dismiss
pairs (d, l) for which d = 0: if such ideal pairs are present, we have an ideal
(no-noise) clustering (as we mentioned in the beginning of this paper), so there



is no need for all these sophisticated methods. Thus, we arrive at the following
definitions.

Definition 2.

– By a non-zero preference relation, we mean a linear reflexive transitive re-
lation ≽ on the set of all pairs (d, l) of positive real numbers.

– We say that a non-zero preference relation is monotonic if the following two
conditions hold:
• for every d and for every l < l′, (d, l′) ≽ (d, l) and (d, l) ̸≽ (d, l′);
• for every l and for every d < d′, (d, l) ≽ (d′, l) and (d′, l) ̸≽ (d, l).

Comment. The notion of closeness can be easily extended to this new definition.

Sub-samples. Instead of considering all possible situations, we may want to con-
sider only part of them – this often happens in data processing when we want to
decrease computation time. Of course, we need to select sub-populations in such
a way that within each cluster, the relative density does not change. However,
it is OK to select different fractions of sample in different clusters. For example,
if some cluster contains a large number of different situations, it makes sense
to select only some of them, while for another cluster which consists of a few
situations, we cannot drastically decrease this number since otherwise, we will
not have enough remaining elements to make statistically meaningful estimates
(e.g., estimates of the probability density d(x)).

When we select only a portion of elements at a location x, the density d(x)
in the vicinity of this location is multiplied by the ratio λ of the following two
proportions: the proportion of this cluster in the original sample, and the pro-
portion of this cluster in the new sample. Since the values of xj do not change,
the gradient z – and hence, its length l – is also multiplied by the same constant
λ. In the vicinity of another cluster, the corresponding values of d′ and l′ are
similarly multiplied by a different constant λ′. It is reasonable to require that
the relative quality of different possible thresholds does not change under this
transition to a sub-sample. Thus, we arrive at the following definition.

Definition 3. We say that a non-zero preference relation ≽ is sub-sampling
invariant if for every two pairs (d, l) and (d′, l′) and for every two positive real
numbers λ > 0 and λ′ > 0, (d, l) ≽ (d′, l′) implies that

(λ · d, λ · l) ≽ (λ′ · d′, λ′ · l′).

Proposition 2. For every closed monotonic sub-sampling invariant non-zero
preference relation ≽, (d, l) ≽ (d′, l′) if and only if l/d ≥ l′/d′.

Discussion. Thus, as a threshold, we should select a value of the density d(x)

corresponding to the point where the ratio
∥∇d∥
d

attains its largest possible

value. This result explains the above empirical rule.



Proof of Proposition 2. Since a preference relation is reflexive, we have (d, l) ≽
(d, l) for every d and l. If we apply invariance with respect to sub-sampling
with λ = 1 and λ′ = 1/d, we get (d, l) ≽ (1, l/d) . If we apply invariance with
respect to sub-sampling with λ = 1/d and λ′ = 1, we get (1, l/d) ≽ (d, l). Thus,
(d, l) ≡ (1, l/d) . Similarly, (d′, l′) ≡ (1, l′/d′) . Thus, (d, l) ≽ (d′, l′) if and only
if (1, l/d) ≽ (1, l′/d′) . For pairs (1, l), due to monotonicity, (1, l) ≽ (1, l′) if
and only if l ≥ l′. Thus, indeed, (d, l) ≽ (d′, l′) if and only if l/d ≥ l′/d′. The
proposition is proven.

A Solution to the 2nd Challenge. In the above algorithm, we implicitly
assume that, while there is some inaccuracy in the measurement results corre-
sponding to each observed situation x(j), each measurement indeed represents
the situation of the type in which we are interested. In practice, we are not
always sure that what we measured in necessarily one of such situations.

A natural way to describe this uncertainty is to assign, to each observed
situation j, a probability pj (most probably, subjective probability) that this
situation is indeed of the desired type.

It is desirable to take these probabilities into account during clustering.

Idea. The main algorithm is based on the Parzen formula

d(x) = p(x(1)) · ρ(x(1) − x) + . . .+ p(x(N)) · ρ(x(N) − x) =
1

N
·

N∑
j=1

ρ(x(j) − x).

In deriving formula, we assumed that all observations x(j) are equally probable,
i.e., that they have the same probability p(x(j)) to be observed. Now that we
know the probability pj that each observation is real, these observations are not
equally probable: the probability p(x(j)) of the j-th observation is proportional
to pj : p(x

(j)) = k · pj for some constant k.
This constant can be found from the condition that the overall probability

is 1, i.e., that
N∑
j=1

p(x(j)) = k ·
N∑
j=1

pj = 1. Thus, we get k =
1

N∑
j=1

pj

, and instead

of the original Parzen formula, we get a new formula:

d(x) = p(x(1)) · ρ(x(1) − x) + . . .+ p(x(N)) · ρ(x(N) − x) = k · d0(x),

where d0(x)
def
=

N∑
j=1

pj · ρ(x(j) − x).

Comment. Clusters are then determined based on the set of all the situations x
that satisfy the inequality d(x) ≥ t for some threshold t. Since d(x) = k · d0(x),
this inequality is equivalent to the inequality d0(t) ≥ t0, where t0

def
=

t

k
.

Thus, instead of considering the actual density d(x) and selecting an appro-
priate threshold t, we could as well consider a simpler function d0(x) and select
an appropriate threshold t0 for this simpler function. As a result, we arrive at
the following modification of the above algorithm:



Resulting algorithm. Based on the observations x(j) and on the probabilities pj ,

we form an auxiliary function d0(x)
def
=

N∑
j=1

pj · ρ(x(j) − x). Then, we select an

appropriate threshold t0 and find clusters as connected components of the set
{x : d(x) ≥ t0}.

Comment. For selecting t0 we can use the same algorithm as before since, as
one can easily see, this algorithm does not change if we simply multiply all the
values of d(x) by the same constant (1/k).

A Solution to the 3rd Challenge. In the above algorithm, we assign each
situation to a definite cluster; crudely speaking, to the cluster which is most
probable to contain this situation. Because of the probabilistic character of the
assignment procedure, the resulting “most probable” assignment is not neces-
sarily always the correct one – it is just the assignment which is correct in more
cases than other possible assignments.

In reality, it is quite possible that each cluster also contains situations which
were not assigned to it – and vice versa, that some situations that were assigned
to this cluster actually belong to a different cluster. It is therefore desirable to
estimate, for each current cluster c and for each situation x which is currently
outside this cluster, the degree to which it is possible that x actually belongs
to c.

An idea on how to solve this challenge. In the above algorithm, the clusters
were built based on the choice of a threshold t: each cluster c is a connected
component of the set {x : d(x) ≥ t}, where d(x) is a probability density function
based on the observed situations x(j).

If a situation x does not belong to the given cluster, this means that x cannot
be connected to elements of c by points y for which d(y) ≥ t. In other words,
whatever connection we make between the point x and a point xc from c (e.g., a
curve connecting x and xc), there will be a point y on this connection at which
d(y) < t.

If for some situation x, there is a connection at which all these intermediate
values d(y) are close to t – e.g., exceed t− ε for some small ε > 0 – this means
that the corresponding situation y “almost” belongs to the cluster: it would
belong to the cluster if we changed the threshold a little bit. In this case, if we
assign degree of confidence 1 to situations originally assigned to the cluster c, it
makes sense to assign a degree close to 1 to this situation c. For example, we can

simply take the ratio
t− ε

t
as the desired degree of confidence that the situation

x belongs to the cluster c.
On the other hand, if no matter how we connect x with some xc ∈ c, we have

to go through some points with very low probability density – e.g., density 0 –
this means that no matter how much we decrease the threshold, this situation
x will not end up in the cluster c. To such situations x, we should assign low
degree of confidence that this situation x belongs to the given cluster c.

Thus, we arrive at the following natural definition.



Resulting definition. For each situation x and for each cluster c, we estimate

the degree dc(x) to which x belongs to c as the ratio dc(x) =
tc(x)

t
, where t

is the threshold used for the original clustering, and tc(x) is the largest value
s ≤ t for which both the situation x and the original cluster c belong to the
same connected component of the set {y : d(y) ≥ s}.

Discussion. For elements x that were originally assigned to the cluster c, the
degree dc(x) as defined above is equal to 1.

For elements x that can be connected to c by situations y for which d(y) ≥
t− ε, the above-defined degree dc(x) is larger than or equal to

t− ε

t
.

Finally, if we have a situation x for which, no matter how we connect it to
c, there will always be situations y on this connection for which d(y) = 0, then
the above-defined degree dc(x) is equal to 0.

An Alternative Solution to the 3rd Challenge. In the above approach, all
the situations x which have been originally assigned to a cluster c are automat-
ically assigned degree dc(x) = 1. An alternative approach is to assign different
degrees dc(x) to different such situations x.

To assign such degrees, we can use the same idea that we used when we
assigned degrees dc(x) to situations x which are outside the original cluster c.
Namely, the original assignment of a situation x to different clusters is based on
the value d(x): situations with d(x) ≥ t were assigned to different clusters, while
situations with d(x) < t were not assigned to any clusters. If d(x) = t, then a
minor change in d(x) can move this situation outside the clusters. On the other
hand, if d(x) ≫ t, this means that even after a reasonable change in the value
of d(x), the situation x will still be assigned to a cluster. Thus, the larger the
value d(x), the larger our confidence that the situation x will be assigned to the
cluster. It is therefore reasonable to take d(x) as a degree of confidence that the
situation x belongs to the cluster c.

Of course, this value needs to be normalized so that the largest degree will
be 1. Thus, we arrive at the following alternative definition.

Alternative definition. For each situation x and for each cluster c, we estimate
the degree dc(x) to which x belongs to c as follows:

If d(x) ≥ t, then, as dc(x), we take the ratio
d(x)

dmax
, where dmax

def
= sup

y
d(y)

is the largest possible value of the density d(x).

If d(x) < t, then, as the desired degree, we take the ratio dc(x) =
tc(x)

dmax
, where

tc(x) is the largest value s ≤ t for which both the situation x and the original
cluster c belong to the same connected component of the set {y : d(y) ≥ s}.

A Solution to the 4th Challenge. Once the original clusters are established,
then, for each cluster c, it is desirable to be able to apply the clustering algorithm



only to the situations from this cluster – and come up with sub-clusters of the
cluster c.

A possible solution is to use the fuzzy clusters, i.e., to produce the degrees
of belonging (that we produced as a solution to the 3rd challenge), and then to
use these degrees when clustering all the situations from the cluster c – as we
did in our solution to the second challenge.

Because of the degree of belonging, the resulting density function is different
from what we had based on the original sample. As a result, hopefully, we will
not simply produce the original cluster (as in the original algorithm) – we will
divide this cluster into reasonable sub-clusters.

Implementations. Most of the above solution have been implemented and
applied to real-life problems [2, 3]; the resulting clustering is indeed closer to the
expert-generated clustering than the clustering performed by the usual fuzzy
clustering algorithms.

Acknowledgments. This work was supported in part by NSF grants HRD-
0734825 and HRD-1242122, by Grants 1 T36 GM078000-01 and 1R43TR000173-
01 from NIH, by a grant N62909-12-1-7039 from ONR, and by a grant 111T273
from TUBITAK. This work was partially performed when Gözde Ulutagay was
visiting the University of Texas at El Paso.

The authors are greatly thankful to Professor Zadeh for inspiring discussions
and to the anonymous referees for valuable suggestions.

References

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stain, Introduction to Algo-
rithms, MIT Press, Cambridge, Massachusetts, 2009.

2. E. N. Nasibov and G. Ulutagay, “A new unsupervised approach for fuzzy cluster-
ing”, Fuzzy Sets and Systems, 2007, Vol. 158, pp. 2118–2133.

3. E. N. Nasibov and G. Ulutagay, “Robustness of density-based clustering methods
with various neighborhood relations”, Fuzzy Sets and Systems, 2009, Vol. 160,
pp. 3601–3615.

4. N. R. Pal and J. C. Bezdek, “On the cluster validity for the fuzzy c-means model”,
IEEE Transactions on Fuzzy Systems, 1995, Vol. 3, No. 3, pp. 370–379.

5. E. Parzen, “On the estimation of a probability density function and the mode”,
Annals of Mathematical Statistics, 1962, Vol. 33, pp. 1065–1076.

6. W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets, MIT Press, Cambridge,
Massachusetts, 1998.

7. S. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice,
Springer Verlag, New York, 2005.

8. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
Chapman & Hall/CRC, Boca Raton, Florida, 2007.

9. L. A. Zadeh, “A Note on Z-numbers”, Information Sciences, 2011, Vol. 181,
pp. 2923–2932.


