
All Kinds of Behavior are Possible in Chemical

Kinetics: A Theorem and Its Potential

Applications to Chemical Computing

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

Abstract

Until the late 1950s, it was believed that the processes described by
the equations of chemical kinetics are simple: the process of each chemical
reaction, concentrations of some chemical substances decrease while con-
centrations of other substances increases. This belief was shattered when
the first periodic reaction – the famous Belousov-Zhabotinsky reaction –
was discovered. Since then, it was shown that many other types of unusual
behavior is possible for chemical systems. This discovery led to the pos-
sibility of finding chemical reactions that emulate non-trivial transforma-
tions that occur during computations – and thus, perform computations
“in vitro”, by actually performing the corresponding chemical reactions.
The potential advantages of such chemical computing are numerous, the
main advantage is that with 1023 molecules performing computations in
parallel, we have a potential for an unheard-of-parallelization – and thus,
of an unheard-of speed-up. The possibility of computing “in vitro” was at
first only theoretically conjectured, but then, in 1994, L. Adleman has ac-
tually performed successful chemical computations. This started a current
boom in chemical computing, with many new ideas and devices appearing
all the time.

From both practical and theoretical viewpoints, chemical computing
has been a clear success story. However, one open problem remained in
this area: while many types of behavior have been shown to occur in
chemical kinetics, it has been not know whether all types of behavior are
possible. In this paper, we prove that every possible behavior can indeed
be implemented in an appropriate chemical kinetics system. This result
has the following direct implication for chemical computing: no matter
what computational device one invents, with whatever weird behavior, it
is, in principle, possible to emulate this device by appropriate chemical
reactions. In this sense, chemical computing is truly ubiquitous.
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1 Introduction

Chemical computing: a brief reminder. No matter how fast our com-
puters become, there are still problems – such as weather prediction – which
still require a large amount of computation time. A natural way to speed up
computations is to use many processors working in parallel: the more proces-
sors we use, the faster we come up with the answer. Parallelization is the main
reason why we humans solve many problems such as face recognition faster than
modern computers:

• in comparison with computers that can perform billions of operations per
second, a neuron is a very slow computational devices, performing only
between 10 and 100 operations per second;

• however, because in the brain, we have billions of neurons working in
parallel, the resulting image processing occurs much faster.

Once we decide on the amount of space allocated for computing, the desire to
have more processors working in parallel can be reformulated as the need to
make computational units smaller and smaller. In some modern computers,
individual electronic units are already of the size of several hundred molecules.
A natural next step is to reduce these units to a single molecule size. In this case,
elementary computational operations consist of interactions between molecules.
Such interactions are exactly what chemistry is about. Thus, the ideal case is
when controlled chemical reactions perform computations for us. This is the
main idea of chemical computing.

This idea sounds very promising, because with ≈ 1023 molecules, we have
a potential of 1023 processors working in parallel – many orders of magnitude
more than what we can achieve today. This idea also sounds promising because
this is, in effect, how we humans process data: in the neurons, all the processes
are performed by appropriate chemical reactions.

To the best of our knowledge, the idea of chemical computing was first
proposed by Yuri Matiyasevich, a mathematician famous for having solved one
of Hilbert’s problems (the tenth), in his paper [24]. This idea was noticed;
for example, it was discovered that while the general idea is great, its specific
implementation suggested by Matiyasevich did not fully explore the natural
parallelism; see, e.g., [9]. After that, several alternative schemes were proposed
that has theoretically better computation speed-up potential; see, e.g., [13, 14,
15, 16, 17, 20, 22].

The situation change drastically when, in 1994, L. Adleman actually per-
formed chemical computations “in vitro” [4]. Since then, chemical computing
has become a thriving research area; see, e.g., [1, 2, 3, 10, 18, 19, 23, 26, 27].

Chemical computing: remaining theoretical challenge. From the prac-
tical viewpoint, in chemical computing, we have impressive results and even
more impressive potential applications. However, from the theoretical view-
point, there is still a challenge:
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• every time we need to implement a new computations-related process in
chemical computing,

• it is an intellectual challenge, and when a creative idea makes this imple-
mentation possible, it is a great result.

By applying all these creative ideas, for many processes, researchers have shown
that there processes can be indeed implemented by appropriate chemical reac-
tions. However, a more general question remains open: can any possible process
(i.e., process described by a general system of differential equations) be imple-
mented by an appropriate system of chemical reactions? or there are processes
(behaviors) which chemical computing cannot directly emulate?

What we do. In this paper, we prove that every possible behavior is also
possible in chemical kinetics – and thus, in principle, can be implemented by an
appropriate system of chemical reactions.

Thus, whatever computational device with however weird behavior one can
invent, it is, in principle, possible to implement this device chemically.

2 Main Result

Chemical kinetics equations: a brief reminder. In order to formulate our
result in precise terms, we need to recall the differential equations of chemical
kinetics. Readers who are well familiar with the chemical kinetics equations can
skip this subsection; we added it for the benefit of computer science readers who
may be interested in chemical computing but not well acquainted with chemical
equations.

When chemical reactions occur, concentrations of chemical substances
change; see, e.g., [5, 6, 7]. General chemical reactions have the form

k1A1 + . . .+ kpAp → l1B1 + . . .+ lqBq,

where Ai and Bj are molecules, and ki and lj describe how many molecules
participate in an individual reaction.

For example, the standard reaction of combining hydrogen and oxygen into
water has the form

2H2 +O2 → 2H2O.

Here, we have p = 2 input substances A1 = H2 and A2 = O2, with k1 = 2 and
k2 = 1, and q = 1 output substance B1 = H2O, with l1 = 2.

The speed of each chemical reaction depends on the intensity ir of this
reaction r and on the concentrations of the substances that take part in this
reaction. For a reaction to occur, the molecules of all the input substances
have to meet. The probability of such encounter is proportional to all the
concentrations CAi , so the reaction rate vr is proportional to the product of all
the concentrations:

vr = ir · (CA1)
k1 · . . . · (CAp)

kp .
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Because of this reaction:

• the concentration of each input substance Ai decreases with a rate ki · vr:
ĊAi = −ki · vr, where, as usual, Ċ means the time derivative

dC

dt
, while

• the concentration of each output substance Bj increases with a rate lj ·vr:
ĊBj = lj · vr.

(It is worth mentioning that in some reaction, e.g., in catalysis, a substance A
can be both an input and an output. In this case, we have ĊAi = (−ki+ li) ·vr.)

For example, for in the above reaction r, the reaction rate is equal to

vr = ir · (CH2)
2 · CO2 .

Usually, several chemical reactions r, r′, . . . are going on. In this case, to
describe the rate with which the concentration CA of each substance A changes,
we simply add the rates of change corresponding to different reactions. For
example, for water, there is also an inverse reaction r′:

2H2O → 2H2 +O2,

whose reaction rate is equal to VR′ = ir′ · (CH2O)
2. Because of these two

reactions, the concentrations of hydrogen, oxygen, and water change according
to the following differential equations:

ĊH2 = −2 · ir · (CH2)
2 · CO2 + 2 · ir′ · (CH2O)

2;

ĊO2 = ir · (CH2)
2 · CO2 + ir′ · (CH2O)

2;

ĊH2O = 2 · ir · (CH2)
2 · CO2 − 2 · ir′ · (CH2O)

2.

Chemical kinetics until late 1950s. It is known that general differential
equations can exhibit all kinds of behavior. Newton’s equations describe the
periodic motion of celestial bodies, Lorentz equations describe chaotic behavior,
etc.

In comparison with the variety of behaviors that describe general differential
equations, the behavior described by most chemical kinetics equations is sim-
ple: some concentrations decrease, other concentrations increase. Until the last
1950s, it was expected that all chemical systems behave in this simple manner.

Belousov-Zhabotinsky reaction and further discoveries. Our under-
standing of possible behavior of chemical systems changes drastically when it
was discovered that, contrary to the original expectations, the equations of
chemical kinetics can exhibit periodic behavior [8, 12, 28].

Later on, it was discovered that other chemical systems show an even more
complex behavior, a chaotic behavior or a behavior corresponding to some of
the patterns described by catastrophe theory; see, e.g., [6, 11, 25].
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A natural hypothesis. Since many kinds of weird behaviors originally ob-
served in general differential equations have been observed in actual chemical
system, it is natural to conjecture that all kinds of general behaviors are possible
in chemical systems as well. This is what we prove in this paper.

Dynamical systems. In this paper, we consider dynamical systems, i.e., sys-
tems of differential equations of the type ẋi = fi(x1(t), . . . , xn(t)), where fi are
continuous functions. Such systems describe most physical phenomena.

We will prove that for each observed behavior of such a system, there exists
a chemical system which has the exact same behavior.

Since a chemical system describes concentrations, and concentrations are
always non-negative, we have to restrict ourselves to dynamical systems for
which xi(t) ≥ 0 for all i and t.

Comment. In this paper, we consider “stationary” dynamical systems in which
the rate is not explicitly depending on time t. If needed, we can also allow
an explicit dependence on time, i.e., we can also allow systems of the type
ẋi = fi(t, x1(t), . . . , xn(t)).

Indeed, as it is well known in dynamical systems theory, we can easily this
case to the stationary case if we introduce a new auxiliary variables x0 (whose
meaning is time) with the corresponding differential equation ẋ0 = 1 and initial
value x0(0) = 0. Then, the system consisting of the equations ẋ0 = 1 and ẋi =
fi(x0(t), x1(t), . . . , xn(t)) is stationary and describes the exact same solutions.

W.l.o.g., we start at time t = 0. Without losing generality, we can assume
that our observations started at moment t = 0.

Indeed, if we started at some other moment of time t0, then we can take this
moment as a new starting point for measuring time. With this new starting
point, what was originally time t becomes t′ = t − t0. Thus, in the new time
scale, we do start at the moment t′ = t0 − t0 = 0.

Limited time. At any moment, we only have observations corresponding
to finitely many trajectories – i.e., finitely many processes whose dynamics is
described by the given system of differential equations.

For each trajectory, at any given moment of time, we have only finitely many
observations. Thus, we have only finitely many moments of time at which one
of these processes was observed – and we also have finitely many moments of
time at which we want to predict these values.

Let T denote the largest of all these moments of time. In these terms,
when comparing the chemical system with the original dynamical system, it is
sufficient to consider values t ∈ [0, T ].

Limited values of xi. In each of the finitely many observed processes, we
have some initial values xi(0). If we denote the largest of these values by X0,
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then we can conclude that all the initial conditions satisfy the inequalities

0 ≤ xi(0) ≤ X0, i = 1, . . . , n.

For each of these processes, each function xi(t) is differentiable – we have
an explicit expression for its derivative – and thus, it is a continuous function
of time t ∈ [0, T ]. Each continuous function on a closed interval is bounded;
thus, each of the components xi is bounded for each of the observed trajectories.
Let X denote the largest of these bounds. So, we are guaranteed that for all
moments of time t ∈ [0, T ], all the values xi(t) are bounded by X: xi(t) ≤ X.

Limited accuracy. Observations are never absolutely accurate, there is al-
ways some measurement uncertainty. Once we upper bound ε > 0 on the
corresponding inaccuracy, then:

• the results x′
i(t) of the chemical system are indistinguishable from the

results xi(t) of the original dynamical systems

• if for all moments t ∈ [0, T ], these results differ by no more than ε:

|x′
i(t)− xi(t)| ≤ ε.

Need to consider auxiliary chemical substances. In the above text, we
provided a somewhat simplified description of chemical kinetics. This simplified
description corresponds to the ideal case when the input substance are directly
transformed into the output ones. In reality, in most real-life chemical reactions,
there are intermediate stages in which some auxiliary chemical substances are
formed.

For example, when hydrogen and oxygen combine into water, we have inter-
mediate reactions like H2 → H+H or reactions of the type H2 +Cat → CatH2

for some catalyst Cat.
To adequately describe chemical kinetics, we thus need to consider not only

concentrations of the original substances, but also concentrations of these aux-
iliary substances as well. In other words, in order to describe how the concen-
trations of chemical substances change during chemical reactions, we need to
also consider auxiliary variables.

Since auxiliary variables are needed even for a correct description of chemical
dynamics, we will allow auxiliary variables in the general case as well.

Thus, we arrive at the following definition.

Definition 1. Let T > 0, X0 > 0, and X > 0 be positive real numbers,
and let n be a positive integer. By a (T,X0, X)-dynamical system (or simply
dynamical system, for short), we mean a tuple f = (f1, . . . , fn) consisting of
n continuously differentiable functions fi : [0, X]n → IR, i = 1, . . . , n with the
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following property: For all initial values x1(0), . . . , xn(0) ∈ [0, X0], the solution
x1(t), . . . , xn(t) of the corresponding system of differential equations

dxi

dt
= fi(t, x1(t), . . . , xn(t)), i = 1, . . . , n,

satisfies the inequality 0 ≤ xi(t) ≤ X for all t ∈ [0, T ] and for all i = 1, . . . , n.
The values xi(t) are called the solution to the dynamical system (corresponding
to the given initial conditions).

Comment. The requirement that the functions fi(x1, . . . , xn) are continuously
differentiable is introduced to make sure that the trajectory is uniquely deter-
mined by the initial conditions. If this requirement is not satisfied, we may have
non-uniqueness.

Let us give a simple example of this non-uniqueness: n = 1, and the function
f1(x1) is defined as follows:

• f1(x1) =
√
x1 when x1 ≥ 0, and

• f1(x1) = 0 when x1 ≤ 0.

In this case, both x1(t) = 0 and x′
1(t) =

1

2
· t2 are solutions of the equation

ẋ1 = f1(x1) with the same initial condition x1(0) = x′
1(0) = 0.

Let us now formally describe the notion of chemical equations. To the previous
description, we must add the need to avoid “ex nihil” (“from nothing”) reactions
of the type A → A + B, by requiring that a conservation law is satisfied: in
each reaction, the total atomic mass of the input should be equal to the total
atomic mass of the output.

Definition 2. Let S = {A1, . . . , AN} be a finite set. Its elements will be
called substances. Let m1 > 0, . . . ,mN > 0 be integers called atomic masses of
the corresponding substances.

• By a state of the system of substances, we mean a non-negative vector

x = (x1, . . . , xN ).

For each i from 1 to N , the i-th component xi of the state is called the
concentration of the substance Ai.

• By a reaction, we mean a triple r = ⟨kr, lr, ir⟩ consisting of two non-
negative integer vectors kr = (kr,1, . . . , kr,N ) and lr = (lr,1, . . . , lr,N ) and

a positive real number ir for which
N∑
i−1

kr,i ·mi =
N∑
i−1

lr,i ·mi. A reaction

will also be denoted as

kr,1A1 + . . .+ kr,NAN
ir→ lr,1A1 + . . .+ lr,NAN .
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• By a system of chemical reactions, we mean a finite set R of reactions.

• By a reaction speed vr corresponding to the reaction r and concentrations

x = (x1, . . . , xn), we mean a number vr(x) = ir ·
N∏
i=1

(xi)
kr,i .

• For each set R of reactions, once we fix N initial values

x1(0) ≥ 0, . . . , xN (0) ≥ 0,

we can then find the solution xi(t) to the system of differential equations

dxi

dt
=

∑
r∈R

(lr,i − kr,i) · vr(x)

with the given initial values x1(0), . . . , xN (0). For each real number t ≥ 0
and for each integer i = 1, . . . , N , the value xi(t) is called the solution to
the chemical system.

Comment. In the description of a chemical reaction, terms corresponding to
kr,i = 0 or to lr,j = 0 can be omitted. Also, the coefficients kr,i = 1 and lr,j = 1
can also be omitted.

For example, we will simply write 2H2+O2
ir→ 2H2O, while, strictly speaking,

Definition 2 requires us to write

2 H2 + 1 O2 + 0 H2O
ir→ 0 H2 + 0 O2 + 2 H2O.

Theorem. For all positive numbers T > 0, X0 > 0, and X > 0, and for
every (T,X0, X)-dynamical system f , there exists an integer N , a system R
of chemical reactions, and values xn+1(0), . . . , xN (0) such that for all initial
conditions x1(0), . . . , xn(0) ∈ [0, X0], the solution xi(t) of the dynamical system
f and the solution x′

i(t) of the chemical system are ε-close for all i ≤ n and for
all t ∈ [0, T ]:

|xi(t)− x′
i(t)| ≤ ε.

Comment. This result was first announced in [21].

3 Proof

1◦. We want to approximate trajectories of a dynamical system by the trajecto-
ries of a corresponding chemical system. Let us show that if we can approximate
the original functions fi(x1, . . . , xn) by sufficiently close functions f ′

i(x1, . . . , xn),
then the trajectories of the new system will be close to the trajectories of the
original system corresponding to the same initial conditions x′

i(0) = xi(0).

8



For this proof, we will assume that the functions fi and f ′
i differ by no more

that some small number α, i.e., that

|fi(x1, . . . , xn)− f ′
i(x1, . . . , xn)| ≤ α

for all possible values x = (x1, . . . , xn) from the given box [0, X]n.
We will then find the bound on the absolute value of the difference

∆xi(t)
def
= x′

i(t)− xi(t)

in terms of α. From this bound, it will be clear that, by choosing α to be
sufficiently small, we can make the bound on |∆xi(t)| also as small as possible.
In other words, we will prove what we intended to: that if the dynamical systems
fi and f ′

i are sufficiently close, then we can guarantee that their trajectories will
be close as well.

By definition of the trajectories, we have

ẋi = fi(x1, . . . , xn) and ẋ′
i = f ′

i(x
′
1, . . . , x

′
n).

Thus, for the difference ∆xi, we have

d

dt
(∆xi) = f ′

i(x
′
1, . . . , x

′
n)− fi(x1, . . . , xn).

To use the fact that the functions f ′ and f are close, we represent the right-hand
side as the sum of the two terms, one of which describes the difference between
f ′ and f :

d

dt
(∆xi) = (f ′

i(x
′
1, . . . , x

′
n)− fi(x

′
1, . . . , x

′
n)) + (fi(x

′
1, . . . , x

′
n)− fi(x1, . . . , xn)).

The absolute value of the first term is bounded by α. To estimate the value
of the second term – in which all n variables change – we will represent it, in
turn, as the sum of several terms corresponding to a change in a single variable.
First, we change x1, then we change x2, etc.:

fi(x
′
1, . . . , x

′
n)− fi(x1, . . . , xn) =

(fi(x
′
1, x2 . . . , xn)− fi(x1, . . . , xn))+

(fi(x
′
1, x

′
2, x3, . . . , x

′
n)− fi(x

′
1, x2, x3, . . . , xn))+

. . .+

(fi(x
′
1, . . . , x

′
n−1, xn)− fi(x

′
1, . . . , x

′
n−1, x

′
n)).

To estimate each of these differences, we can use the fact that all the functions
fi(x1, . . . , xn) are continuously differentiable, i.e., that each partial derivative
(exists and) is continuous. Every continuous function on a bounded closed box is
bounded. LetM denote the largest of the maxima of all these partial derivatives.

Then, for all points x in this box and for all i and j, we have

∣∣∣∣ ∂fi∂xj

∣∣∣∣ ≤ M .
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For a function of one variable whose derivative is bounded by some number
M , from

f(x′)− f(x) =

∫ x′

x

df

dx
dx,

we conclude that

|f(x′)− f(x)| =

∣∣∣∣∣
∫ x′

x

df

dx
dx

∣∣∣∣∣ ≤ M · |x′ − x|.

In the general case of a function of several variables, we can apply this argument
to the dependence on x1 and conclude that

|fi(x′
1, x2, . . . , xn)− fi(x1, x2, . . . , xn)| ≤ M · |∆x1|.

By similarly considering a change in x2, we conclude that

|fi(x′
1, x

′
2, . . . , xn)− fi(x

′
1, x2, . . . , xn)| ≤ M · |∆x2|,

and so on until we reach the last variable:

|fi(x′
1, . . . , x

′
n−1, xn)− fi(x

′
1, . . . , x

′
n−1, x

′
n)| ≤ M · |∆xn|.

From the above equality

fi(x
′
1, . . . , x

′
n)− fi(x1, . . . , xn) =

(fi(x
′
1, x2 . . . , xn)− fi(x1, . . . , xn))+

(fi(x
′
1, x

′
2, x3, . . . , x

′
n)− fi(x

′
1, x2, x3, . . . , xn))+

. . .+

(fi(x
′
1, . . . , x

′
n−1, xn)− fi(x

′
1, . . . , x

′
n−1, x

′
n)),

we can now conclude that

|fi(x′
1, . . . , x

′
n)− fi(x1, . . . , xn)| ≤

|fi(x′
1, x2 . . . , xn)− fi(x1, . . . , xn)|+

|fi(x′
1, x

′
2, x3, . . . , x

′
n)− fi(x

′
1, x2, x3, . . . , xn)|+

. . .+

|fi(x′
1, . . . , x

′
n−1, xn)− fi(x

′
1, . . . , x

′
n−1, x

′
n)|.

We already know bounds for each terms in the right-hand side, so we conclude
that

|fi(x′
1, . . . , x

′
n)− fi(x1, . . . , xn)| ≤ M · |∆x1|+M · |∆x1|+ . . .+M · |∆xn|,
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i.e.,

|fi(x′
1, . . . , x

′
n)− fi(x1, . . . , xn)| ≤ M ·

n∑
i=1

|∆xi|.

For every i, from the above formula

d

dt
(∆xi) = (f ′

i(x
′
1, . . . , x

′
n)− fi(x

′
1, . . . , x

′
n)) + (fi(x

′
1, . . . , x

′
n)− fi(x1, . . . , xn)),

we conclude that∣∣∣∣ ddt (∆xi)

∣∣∣∣ ≤ |f ′
i(x

′
1, . . . , x

′
n)− fi(x

′
1, . . . , x

′
n)|+ |fi(x′

1, . . . , x
′
n)− fi(x1, . . . , xn)|.

We know that the first term is bounded by α and the second by M ·∆, where

we denoted ∆
def
=

n∑
i=1

|∆xi|. Thus, we have

∣∣∣∣ ddt (∆xi)

∣∣∣∣ ≤ α+M ·∆.

Based on these inequalities, we want to deduce an inequality in terms of

∆ =
n∑

i=1

|∆xi| and its derivative. By the chain rule,

d

dt
(|∆xi|) = sign(∆xi) ·

d

dt
(∆xi),

where sign(z) =
d

dz
(|z|) is equal to 1 for z ≥ 0 and to −1 for z ≤ 0. Since the

absolute value of sign(z) is always equal to 1, we get∣∣∣∣ ddt (|∆xi|)
∣∣∣∣ = ∣∣∣∣ ddt (∆xi)

∣∣∣∣ ,
hence ∣∣∣∣ ddt (|∆xi|)

∣∣∣∣ ≤ α+M ·
n∑

i=1

|∆xi|.

By definition of ∆ =
n∑

i=1

|∆xi|, we have

d

dt
(∆) =

n∑
i=1

d

dt
(|∆xi|).

We have already shown that each term in the sum is bounded by α+M ·∆, so
we conclude that

∆̇ =
d

dt
(∆) ≤ n · α+ n ·M ·∆.
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Therefore, to estimate the difference ∆, we must make conclusions based on this
differential inequality.

The process of finding solutions of an inequality usually starts with solving
the corresponding equality

d∆

dt
= n · α+ n ·M ·∆.

To simplify this expression, we can move all the terms containing ∆ to the left-
hand side – by dividing both sides by the original right-hand side n ·α+n ·M ·∆.
As a result, we get

1

dt
· d∆

n · α+ n ·M ·∆
= 1.

This expression can be simplified if we take into account that for the denomi-
nator

∆̃
def
= n · α+ n ·M ·∆,

we have d∆̃ = n ·M · d∆. Thus, multiplying both sides of the above inequality
by n ·M , we get

1

dt
· d∆̃
∆̃

= n ·M.

The left-hand side is equal to the derivative
d

dt
(ln(∆̃)) of the logarithm of

∆̃. The derivative is constant, so the logarithm is a linear function of time:
ln(∆̃(t)) = C + n ·M · t for some constant C.

To find the integration constant, let is consider the initial moment of time
t = 0. For t = 0, we have ∆̃(0) = n · α+ n ·M ·∆(0). Here,

∆(0) =
n∑

i=1

|∆xi(0)| =
n∑

i=1

|x′
i(0)− xi(0)|.

Since we start with the same initial conditions, we have |x′
i(0)− xi(0)| = 0 and

thus, ∆(0) = 0 and ∆̃(0) = n · α. Hence, ln(∆̃(0)) = C = ln(n · α) and thus,

ln(∆̃(t)) = ln(n · α) + n ·M · t. Therefore,

∆̃(t) = exp(ln(∆̃(t)) = n · α · exp(n ·M · t).

So, for ∆(t) =
∆̃(t)− n · α

n ·M
, we get

∆(t) =
n · α · (exp(n ·M · t)− 1)

n ·M
=

α

M
· (exp(n ·M · t)− 1).

Similarly, from the above inequality
d

dt
(∆) ≤ n · α + n · M · ∆ = ∆̃, we

conclude that
d∆̃

dt
= n ·M · d∆

dt
≤ n ·M · ∆̃,

12



hence for
d(ln(∆̃))

dt
=

1

dt
· d∆̃
∆̃

,

we get

d(ln(∆̃))

dt
≤ n ·M.

Thus,

ln(∆̃(t)) = ln(∆̃(0)) +

∫ t

0

d(ln(∆̃)

dt
dt ≤

ln(∆̃(0)) + n ·M · t = ln(n · α) + n ·M · t.

Therefore,
∆̃(t) = exp(ln(∆̃(t)) ≤ n · α · exp(n ·M · t).

Thus, for ∆(t) =
∆̃(t)− n · α

n ·M
, we get

∆(t) ≤ n · α · (exp(n ·M · t)− 1)

n ·M
=

α

M
· (exp(n ·M · t)− 1).

The right-hand side of this inequality is an increasing function of time t, so its
largest value is attained for the largest possible value t = T , thence

∆(t) ≤ α

M
· (exp(n ·M · T )− 1).

Since ∆(t) =
n∑

i=1

|∆xi(t)| =
n∑

i=1

|x′
i(t) − xi(t)|, this implies that for every t and

for every i, we have

|x′
i(t)− xi(t)| ≤

α

M
· (exp(n ·M · T )− 1).

So, for any ε > 0, if we want to make sure that |x′
i(t) − xi(t)| ≤ ε for all i

and t, it is sufficient to choose α for which
α

M
· (exp(n ·M · T )− 1) ≤ ε, i.e., to

choose

α =
M

exp(n ·M · T )− 1
· ε.

The statement is proven.

2◦. We want to prove that an arbitrary dynamical system can be approximated
by an appropriate chemical system. Our proof of this approximation result
consists of two stages:

• first, we will prove this result for a certain class of dynamical systems, a
class selected because for systems from this class, the desired approxima-
tion is easier to construct;

13



• after that, we will prove that an arbitrary dynamical system can be ap-
proximated by a system of this simpler type, and how the chemical ap-
proximation of this simpler system can be modified into a chemical ap-
proximation to the original dynamical system.

3◦. The definition of a special class of dynamical systems – with which we start
the approximation result – is based on the fact that for every i, and for all points

x = (x1, . . . , xn) for which xi > 0, the ratio gi(x1, . . . , xn)
def
=

fi(x1, . . . , xn)

xi
is

continuous – as a ratio of two continuous functions.
As a special class, we will consider all dynamical systems for which each of

these functions gi(x1, . . . , xn) can be continuosly extended to the values xi = 0.
In this case, fi(x1, . . . , xn) = xi · gi(x1, . . . , xn) for some continuous function
gi(x1, . . . , xn).

In this case, to construct the desired α-approximation f ′
i(x1, . . . , xn) to the

given function fi(x1, . . . , xn), it is sufficient to find, for an appropriate small
β > 0, a β-approximation g′i(x1, . . . , xn) to the ratio gi(x1, . . . , xn); then, for
f ′
i(x1, . . . , xn) = xi · g′i(x1, . . . , xn), the inequality

|g′i(x1, . . . , xn)− gi(x1, . . . , xn)| ≤ β

implies that

|f ′
i(x1, . . . , xn)− fi(x1, . . . , xn)| = xi · |g′i(x1, . . . , xn)− gi(x1, . . . , xn)| ≤ X · β.

Thus, it is sufficient to take β for which X · β ≤ α: e.g., to take β =
α

X
.

4◦. It is known that an arbitrary continuous function on a box can be approxi-
mated, with any given accuracy, by a polynomial.

We will use this result and approximate the original ratio gi(x1, . . . , xn) by
a polynomial g′i(x1, . . . , xn). A polynomial is, in general, a linear combination
of monomials:

g′i(x1, . . . , xn) =
∑
m

am · Pm(x1, . . . , xn),

where each am is a constant, and

Pm(x1, . . . , xn) = x
dm,1

1 · . . . · xdm,n
n ,

with dm,j ≥ 0. In this case,

f ′
i(x1, . . . , xn) = xi · g′i(x1, . . . , xn) =

∑
m

am · (xi · Pm(x1, . . . , xn)),

where each term xi · Pm(x1, . . . , xn) has the form

xi · Pm(x1, . . . , xn) = x
dm,1

1 · . . . · xdm,i−1

i−1 · xdm,i+1
i · xdm,i+1

i+1 · . . . · xdm,n
n .
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5◦. For each monomial Pm(x1, . . . , xn), we will find a reaction r for which its
intensity vr is close to the corresponding term am · xi · Pm(x1, . . . , xn).

To form these reaction, to each variable xi we assign a substance Ai whose
concentration will be described by xi. In addition to the resulting n substances,
we will use an auxiliary “universal” substance U – a substance that can be,
in principle, transformed into any other substance. The concentration of the
universal substance U will be denoted by u.

We assume that all n + 1 substances A1, . . . , An, U have the same atomic
weight m1 = . . . = mn = mU .

A specific rule corresponding to the monomial Pm(x1, . . . , xn) will be differ-
ent depending on the whether the coefficient am is positive or negative.

6◦. For monomials for which am > 0, we take the reaction

U + dm,1A1 + . . .+ dm,i−1Ai−1 + (dm,i + 1)Ai + dm,i+1Ai+1 + . . .+ dm,nAn →

dm,1A1 + . . .+ dm,i−1Ai−1 + (dm,i + 2)Ai + dm,i+1Ai+1 + . . .+ dm,nAn.

In this reaction, for all the substances except for the i-th substance Ai and the
auxiliary universal substance U , the number of molecules entering the reaction
is the same as the number of molecules leaving this reaction. The only difference
is that a molecule of the universal substance is transformed into a molecule of
Ai. In this transformation, all the other substances play the role of catalysts –
in the sense that

• while the presence of these other substances is necessary for the reaction
to occur, and

• while the speed of this reaction depends on the concentrations of these
other substances,

• in the long run, each of this other substances is neither consumed nor
produced – in this reaction their concentration does not change.

A precise description of the corresponding terms in chemical equations con-
firms this qualitative analysis. Indeed, according to the general formula for the
chemical equations (as given in Definition 2), the speed vr of this reaction is
equal to

vr = ir · u · xdm,1

1 · . . . · xdm,i−1

i−1 · xdm,i+1
i · xdm,i+1

i+1 · . . . · xdm,n
n ,

where ir denotes the intensity of this reaction and u denotes the concentration
of the universal substance U . In terms of the monomial Pm(x1, . . . , xn), this
formula takes the form

vr = ir · u · xi · Pm(x1, . . . , xn).

According to the same Definition 2, as a result of this reaction, there is

no contribution to differential equations describing
dxj

dt
for j ̸= i. The only
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contributions are to the terms
dxi

dt
and

du

dt
: namely, we get the terms

dxi

dt
= . . .+ ir · u · xi · Pm(x1, . . . , xn) + . . . ,

du

dt
= . . .− ir · u · xi · Pm(x1, . . . , xn) + . . .

When ir ·u = am, the term corresponding to
dxi

dt
is exactly the desired term

am · xi · Pm(x1, . . . , xn). However, this does not mean that we have solved our
problem; indeed:

• we can select the initial concentration u(0) of the universal quantity U to
satisfy the equality ir · u(0) = am;

• however, due to the differential equation describing u, the amount u de-
creases with time, so at the next moments of time, this amount will be
smaller, and the equality ir · u(t) = am will no longer be satisfied.

Let us show that by selecting u(0) to be large enough – and by correspond-

ingly selecting ir =
am
u(0)

– we will be able to guarantee that the approximate

equality ir · u(t) ≈ am holds for all moments t ∈ [0, T ] with a given accuracy.

Indeed, for ir =
am
u(0)

, the product ir · u(t) takes the form
u(0)

u(t)
· am. Thus,

if we find u(0) for which the ratio
u(0)

u(t)
is close to 1 for all t, we get the desired

approximate equality ir · u(t) ≈ am for all moments t ∈ [0, T ].

In the ideal case when ir · u ≈ am, the corresponding term in
du

dt
takes the

form
du

dt
= . . .− am · xi · Pm(x1, . . . , xn) + . . .

Equations corresponding to different monomials lead to other such terms (and
other terms comes from monomials with am < 0, see the following part of the
proof). Good news for us is that these terms do not depend on the selected
value u(0), so we have

du

dt
= d(t),

for some function d(t) which does not depend on u(0). Thus,

u(t) = u(0) +D(t),

where we denoted

D(t)
def
=

∫ t

0

d(s) ds.

The function D(t) is a (differentiable hence) continuous function of t, so its
absolute value |D(t)| has the largest possible value D. Thus, for all t, we have
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|u(0) − u(t)| ≤ D, hence u(0) − D ≤ u(t) ≤ u(0) + D. Thus, the ratio
u(0)

u(t)
satisfies the inequality

u(0)

u(0) +D
≤ u(0)

u(t)
≤ u(0)

u(0) +D
,

or, equivalently,
1

1 +
D

u(0)

≤ u(0)

u(t)
≤ 1

1− D

u(0)

.

When u(0) increases, both the left-hand side and the right-hand side terms in
this inequality tend to 1. So, whatever accuracy we want in approximating
the original monomial term by the corresponding chemical term, we can indeed
guarantee it by selecting an approximately large value u(0).

7◦. For monomials for which am < 0, we take the reaction

dm,1A1 + . . .+ dm,i−1Ai−1 + (dm,i + 1)Ai + dm,i+1Ai+1 + . . .+ dm,nAn →

U + dm,1A1 + . . .+ dm,i−1Ai−1 + dm,iAi + dm,i+1Ai+1 + . . .+ dm,nAn.

In this reaction, for all the substances except for the i-th substance Ai and the
auxiliary universal substance U , the number of molecules entering the reaction
is the same as the number of molecules leaving this reaction. The only difference
is that a molecule of the i-th substance Ai is transformed into a molecule of the
universal substance U . In this transformation, all the other substances play the
role of catalysts – in the sense that

• while the presence of these other substances is necessary for the reaction
to occur, and

• while the speed of this reaction depends on the concentrations of these
other substances,

• in the long run, each of this other substances is neither consumed nor
produced – in this reaction their concentration does not change.

A precise description of the corresponding terms in chemical equations also
confirms this qualitative analysis. Indeed, according to the general formula for
the chemical equations (as given in Definition 2), the speed vr of this reaction
is equal to

vr = ir · x
dm,1

1 · . . . · xdm,i−1

i−1 · xdm,i+1
i · xdm,i+1

i+1 · . . . · xdm,n
n ,

where ir denotes the intensity of this reaction. In terms of the monomial
Pm(x1, . . . , xn), this formula takes the form

vr = ir · xi · Pm(x1, . . . , xn).
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According to the same Definition 2, as a result of this reaction, there is

no contribution to differential equations describing
dxj

dt
for j ̸= i. The only

contributions are to the terms
dxi

dt
and

du

dt
: namely, we get the terms

dxi

dt
= . . .− ir · xi · Pm(x1, . . . , xn) + . . . ,

du

dt
= . . .+ ir · xi · Pm(x1, . . . , xn) + . . .

When ir = |am|, the term corresponding to
dxi

dt
is exactly the desired term

am · xi · Pm(x1, . . . , xn). The corresponding term for
du

dt
takes the form

du

dt
= . . .+ |am| · xi · Pm(x1, . . . , xn) + . . .

8◦. Thus, the desired approximation result is proven for the case when each

ratio gi(x1, . . . , xn) =
fi(x1, . . . , xn)

xi
can be continuously extended to values

x = (x1, . . . , xn) for which xi = 0.

9◦. Let us now show how a general dynamical system can be reduced to this
special case. The main idea of this reduction is to avoid the zone xi ≈ 0 where
the above ratio condition is not satisfied. For this purpose, we will add, to each
substance, a small amount δ > 0, and perform all the dynamics after that as
before; the dynamics for the zone xi < δ – which does not affect our processes,
except for the short first period of time when the concentrations are increases
– will then be defined in such a way that the above condition about the ratio
gi(x1, . . . , xn) is satisfied.

To implement this idea, we will introduce new functions f̃i(x1, . . . , xn) which
for xi ≥ δ have the form

f̃i(x1, . . . , xn) = fi(x1 − δ, . . . , xn − δ).

The meaning of this definition is that, in describing the changes in all the
variables xi, we do not take into account the extra amount δ that we added
to the concentrations xi. Thus, trajectories of the new system have the form
x̃i(t) = δ + xi(t), where xi(t) is a trajectory of the original dynamical system.
When δ is small, these trajectories are close.

For values xi < δ, the above formula does not work, since the original
function fi(x1, . . . , xn) is only defined for xi ≥ 0. Thus, we need to extend
the above expression to cover such values. We want to make sure that there

is a limit of the ratio g̃i(x1, . . . , xn) =
f̃i(x1, . . . , xn)

xi
when xi → 0. When
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such a limit exists, then f̃i(x1, . . . , xn) = xi · g̃i(x1, . . . , xn) for some continuous
function g̃i(x1, . . . , xn); in this case, for xi = 0, we have

f̃i(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0.

Vice versa, if f̃i(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0, then the limit of the desired
ratio takes the following form:

lim
xi→0

f̃i(x1, . . . , xi−1, xi, xi+1, . . . , xn)

xi
=

lim
xi→0

f̃i(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f̃i(x1, . . . , xi−1, 0, xi+1, . . . , xn)

xi
.

One can easily check that this exactly the definition of the partial derivative

∂f̃i
∂xi

at the point where xi = 0. So, when we extend the above expression

f̃i(x1, . . . , xi−1, xi, xi+1, . . . , xn) to a continuously differentiable function that is
defined for all xi ≥ 0, all we need to do to satisfy the above limit condition is
to make sure that

f̃i(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0.

for all i. For each i, we thus extend the original smooth functions f̃i(x1, . . . , xn)

defined for xi ≥ δ to the zone xi ≥ 0 in such a way that f̃i(x1, . . . , xn) = 0 for
xi = 0. The existence of such extension is well known in mathematical analysis.

To move the behavior into the zone xi ≥ δ, we add – very fast – the amount
δ to the concentrations of each of n substances A1, . . . , An. This can be done,
e.g., if we introduce n new auxiliary substances U1, . . . , Un each of which has
the initial concentration ui(0) = δ, and add n very fast reactions Ui → Ai for
each i from 1 to n. As a result of these reactions, each substance Ai indeed
acquires an additional concentration δ. When the time is short enough, this
transition does not affect the remaining dynamics, so the new trajectories xi(t)
will be close to the original ones.

10◦. The reduction of a generic dynamical system to a dynamical system of a
special type is explained. Since we have already proven that dynamical systems
of the special type can be approximated by chemical systems, we can thus also
approximate a generic dynamical system by a chemical system. The theorem is
proven.
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