A Simple Physics-Motivated Equivalent
Reformulation of P=NP that Makes This

Equality (Slighty) More Plausible

Jaime Nava and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
jenava@miners.utep.edu, vladik@utep.edu

Abstract

In our opinion, one of the reasons why the problem PLNP is so difficult
is that while there are good intuitive arguments in favor of P#NP, there is
a lack of intuitive arguments in favor of P=NP. In this paper, we provide
such an argument — based on the fact that in physics, many dependencies
are scale-invariant, their expression does not change if we simply change
the unit in which we measure the corresponding input quantity (e.g., re-
place meters by centimeters). It is reasonable to imagine similar behavior
for time complexity t4(n) of algorithms A: that the form of this depen-
dence does not change if we change change the unit in which we measure
the input length (e.g., from bits to bytes). One can then easily prove that
the existence of such scale-invariant algorithms for solving, e.g., proposi-
tional satisfiability is equivalent to P=NP. This equivalent reformulation
of the formula P=NP is, in our opinion, much more intuitively reasonable
than the original formula — at least to those who are familiar with the
importance of scale-invariance in physics.

Need for a better intuitive understanding of the P=NP option. In
history of mathematics, solutions to many long-standing problems came when
the consequences of the corresponding statements being true or false became
clearer. For example, mathematicians have tried, for many centuries, to deduce
the V-th Postulate — that for every point P outside a line ¢, there is no more than
one line ¢’ going through P and parallel to £ — from other postulates of geometry.
The independence proof appeared only after the results of Gauss, Bolyai, and
Lobachevsky made geometry without this postulate more intuitively clear; see,
e.g., [2].

For this viewpoint, maybe one of the difficulties in solving the PLNP prob-



lem is that while there are good intuitive arguments in favor of P#£NP, there is
a definite lack of intuitively convincing arguments in favor of P=NP.

Example of intuitive arguments in favor of P#NP. Example of argu-
ments in favor of P#NP are numerous, many of them boil down to the following:
if P=NP, we will have feasible algorithms for solving classes of problems which
are now considered highly creative — and for which, therefore, such algorithms
are intuitively unlikely.

One example of a highly creative activity area is mathematics, where one
of main objectives is, given a statement S, to prove either this statement or its
negation —. We are usually interested in proofs which can be checked by human
researchers, and are, thus, of reasonable size. In the usual formal systems of
mathematics, the correctness of a formal proof can be checked in polynomial
time. So, the problem of finding a reasonable-size proof of a given statement
S (or of its negation) belongs to the class NP. If P was equal to NP, then we
would be able to have a polynomial-time algorithm for proving theorems — a
conclusion which most mathematicians consider unlikely.

Similarly, in theoretical physics, one of the main challenged is to find formu-
las that describe the observed data. The size of such a formula cannot exceed
the amount of data, so the size is feasible. Once a formula is proposed, checking
whether all the data is consistent with this formula is easy; thus, the problem
of searching for such a formula is in the class NP. So, if P was equal to NP, we
would have a feasible algorithm for the activity which is now considered one of
the most creative ones — judged, e.g., by the fact that Nobel Prizes in Physics
get a lot of publicity and bring a lot of prestige.

What we do in this paper. In this paper, we propose a physics-motivated
argument in favor P=NP.

Physical motivations: the idea of scale invariance. The value of a phys-
ical quantity can be measured by using different units. For example, length
can be measured in meters, in centimeters, in inches, etc. When we replace
the original unit by a new unit which is A times larger, all numerical values x
change, from z to 2’ = ; so that x = X\ - 2’; this transformation is known as
re-scaling.

For many physical processes, there is no preferred value of a physical quan-
tity; see, e.g., [3]. For such processes, it is reasonable to require that the cor-
responding dependence have the same form no matter what measuring unit we
use. For example, the dependence of the pendulum’s period T" on its length L

[L
has the form T = f(L) = 2w - /= = ¢- /L for an appropriate constant c. If
g

we change the unit of length, so that L = X - L/, we get a similar dependence
T=fAL)=c VXL =c-v/A-V/L'. If we now accordingly re-scale time, to
new units which are v/ times larger, then we get the exact same dependence



in the new units 77 = ¢- v/L'. Since we get the same formula for all measuring
unit, physicists say that the pendulum formula is scale-invariant.

In general, a dependence y = f(x) is called scale-invariant if each re-scaling of
x can be compensated by an appropriate re-scaling of y, i.e., if for every A, there
is a value C'(A) for which f(A-x) = C(X) - f(x) for all x and \. For continuous
functions, this functional equation leads to the power law f(z) = ¢ - z%; see,
e.g., [1].

Scale-invariance is ubiquitous in physics: e.g., it helps explain most funda-
mental equations of physics, such as Einstein’s equations of General Relativity,
Schrédinger’e equations of quantum mechanics, Maxwell’s equations, etc. [4].
It is also useful in explaining many semi-empirical computer-related formulas;
see, e.g., [?].

Maybe some algorithms are scale-invariant. One of the main concepts
underlying P and NP is the concept of computational complexity t4(n) of an
algorithm A, which is defined as the largest running time of this algorithm on all
inputs of length < n. Similar to physics, in principle, we can use different units
to measure the input length: we can use bits, bytes, Kilobytes, Megabytes, etc.
It is therefore reasonable to conjecture that for some algorithms, the dependence
ta(n) is scale-invariant — i.e., that its form does not change if we simply change
a unit for measuring input length.

It should be mentioned that for discrete variables n, scale-invariance cannot
be defined in exactly the same way, since the fractional length n/A does not
always make sense. Thus, we require scale-invariance only asymptotically, when
n — 00.

Definition.

o We say that functions f(n) and g(n) are asymptotically equivalent (and
denote it by f(n) ~g(n)) if f(n)/g(n) = 1 when n — co.

o We say that a function f(n) from natural numbers to natural numbers is
asymptotically scale-invariant if for every integer k, there exists an integer

C(k) for which f(k-n) ~ C(k)- f(n).

o We say that an algorithm A is scale-invariant if its computational com-
plezity function t4(n) is scale-invariant.

Now, we are ready to present the promised equivalent reformulation of P=NP,
a reformulation that — in view of the ubiquity of scale invariance in physics —
provides some intuitive argument in favor of this equality.

Proposition. P=NP if and only if there exists a scale-invariant algorithm for
solving propositional satisfiability SAT.



Proof. If P=NP, then there exists a polynomial-time algorithm A for solving
SAT, i.e., an algorithm for which t4(n) < C - n® for some C' and a. We can
modify this algorithm as follows: first, we run A, then wait until the moment
C - n®. Thus modified algorithm A’ also solves SAT, and its running time
tar(n) = C - n® is clearly scale-invariant.

Vice versa, let us assume that A is scale-invariant algorithm for solving SAT.
tA(2’/l)
C(2)-ta(n)
to 1 as n — oco. By definition of the limit, that there exists an IV such that for
Cm <2, ie.,t4(2n) <2:C(2)-ta(n). By induction,
for values n = 2% . N, we can now prove that t4(2% - N) < (2- C(2))* - ta(N).

For every n > N, the smallest k for which 2¥ - N # n can be found as
k = [logs(n/N)] < logy(n/N) + 1. By definition, the function t4(n) is non-
decreasing, hence t4(n) < t4(2¥- N) and thus, ta(n) < (2-C(2))¥-ta(N). Due
to the above inequality for k, we get

ta(n) < (2-C(2))8=0N 14 (N) = (2. C(2))%"/N) . 2.C(2) - f(N).

For k = 2, this means that for some number C(2), the ratio tends

allm > N, we have

Here,

log, (n/N)

(2. C(2))ler/N) = (210g2(2.0(2))) — 9l0g,(2:C(2))-logy (n/N) _

log, (2:C(2)) n\o
log, (n/N) (=
(20s) (v)
where a ' log,(2 - C(2)), so ta(n) < (%) -2.0(2) - f(N). Thus, the SAT-
solving algorithm A is indeed polynomial time, and hence, P=NP. The propo-
sition is proven.

Acknowledgments. This work was supported in part by the National Science
Foundation grants HRD-0734825 and DUE-0926721, by Grant 1 T36 GM078000-
01 from the National Institutes of Health. The authors are thankful to Yuri
Gurevich for inspiring discussions.

References

[1] J. Aczel, Lectures on Functional Differential Equations and their Applica-
tions, Dover, New York, 2006.

[2] R. Bonola, Non-Euclidean Geometry, Dover, New York, 2010.

[3] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on
Physics, Addison Wesley, Boston, Massachusetts, 2005.

[4] A. M. Finkelstein, V. Kreinovich, and R. R. Zapatrin, “Fundamental physi-
cal equations are uniquely determined by their symmetry groups”, Springer
Lecture Notes on Mathematics, 1986, Vol. 1214, pp. 159-170.



[6] H. T. Nguyen and V. Kreinovich, Applications of Continuous Mathematics
to Computer Science, Kluwer, Dirdrecht, 2005.



