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Abstract

Many heuristic and semi-heuristic methods have been proposed to pre-
dict economic and financial processes. Some of these heuristic processes
are intuitively reasonable, some seemingly contradict to our intuition. The
success of these heuristics leads to a reasonable conjecture that these
heuristic methods must have a more fundamental justification. In this
paper, we provide such a justification for two simple (and successful) pre-
diction heuristics: of an intuitive exponential smoothing that provides a
reasonable prediction for slowly changing processes, and of a seemingly
counter-intuitive idea of an increase in volatility as a predictor of trend
reversal. As a possible application of these ideas, we consider a new ex-
planation of the price transmission phenomenon.
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1 Introduction

Prediction is important. Prediction (forecasting) is of upmost importance
in economics and finance. If we can accurately predict the future prices, then
we can get the largest return on investment – whether we invest in stocks or in
industry. Vice versa, if we make decisions based on the wrong predictions, then
our financial investments collapse, and the manufacturing plants that we built
are non-profitable and thus idle.

There exist many heuristic prediction techniques. Because the predic-
tion problem is so important, many heuristic and semi-heuristic methods have
been proposed to predict economic and financial processes. Many proposed
heuristic methods turn out to be very successful.

Some of these methods are semi-heuristic in the sense that some of their
features have known explanations. Often, many of these features are intuitively
reasonable. Other methods are purely heuristic – in the sense that they are
justified solely by their empirical success. Some of these empirically efficient
methods are very difficult to explain and understand, because their success
seems to contradict our intuitive understanding of economical and financial
phenomena.

Need to justify heuristic strategies. The success of prediction heuristics
leads to a reasonable conjecture that these heuristic methods must have a more
fundamental justification. In general, when we have a theoretical justification,
it helps:

• we can use the corresponding theory to fine-tune the method,

• we can also use this theory to get a clearer understanding in what situa-
tions the method is efficient and in what situations it is not efficient.

What we do. In this paper, we provide such a justification for two simple
(and successful) prediction heuristics:

• of an intuitive exponential smoothing procedure, that provides a reason-
able prediction for slowly changing processes, and

• of a seemingly counter-intuitive idea of an increase in volatility as a pre-
dictor of trend reversal.

As a possible application of these ideas, we consider a new simple explanation
of the known phenomenon of asymmetric price transmission – when:

• an increase in raw component prices leads to an immediate increase in
consumer prices, but

• a following decrease in raw component prices leads to a much slower de-
crease in consumer prices.
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2 First Result: Exponential Smoothing is the
Only Predictor for Which the Effect of Noise
Always Decreases with Time

Prediction: case of slowly changing processes. In many economic and
financial situations, we have a sequence of observations of a certain quantity
x at different moments of time. Based on these observations, we would like
to predict the future value of this quantity. Let x1 be the result of the most
current observation, x2 the result of the second recent observation, etc. Based
on these values x1, . . . , xT , we would like to compute the estimate X0 for the
future value x0 of the observed quantity; see, e.g., [2, 6].

To describe such an estimate, we need to describe a function F (x1, . . . , xT )
that takes, as input, the values xt and returns the desired estimate X0. What
are the reasonable properties of this prediction function?

Continuity. The first property is related to the fact that in many cases, the
values xt are only approximate. For example, if we are interested in predicting
GDP or unemployment rate, we have to take into account that the existing
methods of measuring these characteristics are approximate. Thus, the ac-
tual values xact

t of the corresponding variables are, in general, slightly different
from the observed values xt. It is therefore desirable that the actual result
F (x1, . . . , xT ) of applying the function F to these slightly modified values xt be
only slightly different from the desired result F (xact

1 , . . . , xact
T ) of applying F to

the (unknown) actual values xact
t .

In other words, if the inputs to the function F change slightly, the output
should also change slightly. In precise terms, we want the function F to be
continuous.

Additivity. In many practical situations, we observe a joint effect of two

different signals xt = x
(1)
t +x

(2)
t . For example, the varying price of the financial

portfolio can be represented as a sum of the prices corresponding to different
parts of this portfolio: e.g., stocks and bonds. In this case, the desired future

value x0 also consists of two components: x0 = x
(1)
0 +x

(2)
0 . Thus, if we separately

predict the first component and predict the second component, then the sum of
these predicted values can serve as a predictor for the time series as a whole.

Because of this, it is reasonable to require that the result of applying our

predictor to the sum x
(1)
0 +x

(2)
0 of the two time series should be equal to the sum

of the predictions based on individual components x
(1)
0 and x

(2)
0 of this sum:

F (x
(1)
1 + x

(2)
1 , . . . , x(1)

n + x
(2)
T ) = F (x

(1)
1 , . . . , x

(1)
T ) + F (x

(2)
1 , . . . , x

(2)
T ).

In mathematical terms, this means that the predictor function should be addi-
tive.
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Conclusion: we must consider linear predictors. It is known (see,
e.g., [1]) that every continuous additive function is a homogeneous linear func-

tion, i.e., it has the form F (x1, . . . , xT ) =
T∑

t=1
ft · xt for some values ft. Thus,

we conclude that we must consider linear predictors.

How to naturally describe long time series. The actual number of ob-
served values is always finite. However, in many cases, we have very long time
series. For example, we have many decades of daily records of prices of a certain
stock. In this case, it is reasonable to assume that we have an infinite number

of records, and use the formula X0 =
∞∑
t=1

ft · xt. In real life, the influence of re-

mote events is small, so if we do not know only the values x1, . . . , xT , we simply
ignore the remaining (unknown) terms xT+1, . . . in the above formula, and use

an approximate formula X0 ≈
T∑

t=1
ft · xt.

Case of a constant signal. If the observed value xt does not change at
all, i.e., if for some constant c, we have xt = c for all t, then it is reasonable
to predict that the same value x0 = c will remain in the next moment of time.
Thus, it is reasonable to require that in this case, we have X0 = F (x1, . . . , xn) =

F (c, . . . , c) = c. For the above expression, this equality leads to
∞∑
t=1

ft · c =

c ·
∞∑
t=1

ft = c, i.e., to
∞∑
t=1

ft = 1.

Which predictors should we use? The prediction quality depends on the
choice of the predictor, i.e., on the choice of the coefficients ft that describe the
predictor function. The only requirement that we have described so far is that
∞∑
t=1

ft = 1. There are many possible predictor functions with this property.

Exponential smoothing: a brief reminder. Empirically, it was found that
an exponential smoothing predictor (also known as exponential moving average),
in which ft = α · (1 − α)t−1 for some α < 1, works very well. Exponential
smoothing, originally proposed in [3, 8], has become one of the main econometric
tools. It is described one of the basic methods described in textbooks (see, e.g.,
[7]), it is used in many serious econometric studies; see, e.g., [5] and references
therein.

When α < 1, exponential smoothing provides a weighted average of all
previous values of the quantity. When α > 1 and 1− α < 0, the above formula
leads to the estimate X0 = α · f1−α · (α− 1) · f2+ . . . which can be represented
as X0 = const · f1 + α · (α − 1) · (f1 − f2) + . . ., i.e., as attempt to add the
expected trend (approximately estimated as f1 − f2) to the last observed value.

4



Why exponential smoothing is empirically efficient: what is known.
There exist many explanations for the usefulness of exponential smoothing.
However, these explanations are usually based on complex, not very intuitively
clear statistical models; see, e.g., [9].

What we do in this section. In this section, we provide a new (and rather
simple) theoretical explanation for the empirical success of exponential smooth-
ing.

Monotonicity relative to the influence of noise. We have already con-
sidered the situation when the original signal xt is a constant: xt = c for all
moments of time t. In this case, we should have X0 = c.

The natural next case if when the actual signal is constant xact
t = c, but the

observed signal xt also contains noise: xt = xact
t + nt = c+ nt, for some values

nt. Let us consider one specific noise pattern, i.e., a specific sequence of noise
values p1, . . . , pk. This pattern may occur at the end of the observation period,
in which case we have xi = c+ pi for i = 1, . . . , k and xt = c for all other values
t. This pattern may have ended right before the m-th moment, in which case
xm+i = c+ pi for i = 1, . . . , k and xt = c for all other values t.

It is reasonable to require that the farther in the past is this noise pattern,
the smaller the the smaller the effect of this noise value on our estimate Y0, i.e.,
the smaller the absolute value |X0 − c| of the difference between the estimate
X0 and the no-noise estimate c. Thus, we arrive at the following definitions.

Definition 1.

• By a time series x, we mean an infinite sequence of real numbers
x1, . . . , xn, . . .

• By a predictor function f , we mean an infinite sequence of real numbers

f1, . . . , fn, . . . for which
∞∑
t=1

ft = 1.

• By the prediction X0(f, x) made by the predictor function ft for the time

series xt, we mean the value
∞∑
t=1

ft · xt.

• By a noise pattern p, we mean a finite sequence of real numbers p1, . . . , pk.

• Let c be a real number, and let m be a natural number. By x(p, c,m),
we mean a time series for which xm+i = pi for i = 1, . . . , k, and xt = c
for all other t. We say that this time series x(p, c,m) corresponds to a a
constant signal plus a noise pattern p before moment m.

• We say that for a predictor function ft, the effect of noise always decreases
with time if for every noise pattern p, for every real number c and for every
two natural numbers m > m′, we have

|X0(f, x(p, c,m))− c| ≤ |X0(f, x(p, c,m
′))− c|.
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Proposition 1.

• For every α ∈ (0, 2), for the predictor function ft = α · (1 − α)t−1, the
effect of noise always decreases with time.

• If for a predictor function f , the effect of noise always decreases with time,
then there exists a constant α ∈ (0, 2) for which ft = α · (1− α)t−1.

Comment. This result shows that exponential smoothing is the only predictor
for which the effect of noise always decreases with time. Thus, the need to
satisfy this natural property explains the efficiency of exponential smoothing.

Proof.

1◦. The above condition – that the effect of noise always decreases with time
– is formulated in terms of the differences X0(f, x(p, c,m)) − c. To simplify
the analysis of this condition, let us first find an explicit expression for this
difference.

Due to the definitions of X0(f, x) and of x(p, c,m), we have

X0(f, x(p, c,m)) =
∞∑
t=1

ft · xt =
k∑

i=1

fm+i · (c+ pi) +
∑

t̸=m+i

ft · c.

Here,
k∑

i=1

(c+ pi) =
k∑

i=1

fm+i · c+
k∑

i=1

fm+i · pi, so

X0(f, x(p, c,m)) =
k∑

i=1

fm+i · c+
k∑

i=1

fm+i · pi +
∑

t̸=m+i

ft · c.

By re-arranging this sum, we get

X0(f, x(p, c,m)) =
k∑

i=1

fm+i · c+
∑

t̸=m+i

ft · c+
k∑

i=1

fm+i · pi.

The first two sums in the right-hand side form the sum
∞∑
t=1

ft · c, so

X0(f, x(p, c,m)) =
∞∑
t=1

fm+i · c+
k∑

i=1

fm+i · pi.

In the sum
∞∑
t=1

ft · c, the value c is a constant factor, so it can moved outside the

sum. As a result, we get
∞∑
t=1

ft · c ·
∞∑
t=1

ft. By definition of a prediction function,
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∞∑
t=1

ft = 1, hence
∞∑
t=1

ft · c = c, and

X0(f, x(p, c,m)) = c+
k∑

i=1

fm+i · pi,

thus,

X0(f, x(p, c,m))− c =
k∑

i=1

fm+i · pi.

2◦. Let us now prove that for the predictor function ft = α · (1 − α)t−1, the
effect of noise always decreases with time.

Indeed, for this predictor function, we have

X0(f, x(p, c,m))− c =
k∑

i=1

fm+i · pi =
k∑

i=1

α · (1− α)m+i−1 · pi.

Here, (1− α)m+i = (1− α)m · (1− α)i−1 and thus,

X0(f, x(p, c,m))− c =
k∑

i=1

α · (1− α)m−1 · (1− α)i−1 · pi.

The term (1− α)m is a constant factor, so it can taken out of summation:

X0(f, x(p, c,m))− c = (1− α)m ·
k∑

i=1

α · (1− α)i−1 · pi.

For m′, we similarly have

X0(f, x(p, c,m
′))− c = (1− α)m

′
·

k∑
i=1

α · (1− α)i−1 · pi.

Thus, the ratio of these two difference has the form

X0(f, x(p, c,m))− c

X0(f, x(p, c,m′))− c
=

(1− α)m

(1− α)m′ = (1− α)m−m′
.

Thus, ∣∣∣∣ X0(f, x(p, c,m))− c

X0(f, x(p, c,m′))− c

∣∣∣∣ = |X0(f, x(p, c,m))− c|
|X0(f, x(p, c,m′))− c|

= |1− α|m−m′
.

Since α ∈ (0, 2), we have −1 < 1 − α < 1, i.e., |1 − α| < 1. Since m > m′,

we have |1 − α|m−m′
< 1, hence

|X0(f, x(p, c,m))− c|
|X0(f, x(p, c,m′))− c|

< 1, and thus indeed

|X0(f, x(p, c,m))− c| ≤ |X0(f, x(p, c,m
′))− c|. The statement is proven.
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3◦. To complete the proof, let us prove that if the effect of noise always decreases
with time, then the predictor function has the form ft = α · (1−α)t−1 for some
α ∈ (0, 2).

3.1◦. Let us first consider a one-value pattern p = (p1), with p1 = 1 and
m′ = m− 1. In this case,

X0(f, x(p, c,m))− c =
k∑

i=1

fm+i · pi = fm+1,

and similarly,

X0(f, x(p, c,m
′))− c = X0(f, x(p, c,m− 1))− c =

k∑
i=1

fm−1+i · pi = fm.

For this example, the requirement that the effect of noise decreases with time
means that

|fm+1| ≤ |fm|.

This means, in particular, that if fm = 0, then fm+1 = 0.

3.2◦. We can now conclude that f1 ̸= 0.

Indeed, if we had f1 = 0, then, due to Part 3.1 of this proof, we would have
f2 = 0, then f3 = 0, etc. – i.e., ft = 0 for all t, which contradicts to our condition

that
∞∑
t=1

ft = 1.

3.3◦. Let us now consider the case when f1 ̸= 0 and f2 = 0. In this case, due
to Part 3.1 of this proof, we conclude that f3 = . . . = 0, hence the condition
∞∑
t=1

ft = 1 implies that f1 = 1. This is a particular case of exponential smoothing

corresponding to α = 1.

3.4◦. To complete the proof, it is thus sufficient to consider the remaining case
f1 ̸= 0 and f2 ̸= 0.

3.5◦. To analyze this case, let us consider a general situation when we have
fm ̸= 0 and fm+1 ̸= 0 for some integer m. Let us consider a two-value pattern
p = (p1, p2), with p2 = 1 and m′ = m− 1. In this case,

X0(f, x(p, c,m))− c =
k∑

i=1

fm+i · pi = fm+1 · p1 + fm+2,

and

X0(f, x(p, c,m
′))−c = X0(f, x(p, c,m−1))−c =

k∑
i=1

fm−1+i ·pi = fm ·p1+fm+1.
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For this example, the requirement that the effect of noise decreases with time
means that

|fm+1 · p1 + fm+2| ≤ |fm · p1 + fm+1|.

For p1 = −fm+1

fm
, we have fm+1 = (−p1) · fm, hence fm · p1 + fm+1 = 0 and

thus, we must have fm+1 · p1 + fm+2 = 0 as well, i.e., fm+2 = (−p1) · fm+1.
From fm+1 ̸= 0, we conclude that

fm+1

fm
=

fm+2

fm+1
= −p1.

3.6◦. We start with the values x1 ̸= 0 and x2 ̸= 0. Then, by induction, from
using Part 3.5 of this proof, we get

f1
f2

=
f3
f2

= . . . =
fm+1

fm
= . . .

for all m. Thus, the values fm form an arithmetic progression. If we take α such
that 1−α = −p1 (i.e., α = 1+p1), then we conclude that ft = f1 ·(1−α)t−1. The

requirement that
∞∑
t=1

ft = 1 implies that this geometric progression converges,

i.e., that −1 < 1 − α < 1 and 0 < α < 2. It is known that the sum of the
geometric progression zm is equal to

∞∑
m=0

zm =
1

1− z
,

hence
∞∑
t=1

ft = f1 ·
∞∑
t=1

(1− α)t−1 = f1 ·
∞∑

m=0

(1− α)m = f1 ·
1

1− (1− α)
= f1 ·

1

α
= 1,

hence f1 = α. Thus, ft = α · (1− α)t−1. The proposition is proven.

3 Application: A Simple Explanation of Asym-
metric Price Transmission

As an example of an application of this idea, let us consider the phenomenon of
asymmetric price transmission.

What is price transmission. The price of a manufacturing product is de-
termined by the price of the components and the price of the labor. If one of
the component prices changes, this change affects the product’s price; this is
called price transmission.

For example, when the oil price changes, the gasoline prices change as well;
when the gasoline prices change, the transportation prices change as well; when
the transportation prices change, the price of all the goods that need to be
transported change as well, etc.
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What is asymmetric price transmission. In many cases, price transmis-
sion is asymmetric in the following sense: when the component (input) price
increases, the final product (output) price starts increasing right away. On the
other hand, when the input price starts decreasing, the output price sometimes
stays high and does not decrease at all – sometimes, decreases somewhat but
much slower than it was decreasing. As a result, when the input price falls to
the original lower level, the output price remains much higher than the original
one; see, e.g., [11, 12, 17].

Why this is a problem. This phenomenon seems to contradict to the usual
economic assumption that markets are efficient, and that the price of each prod-
uct is determined by the equilibrium of supply and demand. Under this assump-
tion, when the demand remains fixed and the labor costs remain fixed, the price
of the final product should be uniquely determined by the price of the compo-
nents. However, in reality, when the component prices goes back to the original
level, the final product price does not get back to the same level, it remains
higher.

How this problem is solved now. There exist explanations of this phe-
nomenon; see, e.g., [4, 10, 16] and references therein. However, these explana-
tions are based on complex models and are far from intuitive clarity.

What we do in this section. In this section, we provide a simple explanation
for the phenomenon of asymmetric price transfer.

Our explanation. To describe the main idea behind our explanation, let us
consider an often-cited example of price transmission from crude oil prices to
gasoline prices. A gasoline company periodically buys crude oil, transforms it
into gasoline, and sells this gasoline to the customers. When the company’s
supply of oil decreases below its re-order threshold, it orders a new oil supply.

This ordering of new oil has to be in the future. Even if the company suspects
that the price will increase, it is still usually unable to buy needed oil now, at
when the price is still lower: the company may simply not have enough storage
for all this oil which will only be needed in the future.

As a result, for the company to stay even, it should determine the price it
charges to the customers not based on the current price of oil, but rather on its
future price – at the time when it will re-supply it.

Of course, we do not actually know the exact future price, so we have to use
a predicted price. As we have seen in the previous section, to predict the price,
we should use not only the current price, but also prices at previous moments of
time. Let us show, on a simplified example, that this simple idea indeed leads
to what we observe as asymmetric phase transmission.

For simplicity, let us assume that as a predictor of the future price, we use
the arithmetic average of the two previous observations.
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• Let us assume that in the past, the oil price was steady at $20 per barrel.

During this trend, the predicted price is also equal to
20 + 20

2
= 20.

• Then, one year, the oil price shoots to $100. At this moment, the predicted
price, based on the two previous values of $20 and $100, becomes equal

to
20 + 100

2
= 60, a threefold increase.

• In the next year, the price falls back to the old amount $20. Here, the
predicted price, based on the two previous values $100 and $20, is equal

to
100 + 20

2
= 60. In other words, the oil price decreased back to the

original level, but the gasoline price did not decrease at all!

• Finally, in the year after that, when the oil stays at its low price of $20,

the average becomes again equal to
20 + 20

2
= 20, i.e., finally, the gasoline

price goes down.

We see that when the oil price increased, the gas price increased right away, but
when the oil price decreased to the old level, it took the whole year for the gas
price to go down to the old level. This is exactly what is called the asymmetric
price transmission.

Comment. A general idea that many problems can be resolved if we take into
account the dynamic, time-changing character of many real-life phenomena, has
been advocated, on numerous examples, by L. Perlovsky; see, e.g., [13, 14, 15].

Additional intuitive arguments in favor of our explanation. To explain
the observed phenomenon of asymmetric price transmission, we considered a sit-
uation in which the price of the component remains stable and then experiences
a sudden increase. In this case, we have an abrupt increase in the customer price
of the final product – both empirically and in accordance with our explanation.

We can also consider an opposite situation: when the price of the component
remains stable and then experiences a sudden decrease. In this case, our expla-
nation predicts a sudden decrease in the customer price of a final product as
well. We indeed observe such a phenomenon on the example of consumer elec-
tronics: when the computer chips become cheaper, many electronic products
become cheaper as well.

Comment. One might argue that still, in real life, we observe more cases when
consumer prices go up fast but go down slower, and similarly cases when con-
sumer prices go down fast but go up slower are rarer. This would indeed some-
what contradict our justification if prices, on average, went down as frequently as
they go up – thus remaining, on average, stable. In reality, the average prices go
up, there is a small but steady inflation, which means that indeed, prices going
up are more frequent than prices going down. Thus, the observed phenomenon
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of asymmetric price transmission (when the prices suddenly go up and then go
somewhat down) is indeed more frequent than the opposite phenomenon: when
consumer prices suddenly go down, and then somewhat go back up.

4 Second Result: A Simple Explanation of Why
Volatility Increase is a Good Predictor of
Trend Reversal

Formulation of the problem. In the previous sections, we described the
problem of predicting the new value when we are within a certain trend. Another
important problem is predicting when a trend will reverse, e.g., when recession
will end – or, vice versa, when an economic boom is expected to end.

Volatility increase as a good predictor of trend reversal: an empir-
ical fact. It is a known empirical fact that volatility – measured, e.g., the
standard deviation of the value from its local average – tends to increase before
trend reversals. Thus, such volatility increases are a known predictor of trend
reversals.

This empirical fact is somewhat counter-intuitive. Economists and
econometricians have used volatility increase as a predictor of trend reversal
for so long that to most of them, this relation is natural and intuitive. However,
as well see, from the purely mathematical viewpoint, this predictor is somewhat
counter-intuitive.

Indeed, from the mathematical viewpoint, when the trend changes from
decrease to increase, this means that the corresponding quantity reaches its
minimum. When the trend changes from increase to decrease, this means that
the corresponding quantity reaches its maximum. The problems of detecting
minimum and maximum are known in mathematics for a long time. From the
fundamental viewpoint, the questions of how to detect minima and maxima
have been solved by Newton’s and Leibnitz’s calculus: at the point where a
function attains its minimum or its maximum, the derivative of this function is
equal to 0.

The derivative is, crudely speaking, a measure of how much (and in what
direction) a function changes locally (in the vicinity of a given point). In these
terms, the result about zero derivative means that when a function attains min-
imum or maximum, then the corresponding measure of local change attains its
smallest possible value (value 0). Now, for econometric sequences, the oppo-
site seems to be empirically true: in trend reversal situations (i.e., when the
corresponding function attains its minimum or maximum), the corresponding
measure of local change (in this case, volatility) attains its largest value!

This is what we meant by saying that the above empirical fact is somewhat
counter-intuitive.
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Towards an explanation. Let us provide a simple explanation of the em-
pirical fact, an explanation that will hopefully make this fact more intuitively
convincing. As an example of a time series, let us consider a stock price. With
respect to the given stock, some traders are optimistic, some are pessimistic.

An optimistic trader believes that the stock will rise, so he/she is willing to
pay a little extra for this stock – in the expectation of larger gains in the future.
A pessimistic trader believes that the stock will go down, so he/she is willing to
sell this stock even for a price which is somewhat lower than the last recorded
price for this stock – because if the trader does not sell this stock even at this
price, he/she may lose more when this stock decreases in value.

The overall price of the stock can be computed as an average over all the
transactions. Let x be the last recorded price for the stop, and let δ be the
average value of the small increase/decrease in stock in transactions by optimists
and pessimists. We are interested in the average behavior of all the traders in
the market, and in such an average behavior, individual differences tend to
average out. Thus, it seems safe to ignore the individual differences between
the corresponding increases and decreases and simply assume that each optimist
performs transactions with this stock at the price x + δ, while each pessimist
performs transactions at the price x− δ.

Let p be the proportion of optimists, i.e., the probability that a randomly
selected trader is an optimist with respect to this stock. To further simplify
our description, we will also assume that all the traders are independent from
each other. Let n denote the total number of traders. Thus, we arrive at the
following model:

• We start with the price x.

• At the next moment of time, we have a price x′ =
x1 + . . .+ xn

n
, where

xi = x + ηi · δ and ηi are independent random variables each of which
attains:

– the value ηi = 1 with probability p, and

– the value ηi = −1 with the remaining probability 1− p.

Since the variables xi are independent and identically distributed, their expected
values coincide: E[x1] = . . . = E[xn]. Thus,

E[x′] =
E[x1] + . . .+ E[xn]

n
= E[xi],

where

E[xi] = x+ E[ηi] = x+ (p · 1 + (−1) · (1− p)) = x+ (2p− 1) · δ.

According to this formula, when 2p − 1 > 0, i.e., when p > 1/2, the price
increases; when 2p − 1 < 0, i.e., when p < 1/2, the price decreases. The trend
reverses itself when p is equal to the threshold value p = 1/2.
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For this situation, as a measure of volatility, we will take standard deviation
σ =

√
V . For each xi, the variance V [xi], i.e., the expected value of the square

(xi − E[xi])
2 of the difference xi − E[xi]. When xi = x + δ, this difference is

equal to

(xi − E[xi])
2 = (x+ δ)− (x+ (2p− 1) · δ) = 2 · (1− p) · δ.

When xi = x− δ, this difference is equal to

(xi − E[xi])
2 = (x− δ)− (x+ (2p− 1) · δ) = −2 · p · δ.

Thus, the variance is equal to

V [xi] = p·4·(1−p)2 ·δ2+(1−p)·4·δ2 = 4·δ2 ·p·(1−p)·((1−p)+p) = 4·δ2 ·p·(1−p).

The variance of the sum of n independence random variables is equal to the
sum of their variances, so

V [x1 + . . .+ xn] =
n∑

i=1

V [xi] = 4 · n · δ2 · p · (1− p).

Thus, for the standard deviation σ =
√
V , we get

σ[x1 + . . .+ xn] = 2 · δ ·
√
n ·

√
p · (1− p).

When we divide a random variable by a constant (in this case, by n), its standard
deviation is divided by the same constant, so we get

σ[x′] =
σ[x1 + . . .+ xn]

n
= 2 · δ · 1√

n
·
√
p · (1− p) = const ·

√
p · (1− p).

The value p · (1 − p) is the smallest when p = 0 and p = 1 and attains its
largest value when p = 1/2. Thus, in this simple model, volatility is indeed the
largest when the trend reverses – exactly as empirically observed.
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