2 AC ADEM]C Journal of Uncertain Systems

— World Academic Union Vol.6, NO'Q’ pp.118-.1217 2012
Online at: www.jus.org.uk

[-Complexity and Discrete Derivative of Logarithms:
A Symmetry-Based Explanation

Vladik Kreinovich* and Jaime Nava
Department of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA, jenava@miners.utep.edu, vladik@utep.edu

Received 1 June 2011; Revised 14 July 2011

Abstract

In many practical applications, it is useful to consider Kolmogorov complexity K (s) of a given string
s, i.e., the shortest length of a program that generates this string. Since Kolmogorov complexity is, in
general, not computable, it is necessary to use computable approximations K(s) to K(s). Usually, to
describe such an approximations, we take a compression algorithm and use the length of the compressed
string as K (s). This approximation, however, is not perfect: e.g., for most compression algorithms, adding
a single bit to the string s can drastically change the value I?(s) — while the actual Kolmgorov complexity
only changes slightly. To avoid this problem, V. Becher and P. A. Heiber proposed a new approximation
called I-complexity. The formulas for this approximation depend on selecting an appropriate function
F(z). Empirically, the function F(x) = log(z) works the best. In this paper, we show that this empirical
fact can be explained if we take in account the corresponding symmetries.
(©2012 World Academic Press, UK. All rights reserved.
Keywords: Kolmogorov complexity, I-complexity, symmetries

1 Formulation of the Problem

Kolmogorov complexity. Kolmogorov complexity K (s) of a string s is defined as the shortest length of a
program that computes s; see, e.g. [3]. This notion is useful in many applications. For example, a sequence
is random if and only if its Kolmogorov complexity is close to its length.

Another example is that we can check how close are two DNA sequences s and s’ by comparing K (ss’)
with K (s) + K(s'):

e if s and s’ are unrelated, then the only way to generate ss’ is to generate s and then generate s’, so
K(ss') ~ K(s) + K(s'); but

e if s and s’ are related, then we have K(ss') < K(s) + K(s').

Need for computable approximations to Kolmogorov complexity. The big problem is that the
Kolmogorov complexity is, in general, not algorithmically computable [3]. Thus, it is desirable to come up
with computable approximations to K (s).

Usual approaches to approximating Kolmogorov complexity: description and limitations. At
present, most algorithms for approximating K (s) use some loss-less compression technique to compress s, and
take the length K (s) of the compression as the desired approximation.

This approximation has limitations. For example, in contrast to K(s), where a small (one-bit) change in
 cannot change K (s) much, a small change in s can lead to a drastic change in K (s).

The general notion of I-complexity. To overcome this limitation, V. Becher and P. A. Heiber proposed
the following new notion of I-complezity [1, 2]. For each position ¢ of the string s = (s182...,), we first find
the largest B,[i] of the lengths ¢ of all strings s;_s41 ... s; which are substrings of the sequence s; ...s;_1.

n
Then, we define I(s) def > f(Bsli]), for an appropriate decreasing function f(zx).
i=1

*Corresponding author. Email: vladik@utep.edu (V. Kreinovich).

Journal of Uncertain Systems, Vol.6, No.2, pp.118-121, 2012 119

Example. For example, for aaaab, the corresponding values of Bg(i) are 01230. Indeed:
e For ¢ =1, the sequence s; ...s;_1 is empty, so Bs(1) = 0.

e For ¢ = 2, with s182 = aa, a string sy = a is a substring of length 1 of the sequence s;...s,_1 = s1 = a.
So, here, Bs(2) = 1.

e For ¢ = 3, with s15253 = aaa, a string sss3 = aa is a substring of length 2 of the sequence s1...5,_1 =
$182 = aa. So, here, B¢(3) = 2.

e For i = 4, with s1s2s354 = aaaa, a string sss3sy = aaa is a substring of length 3 of the sequence
S1...8i—1 = 818283 = aaa. So, here, Bs(4) = 3.

e For ¢ = 5, none of the strings s;_¢y1...5; ending with s; = s4 = b is a substring of the sequence
81...8i—1 = 81828384 = aaaa. So, here, By(5) = 0.

Good properties of I-complexity. Thus defined I-complexity has many properties which are similar to
the properties of the original Kolmogorov complexity K (s):

e If a string s starts with a substring ', then I(s) < I(s').

e We have I(0s) = I(s) and I(1s) = I(s).

e We have I(ss") < I(s)+ I(s').

e Most strings have high I-complexity.
On the other hand, in contrast to non-computable Kolmogorov complexity K (s), I-complexity can be com-

puted feasibly: namely, it can be computed in linear time.

Empirical fact. Which function f(x) should we choose? It turns out that the following discrete derivative
of the logarithm works the best: f(x) = dlog(x + 1), where dlog(z) Lof log(z + 1) — log(x).

Natural question. How can we explain this empirical fact?

2 Towards Precise Formulation of the Problem

Discrete derivatives. Each function f(n) can be represented as the discrete derivative F(n + 1) — F(n)
n—1

for an appropriate function F'(n): e.g., for F(n) = > f(i). In terms of the function F'(n), the above question
i=1

takes the following form: what is the best choice of the function F(n)?

From a discrete problem to a continuous problem. The function F(x) is only defined for integer

values = — if we use bits to measure the length of the longest repeated substring. If we use bytes, then x can

take rational values, e.g., 1 bit corresponds to 1/8 of a byte, etc. If we use Kilobytes to describe the length,

we can use even smaller fractions. In view of this possibility to use different units for measuring length, let
us consider the values F(z) for arbitrary real lengths .

Continuous quantities: general observation. In the continuous case, the numerical value of each quan-
tity depends:

e on the choice of the measuring unit and

e on the choice of the starting point.
By changing them, we get a new value 2’ =a-x + b.

Continuous dependencies: case of length x. In our case, x is the length of the input. For length z, the
starting point 0 is fixed, so we only have re-scaling + - 7T =a - x.

120 V. Kreinovich, J. Nava: I-Complexity: Symmetry-Based Explanation

Natural requirement: the dependence should not change if we simply change the measuring
unit. When we re-scale to T = a - z, the value y = F(z) changes, to § = F(a -). It is reasonable
to require that the value ¥ represent the same quantity, i.e., that it differs from y by a similar re-scaling:
y=F(a-x) = A(a)- F(x) + B(a) for appropriate values A(a) and B(a).

Resulting precise formulation of the problem. Find all monotonic functions F'(x) for which there exist
auxiliary functions A(a) and B(a) for which

F(a-z) = A(a) - F(z) + B(a)

for all x and a.

3 Main Result

Observation. One can easily check that if a function F(z) satisfies the desired property, then, for every

two real numbers ¢; > 0 and ¢, the function F(z) LIPS F(x) + ¢ also satisfies this property. We will thus
say that the function F'(z) = ¢1 - F(x) 4 ¢o is equivalent to the original function F(z).

Main result. FEvery monotonic solution of the above functional equation is equivalent to log(x) or to z®.
Conclusion. So, symmetries do explain the selection of the function F(z) for I-complexity.

Proof.
1°. Let us first prove that the desired function F'(x) is differentiable.

Indeed, it is known that every monotonic function is almost everywhere differentiable. Let zy > 0 be a point
where the function F(x) is differentiable. Then, for every z, by taking a = x/xq, we conclude that F(z) is
differentiable at this point x as well.

2°. Let us now prove that the auxiliary functions A(a) and B(a) are also differentiable.

Indeed, let us pick any two real numbers x1 # 5. Then, for every a, we have F(a-x1) = A(a) - F(x1) + B(a)
and F(a-x2) = A(a) - F(x2) + B(a). Thus, we get a system of two linear equations with two unknowns A(a)
and B(a).

F(a-xz,) = A(a) - F(z1) + B(a).

F(a-xz9) = A(a) - F(z2) + B(a).

Based on the known formula (Cramer’s rule) for solving such systems, we conclude that both A(a) and B(a)
are linear combinations of differentiable functions F'(a - 1) and F(a - x2). Hence, both functions A(a) and
B(a) are differentiable.

3°. Now, we are ready to complete the proof.
Indeed, based on Parts 1 and 2 of this proof, we conclude that
F(a-z) = A(a) - F(z) + B(a)
for differentiable functions F'(z), A(a), and B(a). Differentiating both sides by a, we get
z-F'(a-z)=A'(a) F(z) + B'(a).

dF e e dFr d
In particular, for a = 1, we get x - e A-F + B, where A def A'(1) and B def B'(1). So, AT Fin - ?a:;

now, we can integrate both sides.
Let us consider two possible cases: A =0 and A # 0.
F
3.1°. When A =0, we get % =lIn(z) + C, so

F(z)=0b-ln(x)+b-C.

Journal of Uncertain Systems, Vol.6, No.2, pp.118-121, 2012 121

3.2°. When A # 0, for F ECH e %, we get Ad.Fﬁ = i—ﬁ, S0 % ‘In(F(z)) = In(z) + C, and In(F(z)) =
A-In(z)+ A-C. Thus, F(z) = Cy - 24, where Cy e exp(A - C). Hence, F(z) = F(z) — % =Cp -2t - %

The statement is proven.

Acknowledgments

This work was supported in part:
e by the National Science Foundation grants HRD-0734825 and DUE-0926721, and
e by Grant 1 T36 GMO078000-01 from the National Institutes of Health.

References

[1] V. Becher and P. A. Heiber, “A better complexity of finite sequences”, Abstracts of the 8th Int’l Conf. on
Computability and Complexity in Analysis CCA’2011 and 6th Int’l Conf. on Computability, Complexity,
and Randomness CCR’2011, Cape Town, South Africa, January 31 — February 4, 2011, p. 7.

[2] V. Becher and P. A. Heiber, “A linearly computable measure of string complexity”, Theoretical Computer
Science, to appear.

[3] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, Springer, Berlin,
Heidelberg, New York, 2008.

