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Abstract 

FAIRIO is a cycle-based I/O scheduling algorithm that provides differentiated service to 

workloads concurrently accessing a consolidated RAID storage system. FAIRIO enforces 
proportional sharing of I/O service through fair scheduling of disk time. During each cycle of the 

algorithm, I/O requests are scheduled according to workload weights and disk-time utilization 

history. There are several parameters in the FAIRIO scheduler that can affect its behavior. One 
parameter in particular, the length of a scheduling cycle, can affect the scheduler’s ability to react 

to and compensate for changes in workload access characteristics. Unfortunately, there is no 

cycle length that is optimal for all workloads and, thus, it must be chosen according to the 

workload environment. This technical report describes a heuristic that can be used to choose a 
favorable cycle length that promotes performance differentiation given a priori knowledge of 

workload access behavior. The heuristic is validated using simulations driven by several real and 

synthetic workload scenarios that represent a broad range of request types, sizes, and access 
characteristics. We show that when workload weights properly map to workload requirements, 

cycle lengths deduced by our heuristic promote differentiated disk-time sharing within 3.9% of 

perfect proportionality to workload weights. 

I. Introduction  

FAIRIO is designed for RAID storage systems such as the one schematically depicted in Figure 1, and is 
assumed to be implemented at the I/O driver in order to provide proportional sharing of the RAID’s 

bottleneck device, the disks. It is a cycle-based algorithm that provides to each concurrently active 

workload, one expected to generate I/O requests, a proportional share of the total available disk time, i.e., 
an allocation that is relatively proportional to the workload's weight (a wi/W share of total disk time, 

where wi is workloadi's weight and W is the sum of the weights of all workloads). This is accomplished 

over a sequence of scheduling cycles via coordinated disk-time share allocations to active workloads. 



 
 

Fig. 1. RAID Storage System: FAIRIO is assumed to operate at the I/O driver level of the RAID storage hierarchy. 

At the beginning of each scheduling cycle, FAIRIO calculates the amount of disk time to be allocated to 

each active class, Classi. However, variability in request characteristics, request streams, and storage state 
across cycles may cause a difference between the amount of disk time allocated to a class and the amount 

that is actually used to service its requests. Therefore, in order to maintain differentiated service, the 

allocation of disk time in a cycle factors-in not only workload weights but also observed deviations in the 

history of disk-time utilization during a set of previous cycles, called a window of observation. 
Specifically, this moving window of time, where cycles are dynamically added and discarded from the 

window, approximates a user-defined number of full cycles. At the end of a cycle, the disk time utilized 

by each class during the cycle is recorded into the window of observation. This utilization information is 
stored in the window as context-dependent values that ignore service deviations that did not degrade the 

service of other classes.  

Since FAIRIO adjusts disk-time shares at the beginning of every cycle, the length of a scheduling cycle 

has a significant impact on the performance of FAIRIO, and, thus, is an important FAIRIO parameter. 

The length of a scheduling cycle involves tradeoffs between FAIRIO responsiveness, disk-time 

availability, and scheduling overhead. For example, short cycle lengths increase the frequency of disk-
time share adjustments based on observed utilization and, thus, enable FAIRIO to more quickly react to 

changes in workload access characteristics. In contrast, long cycle lengths result in more available disk-

time share per cycle to meet minimum allocation thresholds for workloads, and incur less control and 
computation overheads in the I/O system. Thus, the length of a scheduling cycle should be short enough 

to allow disk-time share adjustments at the rate with which workload access varies, yet not so short as to 

incur unnecessary overhead and allocation inflexibility. 

This technical report demonstrates how to select a cycle length for FAIRIO that offers a favorable balance 

between the above-mentioned tradeoffs. This report first illustrates in Section II the impact of various 



cycle lengths on FAIRIO performance. Next, Section III discusses a heuristic for selecting a suitable 

cycle length, i.e., a cycle length that leads to small errors in terms of disk-time differentiation. Finally, the 
effectiveness of the heuristic is demonstrated in Section IV. We have included necessary details of 

FAIRIO required for understanding the heuristics into this technical report. Complete details of FAIRIO 

can be found in [1]. 

II. The Performance Impact of Cycle Length 

To demonstrate the performance impact of cycle length, we evaluated 14 different values of this 
parameter for two sets of experiments, Illustration 1 and Illustration 2. Each set of experiments was driven 

by an artificial I/O trace consisting of two request classes with weights 1 and 2, and with 10,000 requests 

each. The request inter-arrival time of each class was 10 ms, which led to an average overall request inter-
arrival time of 5 ms. For all experiments, we selected a window of observation 20 times the size of a full 

cycle length, i.e., we selected a value of 20 for the FAIRIO parameter r. FAIRIO defines two thresholds 

as throughput-optimization parameters. The first threshold, Classthreshold, specifies a minimum number of 

requests of a class that can be dispatched in a cycle, while the second threshold, StorageLoadthreshold, 
specifies the minimum number of in-flight requests for the storage to not be considered under-loaded. 

Once the storage becomes under-loaded, FAIRIO attempts to increase the number of in-flight requests to 

reach the threshold. Though the first throughput optimization can potentially improve performance, in the 
absence of a starvation-avoidance scheme we chose to disable it, by setting Classthreshold to 1, i.e., in order 

to prevent requests from being upheld at the I/O driver indefinitely. In order to ensure high bandwidth 

utilization, StorageLoadthreshold is set to match the request capacity of the disk controller queue, i.e., 16. 

To determine how well a particular cycle length promotes performance differentiation, we measured the 
error between a class’ disk-time utilization (ActualRatioi) and its rightful share of disk time (IdealRatioi). 

We compute this error, Errori, i Є {1…n}, where n is the number of active classes, in terms of DTi, the 

disk-time utilized by Classi over time, and wi, the weight of Classi, i.e., 

Errori = (ActualRatioi - IdealRatioi ) * 100%, where 

IdealRatioi = wi / ∑( wi ), and 

ActualRatioi = DTi / ∑( DTi ). 

Tables I and II show the results for each set of experiments, respectively. These tables present three types 

of information: (1) the cycle length used in the experiment, (2) the error in performance differentiation for 

each class (Errori), and (3) the aggregate throughput of the two classes combined, averaged over time. 

We now describe each set of experiments in detail and present the associated results. 

Illustration 1: For this set of experiments, both classes accessed the same storage utility with 128-block 

requests; Class1 and Class2 issued random and sequential read access streams, respectively. As shown in 

Table I, the choice of cycle length did not significantly affect the delivered aggregate throughput; it 
ranged from 7.26 to 7.32 MB/s. In contrast, in terms of disk-time differentiation, the errors mostly 

decreased as the cycle length increased, reaching a minimum of 0.18% for a cycle length of 2,000 ms, 

before beginning to rise for the last two cycle lengths, i.e., 2,500 and 3,000. 

Table I: The effect of cycle length for Illustration 1  
where both request classes have fixed access characteristics. 

Cycle length 

(ms) 

Error1 

(%) 

Error2 

(%) Aggregate throughput (MB/s) 

100 12.20 -12.20 7.28 

200 13.69 -13.69 7.26 

300 8.90 -8.90 7.28 

400 11.49 -11.49 7.26 



500 6.48 -6.48 7.27 

600 9.00 -9.00 7.27 

700 6.20 -6.20 7.28 

800 2.16 -2.16 7.29 

900 9.02 -9.02 7.27 

1,000 1.33 -1.33 7.29 

1,500 1.17 -1.17 7.29 

2,000 -0.18 0.18 7.31 

2,500 0.36 -0.36 7.30 

3,000 0.50 -0.50 7.32 

 

Illustration 2: In this set of experiments, the request trace of Class2 remained the same as in Illustration 
1, while Class1 issued read requests at the same rate as in Illustration 1 but with monotonically increasing 

sizes and distances between consecutive requests. Below, Equations (i) and (ii) describe how the request 
sizes and address distances between consecutive requests increased for Class1, respectively. 

For j=0, 1, 2, ... 

size of requestj = 16 + 10 * Floor(j / 100)                                                            (i) 
jump distance between requestj and request(j+1) =  

   request size + 10 * (1 + Floor(j / 100))                                                             (ii) 

For example, the first size of the first hundred Class1 requests was 16 and the request address distance 

between consecutive requests was 26. 

As shown in Table II, the choice of cycle length had an observable effect on the delivered aggregate 

throughput of the experiments of Illustration 2; it ranged from 8.07 to 9.32 MB/s, which is a difference of 

15.49%. In terms of disk-time differentiation, the errors were above 11% for cycle lengths at or under 800 
ms; and below 6% for the rest of the experiments; cycle length 900 ms yielded the smallest error with 

1.40%. 

Table II: The effect of cycle length for Illustration 2  
where Class1 and Class2 have varying and fixed access characteristics, respectively. 

Cycle length (ms) 

Error1 

(%) 

Error2 

(%) 

Aggregate throughput 

(MB/s) 

100 14.49 -14.49 8.94 

200 15.54 -15.54 9.24 

300 16.08 -16.08 9.32 

400 11.27 -11.27 8.85 

500 11.79 -11.79 8.87 

600 17.76 -17.76 8.90 

700 15.29 -15.29 8.88 

800 14.49 -14.49 8.94 

900 -1.40 1.40 8.07 

1,000 5.14 -5.14 8.19 

1,500 2.41 -2.41 8.12 

2,000 4.57 -4.57 8.21 

2,500 4.81 -4.81 8.23 

3,000 4.44 -4.44 8.22 



The results in Illustration 1 and Illustration 2 show that, in general, there is a downward trend in the 

performance differentiation error as the cycle length is increased. However, this trend eventually hits a 
minimum and after this point the error begins to increase. In the case of Illustration 1, where both classes 

have non-varying access characteristics, the minimum error is reached with a relatively large cycle length 

of 2,000 ms. On the other hand, in the case of Illustration 2, where one of the classes has a highly varying 

access behavior, the minimum error is reached sooner, i.e., with a relatively smaller cycle length of 900 
ms. These results support our argument that larger cycle lengths are suitable for workloads with non-

varying access characteristics, while shorter cycle lengths are suitable for workloads with more varying 

access behaviors.  

III. A Heuristic for Selecting FAIRIO Cycle Length 

As shown by the two sets of experiments in Section II, a cycle length that results in low performance 

differentiation error for one workload may result in a relatively large error for another. Accordingly, we 

explored a heuristic for choosing a suitable cycle length given a workload of classes sharing a storage 

system. Below, we present the heuristic and then illustrate its effectiveness. Although it is possible to 
estimate cycle lengths dynamically during runtime, we chose to use static values in our experiments as an 

initial step to evaluate this heuristic. 

Our heuristic has the following input parameters for each class, Classi: 

 ClassTypei: a classification of Classi based on the stability of its access characteristics. These 

characteristics include request arrival rate, access pattern, request size, and request type (read or 

write). If any of these characteristics is unstable, we classify Classi as Type1. Otherwise, if these 

characteristics are all stable, Classi is considered to be of Type2. 

 ServiceRequesti: an estimation of average service time for a Classi request. In most cases, the 

average service time per request changes only negligibly with FAIRIO, relative to what it is when 
FAIRIO is disabled. Therefore, when using our heuristic for the experiments discussed in Section 

IV, we used the average service time that we observed with FAIRIO disabled. 

 NumRequestsi: the number of requests that Classi is expected to dispatch during a scheduling 

cycle, which depends on ClassTypei. Below, we discuss how to choose the value of NumRequestsi 
based on ClassTypei to achieve the goal of low expected error of differentiated service; note that 

this value must be greater than or equal to Classthreshold, which is a FAIRIO parameter related to 

performance optimization [1]. 

Given these parameters, we can derive the values for (1) the minimum service allocation for each class in 

a cycle (ServiceSharei), then (2) the minimum amount of total service in a cycle (Servicecycle), and, finally, 

(3) the minimum wall-clock time in a full scheduling cycle (Cyclelength). These terms are summarized and 

placed in the context of a FAIRIO environment in Table III. We now show the derivation of these values 
to arrive at a favorable value for Cyclelength. 

Table III: FAIRIO terminology relevant to the Cyclelength heuristic (disk-time is the service metric). 

Scheduler Environment 

Cyclelength Amount of wall-clock time in a full scheduling cycle 

Servicecycle Amount of service in a full scheduling cycle 

Service Allocation 

ServiceSharei Amount of service allocated to Classi in a cycle 

Storage System 



NumDisks Number of disks in the RAID storage system 

First we must determine ServiceSharei. As a lower bound, ServiceSharei must be large enough to 

accommodate NumRequestsi requests, i.e., 

    ServiceSharei >= (ServiceRequesti * NumRequestsi).                                     (1) 

Independently of this lower bound, during workload execution FAIRIO computes ServiceSharei in two 
ways depending on whether or not Classi’s service utilization has deviated from its rightful share. 

Specifically, if a deviation from its rightful share occurs, ServiceSharei is computed relative to the amount 

of deviation, a value that we cannot easily predict. Otherwise, FAIRIO computes it relative to the static 
weights of the classes, which we know a priori. Since we can only predict the computed value of 

ServiceSharei in the scenario where no class deviates from its rightful share, we only consider this case to 

estimate the initial value of cycle length. Thus, we assume that ServiceSharei is computed as follows: 

ServiceSharei = ( wi / W ) * Servicecycle, where W = ∑( wi ). 

Thus, 

              Servicecycle = ( W / wi ) * ServiceSharei.                                                  (2) 

If we combine the lower bound on ServiceSharei in Equation (1) with Equation (2), Classi imposes the 
following constraint on Servicecycle: 

Servicecycle >= ( W / wi ) * ServiceRequesti * NumRequestsi. 

To satisfy all classes, we pick the maximum of 

( W / wi ) * ServiceRequesti * NumRequestsi 

over all i as the value of Servicecycle. Finally, given the following formula for calculating Servicecycle for a 

RAID device [1], 

Servicecycle = ( Cyclelength * NumDisks), 

we can derive the lower bound for Cyclelength as: 

                       Cyclelength > = max( ( W / wi ) * ServiceRequesti * NumRequestsi ) / NumDisks.                  (3) 

Given Equation (3), our heuristic for selecting a suitable cycle length, which is guided by class types, is: 

• If ClassTypei = Type1, select a small NumRequestsi. 

• If ClassTypei = Type2, select a larger NumRequestsi. 

In conjunction with Equation (3), the above guidance suggests a lower bound of cycle length based on the 
properties of each class. For the sake of convenience, note that in our experiments we rounded up the 

cycle lengths suggested by Equation (3) to the nearest hundredth millisecond. 

According to the two sets of experiments in Section II, FAIRIO achieves performance differentiation with 

small errors when NumRequestsi equals 17 and 85, for ClassTypei of Type1 and Type2, respectively. Since 
Illustration 1 and Illustration 2 represent workloads of the two extremes in terms of the stability of access 

characteristics, we can use them as references when deducing the suitable cycle length for real and 

synthetic benchmarks. Section IV illustrates this. 

IV. Performance of the Heuristic for Real and Synthetic Benchmarks 

FAIRIO's performance is evaluated using simulations conducted on an enhanced version of DiskSim [2]. 
We enhanced DiskSim 3.0 to support request classes and implement the FAIRIO algorithm in the I/O 

driver. The simulated I/O system is similar to the one depicted in Figure 1. As shown, I/O requests from 

request classes are input to a unified arrival-ordered list of pending requests (tagged with Class IDs) that 



is used by FAIRIO in determining dispatch order. Each request class is of a specific length and is 

assigned a particular weight. The I/O driver feeds requests to the RAID controller, which has an FCFS-
scheduled queue of “infinite” length – the queue can hold more than the total number of scheduled 

requests of any experiment. The RAID controller and disks (each modeled as a closed I/O subsystem) are 

connected via an I/O bus that is used to pass requests, data, and events. An 8-disk RAID-0 configuration 

is used with IBM model 18es disk drives, each with an SSTF-scheduled request queue that can hold up to 
16 requests and a cache of minimal size. We used a RAID-0 configuration because of DiskSim 3.0 

limitations. 

DiskSim is a trace-driven simulator, thus, suitable I/O traces are needed to drive experiments that can be 
used to evaluate FAIRIO performance. We produced six such traces of 4 classes each, three real and three 

synthetic, using four I/O benchmarks. The four I/O benchmarks used to produce the traces are: (1) 

varmail executed using Filebench as a workload personality, a non-scientific benchmark; (2) NAS BTIO 
and MADbench2, two scientific benchmarks, and (3) IOR, a synthetic benchmark from Lawrence 

Livermore National Laboratory, parameterized in three different ways to generate a trace with a random 

access pattern (for IOR1 experiments); a trace with a sequential access pattern (for IOR2 experiments); 

and a trace with a mixed access pattern in which Classes 1 and 3 have random access patterns and Classes 
2 and 4 have sequential access patterns (for IOR3 experiments). Table IV summarizes the workload 

represented by each class of each I/O trace used in this study. As in Section II, we selected the FAIRIO 

parameters r, Classthreshold, and StorageLoadthreshold to 20, 1, and 16, respectively, for all experiments. 

Table IV: Experimental Details 

Benchmark Description of the trace for each class 

varmail 10-minute execution of Filebench with 12 concurrent threads; emulates the storage 

accesses of a /var/mail NFS mail server through a specific loadable workload 
personality 

BTIO BTIO with problem size Class A and four MPI tasks accessing the same output file; 

configured to issue a write every three (instead of the default five) time steps 

MADbench2 MADbench2 with 4, 000 x 4, 000 pixel problem size, four MPI tasks, all of which can 
issue read and write requests concurrently, and 16 component matrices; gang 

scheduling disabled and 32-byte file block size 

IOR1, IOR2, 

and IOR3 

IOR with 12 MPI tasks; writes 64KB requests to a 3GB file; configured to use the 

POSIX I/O API; performs fsync after each write, which transfers modified data from 
the system buffer to storage in order to minimize the effect of I/O buffering, and upon 

each write close 

 

In order to decide a suitable value for the parameter NumRequestsi used in our heuristic for each class, we 

first need to classify the class type. We generated the artificial traces used in Illustration 1 and Illustration 

2 using pre-defined I/O access characteristics. Therefore, there is little ambiguity when deciding their 

class types. However, traces used in our Section IV experiments are based on real and synthetic 
benchmarks, which are not artificial. Thus, the stability of their access characteristics are likely between 

those of the two artificial traces (representing two extremes) in Illustration 1 and Illustration 2. In order to 

decide suitable values for NumRequestsi for these benchmarks, we used the access characteristics of the 
artificial traces as references when we evaluated the stability of our benchmark traces. For workloads with 

fairly stable access characteristics, we chose a value for NumRequestsi close to 85, the value that led to 

the most suitable cycle length in Illustration 1. In contrast, for workloads that demonstrate unstable access 
characteristics, we chose a small value for NumRequestsi that is close to 17, which led to the most suitable 



cycle length in Illustration 2. However, note that if the access characteristics of a workload are more 

unstable than those of Illustration 2, a suitable value for NumRequestsi may actually be smaller than 17.  

We now show the performance of our heuristic for the workload experiments described above, i.e., six 

experiments, each running four differently weighted classes of the same workload, BTIO, MADbench2, 

varmail, IOR1, IOR2, or IOR3. For each experiment, Table V shows the values of ServiceRequesti, 

NumRequestsi, the cycle length suggested by the heuristic, and the error-bound among classes in terms of 
disk-time differentiation. Overall, Table V shows that the errors were bounded by 6.5% and that the 

varmail and IOR1 workloads experienced negligible errors.  

The relatively large error for MADbench2 was due to the fact that the two classes with higher weights did 
not have request rates high enough to consume their disk-time allocations. In general, given a set of 

request classes, FAIRIO can provide differentiated disk-time sharing only under the condition that the 

request arrival rate (B/s), Ai, of each Classi is evenly distributed across cycles and satisfies the following 
inequality: 

Ai  ≥ ( wi*T )/∑(wi), for all i, 

where wi is the weight of Classi and T is the estimated throughput of the RAID system achievable by the 

given set of request classes or, as an approximation, the highest throughput achieved by any set of classes. 
Hypothetically, under these conditions FAIRIO could still enforce differentiation by not allowing the 

other two classes to supplement their allocations with surplus service. However, such strict enforcement 

of performance differentiation would hinder work conservation. Thus, in this scenario FAIRIO chooses to 
forgo perfect performance differentiation in exchange for the utilization of otherwise unused I/O service. 

Specifically, FAIRIO allowed the two classes with lower weights to consume extra disk time on top of 

their allocations. In short, the high errors for MADbench2 were due to classes not being able to take full 
advantage of their high weights rather than due to the selection of cycle length.  

With respect to IOR2, we believe that the errors were because we over-evaluated the stability of their 

access characteristics. Specifically, the value of NumRequestsi is possibly too large. To address the 

possible inaccuracy of our method for defining a value for NumRequestsi, we are currently developing a 
revised heuristic that measures workload access characteristics to quantify stability and, thus, more 

accurately estimate the value of NumRequestsi. We expect that this revised heuristic will be able to 

suggest a more suitable cycle length given the fact that it takes quantitative measurements as inputs. 

Table V: Derived values and respective performance differentiation  

when our heuristic is applied to a set of real and synthetic benchmarks. 

Workload ServiceRequesti 

(ms) 

NumRequestsi Cycle length based on heuristic 

(rounded up to nearest 100 ms) 

Error 

bound (%) 

BTIO 73.42 39 2,200.00 1.62 

MADbench2 73.57 56 3,100.00 6.47 

varmail 69.47 19 1,000.00 0.86 

IOR1 70.25 39 2,100.00 0.72 

IOR2 74.01 64 3,600.00 3.81 

IOR3 69.44 32 1,700.00 1.46 

V. Conclusions and Future Work 

In this technical report, we demonstrated how the choice of cycle length impacts the performance of 

FAIRIO in providing differentiated disk-time sharing. We further empirically demonstrated that favorable 

cycle lengths, which lead to relatively small errors in terms of disk-time differentiation, differ from one 



workload to another. In doing so, we introduced a heuristic that can be used to deduce cycle lengths for 

FAIRIO based on workload access characteristics. Experiments using a set of widely used workloads 
show the performance of our heuristics. It is able to deduce favorable cycle lengths for the FAIRIO 

scheduler to achieve differentiated disk-time sharing within 3.9% of perfect proportionality to workload 

with weights properly mapped to workload requirements. As future work, we are revising the heuristic to 

quantify stabilities of workload access characteristics in order to more accurately estimate values of the 
parameter NumRequestsi, an important parameter in our heuristic. 
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